lin10241121
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
十架方舟
孔子曰:教学相长。一语道破教与学的真正内涵:互相协调,共同促进。因此,教师除了注重自己的教以外,更应注重学生的学。把学生当作教育的主体。现代教学论认为,教学的过程归根结底是如何教会学生学习,而要教会学生学习,教师必须先对学生进行充分了解,对症下药。本文针对初中学生数学学习现状,探讨数学学法,以提高学生数学效率。 一、初中生数学学习现状 在多年的数学教学中,使我深切地体会到当前初中生,特别是初一学生在数学学习的基本方法“读、听、思、记、写”方面都存在着一定的缺陷,严重影响学生数学学习效率,主要表现在: 1.阅读能力差 往往沿用小学学法,死记硬背,囫囵吞枣,像浮萍溅水,一摇即落。根本谈不上领会理解,当然更谈不上应变和应用了。这严重制约了自学能力的发展。 2.听课方法差 抓不住要点,听不入门,顾此失彼,精力分散,越听越玄,如听天书。如此恶性循环,厌学情绪自然而生,听课效率更为低下。 3.思维品质差 常常固守小学算术中的思维定势,不善于分析、转化和作进一步的深入思考,以致思路狭窄、呆滞,不利于后继学习。 4. 识记方式单调 机械识记成份多,理解记忆成份少。对数学概念、公式、法则、定理,往往满足于记住结论,而不去理解它们的真正含义,不去弄清结论的来龙去脉,更不会数形结合,纵横联系,致使知识无法形成完整的知识网络。 5.表达能力差 格式混乱,表达不清。尤其是几何解证,对三种语言(图形语言、符号语言、文字语言)不能融会贯通、相互转换、作图失准、条理不清,缺乏数学应有的严谨、逻辑性、条理性。 6.畏难情绪严重 一遇难题(综合性强、灵活性大的题)便不问津,或互相抄袭,应付了事。 针对学生存在的上述缺陷,教师应继续保持多数学生对数学的兴趣,转化少数数学差生,数学差生分为智力型数学差生和情节感型数学差生,对智力数学差生的转化对策是帮助他们树立信心,诱发并强化学习动机;进行强化记忆训练,让其熟练各种记忆方法,筛选适合自己性格和个性的学习方法;反复进行思维方法的训练,让其掌握基本的数学方法,培养思维品质。对情感型数学差生要抓住兴趣缺乏这一环节,调动情感状态,优化外部环境,充分挖掘数学中的趣味和奥妙及应用,介绍有趣的数学故事,培养数学学习兴趣,帮助其在战胜困难的实践中感受成功的喜悦。 二、初中生数学学法指导 根据多年来的教学经验,就如何提高数学教学质量,使学生变“被动”为“主动”,提高学生学习效率,笔者认为应从以下几个方面入手: 1.教导“读” 现代教育理论认为:教师在教学中起主导作用,学生在教学中居主体地位。让学生学会自主读书,必须通过教师的正确指导,学生才能由“读会”转为“会读”。数学教学中,教师不仅要教会学生对数学语言的翻译,更重要的是教导学生怎样读数学,这是读法的核心,教师可以从以下几个方面教会学生读书: ①粗读。即先浏览整篇内容的枝干,传到既见树木又见森林。然后边读边勾、边划、边圈,粗略懂得教材内容,弄清重难点,将不理解的内容打上记号(以便求教老师、同学)。 ②细读。即根据章节的学习要求细嚼教材内容,理解数学概念、公式、法则、思想方法的实质及因果关系,把握重点,突破难点。 ③研读。即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书本读“薄”,以形成知识网络,完善知识结构。这样,当学生掌握了读法“三部曲”,形成稳固习惯,就能从本质上改变其读书方式,提高学习效率。 2. 开导“听” 课堂教学是师生的双边活动,教师的讲是信息的输出,学生的听是信息的接收,只有调谐学生的“频道”,使接收与输出同频,才能获得最佳收效。 数学教学中,对学生听法的开导,教师首先应从培养学习数学兴趣入手来集中学生注意力,使其激活原有认知结构,打开“听门’,专心听讲。这样,才能把接收的“频道”调谐到教师输出的“频道”,达到同频共振,获得最佳教学效果。其次,要开导学生注意去听教师对每节课所提出的学习要求;对定理、公式、法则的引入与推导过程;对概念要点的剖析和概念体系的串联;对例题关键部分的提示和处理方法;对疑难问题的解释及课末的小结。这样,让学生会抓住要点,延着知识的“生展线”来听课,就能大大提高听课效率。 3. 引导“思” “数学是思维的体操”,数学学习离不开思维。要使学生学会科学的思维方法,形成一定的数学思想,需要教师科学的指路引导。 数学教学中,对学生思法的引导,教师应着力于以下四点:①从学生思维的“最近发展区”入手来开展启发式教学,引导学生去积极主动思考,使学生学会联想。②从挖掘“问题链”来开展变式训练,引导学生去观察、比较、分析、推理、综合,使学生学会转化。③从创设问题情境来开展探索式教学,引导学生追根究源去思索,使学生学会深思。④从回顾解题分歧过程来开展评价,引导学生去分析错因,便学生学会反思。此外,教师在教学过程中,还应善于暴露思维过程,留下一定的思维时间和空间,让学生学会“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中”。这样,就能使学生学会并掌握基本数学思想方法,达到思悟思,融会贯通。 4. 传导“记” 学生学业成绩的好坏,是与其有无掌握良好的记忆方法正相关,而学生对良好记忆方法的领悟,尚需教师的传授指导。 数学教学中,对学生记法的传导,教师首先要重视改革教学方法,摒弃“满堂灌”,以避免学生死呆背。其次要善于结合教学之际,来传授记忆方法。如通过对知识编成顺口溜,使学生学会去联想记忆;通过绘制直观图,使学生在以形助数中,学会数形结合记忆;通过对发掘知识的本质属性,使学生在形成概念的同时,学会凭特征记忆;通过归纳概括所学知识,使学生学会按知识结构来系统记忆;通过揭示获取知识的思维过程,使学生学会循线索记忆。此外,教师还应让学生明确各种记忆的价值、效果、适用范围,以使他们牢固掌握和灵活运用。 5. 指导“写” 作业书写最能反映学生对知识的掌握程度,因此,必须充分重视。 深究学生书写条理混乱的原因可知,教师教学起始时不重视写法指导是一主要导致因素。因此,精心指导学生怎样写,才有助于其驾驭知识,正确解决问题。为此,应切实加强对学生数学语言的教学。 ① 在教学中,既要注重对教学语言的解释,又要注重必要的句法分析 ,这是理解、掌握数学语言的基础。由于数学语言不像日常用语那样能在生活中得到直接印证,换句话说,如果不是在特定的教学研究环境,一般难以使用其语言,因此,其特定的语义、句法规则,使学生理解起来困难。为此,其一,必须明确数学语言的语义,使学生正确理解其含义。如通过比较、区分和弄清一些易混淆的词语,如“大于”与“小于”,“都不”与“不都”,“有一个”与“至少”等等;其二,要明确符号的指代,提示符号的特征。如对符号 ,不仅要指明 所代表的对象,指明 的几何意义,提示它的非负性,还应与其它相关的表示方法相联系,加深学生的认识,如 等等,其三,加强句法分析,由于数学语言有一定的逻辑结构,其概念符号需要按一定的逻辑关系组合。了解这些句法规则是学生会用数学语言的必要条件,因此,在教学中要进行必要的“咬文嚼字”和对比分析,如“ 、 两数的和的平方”与“ 、 两数的平方的和”等,要作仔细的分辨,帮助学生体会、区分、理解 ,进而会灵活运用,对一些长句。还要作必要的分解。 ② 要注意语言规范,这是正确运用数学语言的保证。其一,说法要规范。以利思考和表达的规范,如“在直线 上顺次截取 ”,不能说成“在直线 上截取 ”;其二,书写、作图要规范,如(x+5)千克,不能写成x+5千克。画图也要规范,直线要直,垂线要垂,锐角要锐,不能乱来。 ③ 加强文字语言、符号语言、图形语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。如:“ 是负数”可转换成“ ”,还可以用数学上原点左侧的点来表示。其次,应采用多种形式的互译训练促进三种形态语言的灵活转换能力。如:读图填空训练、读句画图训练等;再其次,要逐步强化语言的训练。 总之,教师在教学中要充分认识学生的认知障碍和情绪障碍,克服学生在“读、听、思、记、写”等方面的缺陷,创设正迁移条件,矫正学生学习障碍;同时加强与学生的沟通,强化学生主体意识参与意识,提高师生互动的正面效益,从而取得良好的教学效果和学习效益。笔者通过几年的教学实践经验总结,逐惭形成了自己的教学特色,学生平时及升学考试中均正常发挥,取得较好的成绩。
无锡捞王
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
扬州宏宏
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
爱美食的飘飘
生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。奇妙的“黄金数”取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果!“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
在现实生活或工作学习中,大家一定都接触过作文吧,借助作文人们可以反映客观事物、表达思想感情、传递知识信息。为了让您在写作文时更加简单方便,下面是我收集整理的七年
数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派
生活中物理科技是与技术产业连结在一起的,因此它又是科学、技术、生产一体化的生产体系,并且受到市场的大力推动。 下面我给大家分享一些物理科技论文500字,大家快来
数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理