小聪聪爱妈妈
对初中数学锐角三角函数教学的几点思考论文
锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几何学习奠定坚实基础,为此这就要求广大教师必须做好该方面教学。然而结合笔者实践来看,由于受到诸多因素所影响,当前锐角三角函数教学效果普遍不佳,如此一来不但严重地影响教学质量,同时更会对后续三角函数教学任务有效开展造成极大的阻碍,对此教师必须认清该知识点的重难点,紧抓学生常见认识误区和思维障碍,采取有效策略进行教学。
一、锐角三角函数与学生常见认识误区和思维障碍分析
锐角三角函数是中学阶段几何学基础知识,是在学生学习了相似三角形和勾股定理之后进一步学习,通过对其开展研究能够使得学生可以后续其他知识学习奠定基础,该知识点呈现正弦函数概念上遵循“从特殊到一般,从实践探索到证明”的方式,让学生体会实验、观察、归纳、猜想、证明的求知过程,有利于学生角度与数值之间对应关系的建立,深化函数思想;在解决实际问题时,强调数学模型的构建,凸现数学建模的思想;重视分析图形特点,强化数形结合思想。对于锐角三角函数知识,学生常见的认知误区和思维障碍主要有以下几方面:(1)不能准确理解锐角三角函数的概念;(2)容易混淆正弦函数、余弦函数和正切函数;(3)过分依赖计算器,对于常用的30°、45°、60°等函数值不能熟记;(4)解直角三角形,特别在解圆中的直角三角形时,易把直角边当做斜边;(5)在解决实际问题中,学生很难通过身体建模来解决问题;(6)容易把坡度与正弦函数混淆。
二、初中数学锐角三角函数教学策略思考与探讨
1.揭示三角函数相关概念产生的思维过程
在传统的教学模式下,许多教师对于三角函数的教学都是采用平铺直叙、照本宣科的方式进行教授,通过让学生反复朗读、书写的方式对概念进行记忆,而很少运用实践操作或探究活动等形式让学生理解相关概念。这种教学方式虽然也能让学生牢牢地记住三角函数的概念,但是这种方式是呆板的,非常影响学生创新思维的发展,因此,教师在教学过程中应该采用通过向学生揭示三角函数概念产生的思维过程的方式加深学生对概念内涵的理解与掌握。
2.重视对直角三角形的讲解
学生掌握好直角三角形的边角关系对于锐角三角函数的学习和掌握有很大促进作用,因而这就要求广大教师必须重视并做好对其教学。直角三角形除直角外的5个元素之间关系:
(1)三边之间的关系:a2+b2=c2(勾股定理);
(2)两锐角之间的关系:∠A+∠B=90°。
利用这些关系,首先要理解好对边与角的关系,这5个元素中,如果知道2个(其中至少有一个是边),就可以求出其余3个。即“在直角三角形中,角定边的比值也确定了,反之,边的比值确定了,角的大小也确定”,并通过在解题过程中不断强调,对学生进行强化理解。数形结合思想对于锐角三角函数的学习与运用也非常的重要,在理解概念、推理论证、计算化简的过程中,通过画图分析,可以让学生在具体、直观中理解直角三角形边与角之间的关系。
3.结合实际生活,促进学生对三角函数相关知识的`理解与掌握
在教学中,教师应尽量选用贴近学生生活的素材来加深学生对三角函数的理解与掌握。结合生活实际不仅可以让学生体会锐角三角函数和解三角形的理论来源于实际,是实际的需要,还可以让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到答案,再将数学问题的答案回归到实际问题的这种“实践-理论-再实践”的认识过程。这过程符合人的认知规律,又利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。直角三角形的学习为学生学习锐角三角函数做好了充分的准备。教师在讲解直角三角形的过程中,就可以利用确定台阶的倾斜程度问题引出正切函数,也可以例举学生熟悉的跷跷板问题等等。
4.对锐角范围内同角或等角的三角函数值相等的内涵和外延进行明晰
明晰锐角范围内同角或等角的三角函数值相等对于学生理解和灵活运用三角函数解决问题显得尤为重要。但是在实际教学过程中,部分教师对此重视不够,在求解某个锐角的相应三角函数值时,该锐角往往置于直角三角形中,学生易形成惯性思维,当需求三角函数值的锐角置于一般三角形时,部分学生缺乏对锐角范围内同角或等角的三角函数值相等的理解。
例如图1所示,点E(0,4),O(0,0),C(6,0)在⊙A上,BE是⊙A中的一条弦,则tan∠OBE=。
许多学生遇到这类题时,很容易出错或者无从下手,教师经过与学生交流、了解做错的原因,就会发现其实很多学生在解答过程中已经意识到要先连接EC(如图2所示),然后由同弧所对的圆周角相等推知∠OBE=∠OCE,但到这一步,学生就陷入了困惑,因为△EOC是直角三角形,而△OBE不是直角三角形。由此可见,学生对于这类题型无法解答或出错的根本原因就在于对同角或等角的三角函数值相等内涵的实质的理解不够透彻。
5.引导学生形成规范的解题过程
引导学生形成规范解题过程有利于他们理清思路,从而达到有效提升其能力与成绩之目的。数学学科一个突出的特点就是逻辑性比较强,对逻辑思维的要求也较高。因此,在解决锐角三角函数问题时,学生通过规范解题过程,按照步骤来进行解题就更加能够便利地找到相应的解题思路,从而掌握相应的数学知识。同时,对于解题思路的梳理很重要,首先要明确具体的问题是什么;其次,针对问题寻找解题突破点,并作出解答的计划;最后,按照计划一步步进行解题,并整理回顾。总之,解题过程规范了,步骤明确了,解题思路也就清晰了。
静水居士
开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具 一、课题提出的背景 高中学习的紧张,高中学科的繁多。在数学学科上三角函数始终是高中学生们的一个心结,一个想得高分却无法做对的心结。并且三角函数与平面向量中的数学思想方法贯穿于整个学习过程内容中,是解决三角函数与平面向量问题的指南.由于数学学习是具体性较差、与现实有一定距离的活动,自我一时的作用更加突出,更加需要有学习活动与对活动的自我反省和调节间的协调统一。然而,目前数学教学中并没有意识到这个重要性,轻视基本概念教学,迷恋大运动量解题训练,以获得正确答案为满足,不对解题过程进行反思,不总结解题经验和教训,更不对问题进行引申、一般化和概括数学思想方法,结果是导致数学学习的“高投入,低产出,”师生双方的负担都非常重 二、所要解决的主要问题 1、通过实际问题培养学生经历概念的形成能力。 2、研究如何培养学生数形结合的数学思想和整体代换的思想。 3、研究如何培养学生对题分析和解决能力。 4、培养学生良好的解决问题的数学思想和方法,使学生对解题充满信心。 三、课题的理论价值和实践意义 理论价值:本课题的研究有助于学生养成利用数学知识解决现实问题的良好习惯,掌握基本的数学思想和方法,真正体会数学知识的实际意义,培养学生良好的数学意识。 实践意义:本课题的研究体现了数学教学的实际意义和新课程基本要求,提高学生数学学习兴趣,培养数学应用能力。 四、研究内容 1、对学生数学的应用能力进行调查,找出影响应用能力的因素。 2、对学生进行图形语言和数学符号语言相结合练习,培养学生数形结合的思想方法。 3、研究学生解决实际问题过程中学生自主探索,合作交流的能力,寻求多样化的解题方法,培养学生的创新意识。采纳有好报
开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (
谁有高中数学小课题的完整资料,发出来我们共享哈,谢谢
三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更
2009年06月03日 数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,