• 回答数

    2

  • 浏览数

    81

小仙姓朱
首页 > 学术论文 > 四旋翼无人毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

几丁不二

已采纳

1. 引言 避障方案设计中,我们期望无人机从起始点飞到目标点,就要不断通过各种传感器获取无人机当下的位置坐标,并根据无人机的位置调整无人机的姿态,最终到达目的地。四旋翼无人机飞行时会有六个自由度,性能灵活,移动迅速,路径中的障碍物也是来自于四面八方,不仅仅局限于正前方,所以增加了无人机避障过程中检测障碍物以及规划安全路径的难度,为方便实验验证算法,减少障碍物检测方向,本文计划采取四旋翼无人机定高控制下的避障飞行实验,即四旋翼无人机在期望高度下飞行,通过前置检测装置检测障碍物,利用算法实现躲避四旋翼无人机前方的障碍物,以此将三维空间中的避障转化为二维平面中的避障飞行,本章主要分析四旋翼无人机的高度解算以及姿态解算,然后利用PID控制方法简历四旋翼无人机的控制器。 定高飞行指无人机在不接受遥控器飞行指令的情况下,飞控板会自动控制无人机的友们,从而保持无人机飞行高度不变,无人机所受升力等于自身重力,定高模式下,遥控器油门输入不再控制无人机的高度,但是仍然可以控制无人机的俯仰、偏航、横滚运动,即无人机会在期望高度平面自由运动,无人机常用的几种高度信息整理如下: 绝对高度:当期位置于平均海平面的垂直距离,也叫做海拔高度。 相对高度:指两个测量地之间的绝对高度之差。 真实高度:无人机飞行过程中,飞控距离地面的实际高度即为真实高度,又称几何高度。 2. 基于互补滤波的信息融合 关于四旋翼无人机的高度以及姿态解算,需要用到数据融合,数据融合也成为信息融合,是将来自多个传感器信息进行处理,从而得出更为全面、可靠的结论,本节采用互补滤波器进行数据融合,将多传感器信息融合解算得到高度以及姿态信息,互补滤波法要求融合的信号的干扰噪声处在不同的频率,通过设置两个滤波器的截止频率,确保融合后的信号能够覆盖需求频率,通过预测---矫正融合两种信息来源,一般是预测其中一种信息,然后利用另外一种信息进行校正。 基于互补滤波的高度解算 定高控制需要获取无人机的高度信息,绝大多数情况下,飞控的高度信息是由飞控内部的气压计来提供的,气压计测量的是绝对高度,利用大气气压伴随高度的增加而降低的原理测量,测量公式:所以气压计高度测量可以表示为:即气压计所测高度等于实际高度加上测量误差高度。 实际飞控板内计算气压计数据时,会采集多次数据求均值然后进行计算,但是单一的传感器所提供的信息似乎不能够满足实际飞行的要求,而且气压计有其难以忽视的缺陷: (1)气压计测量时,噪声干扰很大,数据不够平滑; (2)气压计所测数据会存在漂移现象; (3)经实验证明,气压计测量受温度以及气流干扰严重,低温、强气流环境下,气压计均无法测得准确数值。 加速度计也可以获取飞控的位置信息,飞控通过加速度计获取到当前的加速度以后,通过积分得到垂直速度信息,再积分即可获取高度信息,如下:但是加速度计同样存在固有的缺陷问题,多次积分会使结果产生累积误差,且加速度计的瞬时测量值误差会比较大。 显然,无法单独依靠气压计或者加速度计提供准确的高度信息反馈到实际地控制中,考虑通过其他传感器与气压计的数据进行数据融合处理,以期望得到良好精确的高度信息。 互补滤波算法是通过将气压计于加速度计测量得到的高度信息按照权重进行融合,以此为基础结算高度信息,采用高通滤波器处理加速度细心,低通滤波器处理气压计信息,其中加速度计可以获取飞控的垂直方向上的加速度,经过积分可以化的垂直方向的速度信息,整个算法的核心思想是由地理坐标系下的加速度通过积分,来获得速度、位置信息;经过2次修正陈尚可利用的信息,第一次是李忠传感器计算修正系数产生加速度的偏差修正加速度,第二次是利用修正系数修正位置;最后可利用速度经过加速度修正,可利用的位置经过了加速度和位置修正,加速度的修正过程是由机体测量的加速度通过减去偏差,再转换到地理坐标系。 气压计主要的作用就是计算一个校正系数来对加速度偏移量进行校正。数据融合过程如图所示:加速度计测量的是无人机的加速度,测量值是机体坐标系下的,所以需将加速度值利用旋转矩阵转换为地面参考坐标系下的加速度。具体融合信息的实现过程如下:(2)将加速度计测量的加速度通过旋转矩阵转换到地面参考坐标系下,转换之前注意需要先去除加速度计的偏移量,因为地理坐标系下 z 轴加速度包含重力加速度,所以需要将重力加速度补偿上去; (3)计算气压计的校正系数,这个系数也就是需要用来校正加速度计的系数,具体公式为(4)利用所求的气压计校正系数计算加速度计的偏移向量。  (5)将加速度偏移向量转换回机体坐标系,将转换后的加速度积分,得到融合后的速度信息,再对速度信息积分,即可得到最终的高度估计值,最后将气压计矫正系数二次校正。 采集飞行数据并通过 Matlab 软件仿真以后的结果如图所示,可见融合以后的高 度较加速度计以及气压计单独测的高度准确。 基于互补滤波的姿态解算 从飞行原理可以看出,无人机飞行过程中,最终的控制要回到姿态控制上面,通过具体的欧拉角度调整,从而控制无人机的飞行姿态。要完成无人机的e姿态控制,就需要采集到无人机当前的姿态,然后经过控制算法,将无人机当前姿态调整到期望的姿态,姿态采集主要依靠飞控的惯性测量单元IMU,姿态解算精确与否直接关联到无人机飞行位置精确与否。 飞行过程中,陀螺仪测量无人机的角速度,具有高动态性能,将角速度对时间积分可以得到三个欧拉角角度,陀螺仪数据在积分过程中,会形成累计误差,累计误差随着时间增加不断变大,所以短时间内陀螺仪测量值比较可靠。磁力计主要测量当前的磁场分布,即无人机与磁场之间的角度,这个角度即为偏航角,但是磁力计受周围磁场干扰严重,实际测量中误差较大。加速度计之前已经介绍过,不再赘述。 三种传感器再频域上特性互补,所以本文考虑采用互补滤波融合这三种传感器的数据,实际是利用加速度计与磁力计融合后补偿陀螺仪所测的姿态信息,提高测量精度和系统的动态性能。 三种传感器的数据融合过程如图所示,陀螺仪经过高通滤波器,消除低频噪声,加速度计与磁力计经过低通滤波器,消除高频噪声。利用旋转矩阵将三个传感器所测量的欧拉角转换为四元数形式,然后计算磁场的参考方向计算重力分v与磁场分量w:利用加速度,磁力计的值与重力分量,磁场分量求取误差:利用比例-积分处理上步所求误差,然后利用所求的值补偿陀螺仪产生的零漂现象, 最终结算得到当前姿态信息。 采集飞行数据并通过滤波以后的结果如图 俯仰角,图 滚转角,图 偏航角。3. PID控制器设计 无人机定高飞行主要分两种情况,一种是手动控制定高模式,此种模式下,无人机飞控仍然接收并执行遥控器指令信号,另一种是无人机自主飞行时,如航点飞行或者 offboard 模式等,设定无人机在一定高度下执行预设飞行任务,而不依靠遥控器信号指 令控制自身运动,而本文研究的是第二种定高模式。 在位置控制的背景下,本文中串级双环 PID 控制系统专为实现避障系统而设计,保证四旋翼无人机可以准确的到达目标位置,并且在悬停时保持四旋翼的稳定性。整个双回路控制系统分为内环控制(姿态控制)和外环控制(位置控制)两部分,其中外环控制中主要研究定高控制部分。 PID控制原理 PID 控制器是控制理论中最经典的控制算法,PID 算法简单,可靠性高,被广泛应用于过程控制与运动控制,PID 控制主要由比例,积分以及微分三个环节组成,通过这三个环节对输入值与输出值形成的差值分别做比例运算,积分运算和微分运算,将控制结果发送到被控对象以实现对系统的控制作用,闭环 PID 控制系统原理图如图所示。PID 的三种环节中比例环节 P 的作用是直接将误差的比例作为输出,加快系统的响应速度,提高系统调节精度,但是较大的比例作用会使对象的输出产生较大波动,太小的比例作用会使对象的输出变换缓慢。积分用于将之前的误差值与时间的比例累加起来作为输出,积分环节 I 主要用于消除对象输出稳定时的稳态误差,但是会存在积分饱和情况。微分环节 D 将误差随时间的变化的斜率以比例的形式输出,改善系统的动态性能, 主要用于缩短对象的上升时间,加快响应速度,达到超前调节的作用。使用 PID 控制器的过程中,既可以使用 PID 控制,也可以单独使用 P、PI、PD 等控制,使用的过程即 串级PID控制器设计 本文把避障研究简化到二维平面以后,整体的位置控制就被分为了两部分:定高控制与平面位置控制。其中平面的位置控制即由机载设备发送平面位置,然后由飞控执行。(1)高度控制器 因为高度信息是三维位置的垂直方向信息,所以在实际的飞控控制的无人机飞行的过程中,高度控制属于位置控制的一部分,其中关于高度控制器的流程图可以总结为下图所示。(2)姿态控制器4. 本文小结 本文主要介绍避障过程中相关姿态以及位置高度的控制设计过程,要想控制效果好,首先解算要准确,再飞控资深所带传感器具有固有缺陷的前提下,通过互补滤波算法融合传感器数据,通过融合加速度计与气压结算无人机实际高度,融合加速度计、磁力计与陀螺仪数据解算无人机当前姿态信息;最后利用PID控制算法,设计了串级PID高度控制器与串级PID姿态控制器。

218 评论

赫拉克里斯

浅谈多旋翼无人机任务系统的优秀论文

前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。

1 多旋翼无人机定义概述

我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。

多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。

2 控制系统改进发展阶段

多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。

3 技术原理

系统组成

无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。

系统技术原理

多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。

无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。

但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。

传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。

4 技术关键点及创新点

技术关键点:

地空信息的的数据通信。

先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。

解决飞行姿态操控问题

嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。

在工业控制领域应用的扩展

本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。

增强地面工作站功能

通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。

项目的技术创新性

在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。

卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。

同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。

同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。

5 总结

综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。

314 评论

相关问答

  • 四旋翼飞行器论文参考文献

    1. 引言 避障方案设计中,我们期望无人机从起始点飞到目标点,就要不断通过各种传感器获取无人机当下的位置坐标,并根据无人机的位置调整无人机的姿态,最终到达目

    微笑的可爱多 2人参与回答 2023-12-09
  • 固定翼无人机毕业论文

    固定翼无人机的特点是续航时间长、高空飞行。 固定翼无人机,是机翼外端后掠角可随速度自动或手动调整的机翼固定的一类无人机。因其优良的功能、模块化集成,现已广泛应用

    风火轮妹妹123 2人参与回答 2023-12-10
  • 无人仓毕业论文

    毕业论文中文摘要 物流作为物质实体从供应者向需要者的物理性移动,是社会再生产过程中不可缺少的中间环节,是联系生产和消费的桥梁与纽带,并日益成为企业所看中的“第三

    挑剔的嘴 3人参与回答 2023-12-10
  • 旋喷桩毕业论文

    毕业论文还是自己写为好,来求这个。。。。。 ╮(╯▽╰)╭。。。。。。

    七月紫梦 3人参与回答 2023-12-11
  • 螺旋焊缝钢管无损检测论文

    螺旋钢管是以带钢卷板为原材料,经常温挤压成型,以自动双丝双面埋弧焊工艺焊接而成的螺旋缝钢管.(1)原材料即带钢卷,焊丝,焊剂。在投入前都要经过严格的理化检验。(

    迷茫的前途 2人参与回答 2023-12-08