• 回答数

    3

  • 浏览数

    331

猪宝0517
首页 > 学术论文 > 波粒二象性物理实验论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

龙发集团

已采纳

经过一学期大学物理实验学习,我学会了许多以前所不会的东西,也懂得了许多以往所不懂的原理和知识,这是我以后学习和生活具有重要作用。一学期的大学物理实验课程不仅仅是学会了这些物理实验的做法,更多的是学习方法和面对问题时所应采取的心态和方法。这不仅在学习方面让我受益匪浅更在生活和工作方面让我收获良多。像是在霍尔效应实验以及测水表面张力系数的实验它们的和步骤以及注意事项和材料让我明白做实验的基本过程和方法需要明白什么、要得到什么、应该怎样去做。正如做事应知道用什么方法、准备什么、目标是什么、应注意什么一样。正如我们在大学不仅是学习知识而更多是学习方法和适应社会的能力。我想这也正是我们应该做的。这一年大学物理实验课的学习中,让我受益颇多。它让我养成了课前预习的好习惯。一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但经过这一年,让我深深的懂得课前预习的重要。只有在课前进行了认真的预习,才能在课上更好的学习,收获的更多、掌握的更多。其并且培养了我的动手能力。“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。”现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。经过这一年,让我的动手能力有了明显的提高。他还让我在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的大学物理实验只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。大学物理实验都是一些经典的给人类带来了难以想象的便利与财富。对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。大学物理实验让我慢慢开始“摸着石头过河”。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。它并且教会了我处理数据的能力。实验就有数据,有数据就得处理,这些数据处理的是否得当将直接影响你的实验成功与否。经过这一年,我学会了数学方程法、图像法等处理数据的方法,让我对其它课程的学习也是得心应手。 总之,大学物理实验课让 收获颇丰,同时也让 发现了自身的不足。在实验课上学得的, 将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。最后衷心的感谢老师和同学这一学期在课上和课后对我的帮助,特别是老师在这一学期对我的帮助和教导。明天又是一个新的开始,我会用最大的努力来实现我的人生价值。

307 评论

bluefiresky0

假设有一个光源S1,在S1前放置一块屏幕,从S1发出的光(光子)会将整个屏幕均匀的照亮。我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径为R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2(R2>R1),则在单位球面积上所接受的光子数就变为N除以4πR22,由于R2大于R1,所以半径为R1的球在单位球面积上接受的光子数大于R2球单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。我们在x轴上设置两个点光源S1和S2,如图一所示。令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml (m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点(图中未画出),从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。图一是在S1到S2的距离为3l,P点的光程差为PS1-PS2=2l(m=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m= -1和m= -2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。 如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。为了检验以上的设想是否正确,这里我结合光的干涉实验和光电效应实验设计了一个简单实验。第一步用光干涉仪产生明暗相间的干涉条纹。第二步将光电管依次放在从明到暗条纹的不同位置上,当然采用的单色光源频率要在临阈频率之上,观察产生光电子动能的大小。如果按照现有光量子理论,光电子的动能应该是不变的,原因是光子的能量只与光的频率有关而与光的亮度无关,干涉后光的频率并没有变化,所以在从明到暗的条纹上,测得的光电子的动能应该是不变的。再从量子理论的观点来分析,明亮的地方光子出现的几率大,暗的地方光子出现的几率小,明暗只是单位面积上光子数不同而已,光子的动能并没有改变,所以结论也是光电子的动能不变。而我的结论则是在从明到暗的干涉条纹上光子数是一样的,产生的光电子的动能是从大到小连续变化的。如果实验的结果与我所做的推论一致,我们不妨把这一结论推广到一切实物粒子,因为实物粒子也具有波粒二象性,即一切实物粒子自身的能量与质量之间始终处在不停地相互变化中,这也正是量子力学波函数所要描述的微观世界粒子的客观实在图像。

141 评论

明.设计

爱因斯坦的光电效应理论1905年,爱因斯坦对光电效应提出了一个理论,解决了之前光的波动理论所无法解释的这个实验现象。他引入了光子,一个携带光能的量子的概念。在光电效应中,人们观察到将一束光线照射在某些金属上会在电路中产生一定的电流。可以推断是光将金属中的电子打出,使得它们流动。然而,人们同时观察到,对于某些材料,即使一束微弱的蓝光也能产生电流,但是无论多么强的红光都无法在其中引出电流。根据波动理论,光强对应于它所携带的能量,因而强光一定能提供更强的能量将电子击出。然而事实与预期的恰巧相反。爱因斯坦将其解释为量子化效应:金属被光子击出电子,每一个光子都带有一部分能量E,这份能量对应于光的频率ν:E=hν,这里h是普朗克常数( x 10-34 J s)。光束的颜色决定于光子的频率,而光强则决定于光子的数量。由于量子化效应,每个电子只能整份地接受光子的能量,因此,只有高频率的光子(蓝光,而非红光)才有能力将电子击出。爱因斯坦因为他的光电效应理论获得了1921年诺贝尔物理学奖。实物粒子的波粒二象性爱因斯坦提出光的粒子性后,路易·维克多·德布罗意做了逆向思考,他在论文中写到:19世纪以来,只注重了光的波动性的研究,而忽略了粒子性的研究,在实物粒子的研究方面,是否犯了相反的错误呢?1924年,他又注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,由此构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p=h/mv;m:质量,v:频率,h:普朗克常数。这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。德布罗意的方程三年后通过两个独立的电子散射实验被证实。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,汤姆孙以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。汤姆孙和戴维逊因为他们的实验工作共享了1937年诺贝尔物理学奖。

326 评论

相关问答

  • 波粒二象性物理实验论文

    经过一学期大学物理实验学习,我学会了许多以前所不会的东西,也懂得了许多以往所不懂的原理和知识,这是我以后学习和生活具有重要作用。一学期的大学物理实验课程不仅仅是

    猪宝0517 3人参与回答 2023-12-11
  • 物理化学实验论文

    我空间里有啊!

    腊肉炒豆丝 4人参与回答 2023-12-12
  • 中学物理实验总结性论文

    牛顿第一定律的教学研究,在中学物理教学研究中早已不是一个新问题了.许多物理教育工作者对于这一定律的教学发表了自己颇有见地的教学见解,并且得到了满意的教学效果.

    CamillaGao 4人参与回答 2023-12-10
  • 物理实验论文1500字

    哥们北建大的吧,大二环能学院的

    阳光明媚1618 4人参与回答 2023-12-06
  • 生物实验性论文范文

    仅供参考:提高学习生物兴趣的几点做法当前在生物学科的教学中,由于在考试的影响和指挥下,教师的教学过程过多的重视课堂教学和知识的传授,忽略兴趣的培养和提高。教师不

    嗨吃嗨胀 2人参与回答 2023-12-07