• 回答数

    5

  • 浏览数

    246

yaodabian0214
首页 > 学术论文 > 传染病模型的论文答辩

5个回答 默认排序
  • 默认排序
  • 按时间排序

吃货在学厨

已采纳

学术堂整理了部分关于传染病预防的论文题目供大家进行参考:1、关于传染病预防控制的方法及措施分析2、呼吸道传染病预防与控制分析3、关于天津市慢性非传染性疾病预防控制工作的调研报告4、社区卫生服务机构传染病预防控制有关问题研究5、关于安庆市传染病防治工作的若干思考6、就贯彻执行《传染病防治法》有关问题的讨论7、关于预防夏秋季节传染病工作指示8、农村居民传染病防治工作的管理与干预效果分析9、具有预防接种的乙肝传染病模型分析10、关于强化公共卫生和传染病防治监督执法活动的实践与思考

328 评论

sys19818888

OK ,帮你搞定 。

323 评论

Cindy森小蝶

第一次遇到这几个高手都过来帮你回答了。我帮你最简单明了回答您的疑惑,不说那么多没用废话

1:是不用高中毕业证,没毕业也算是高中生。

2:因为您没有专科毕业证,必须要经过专科才可以,本科毕业前,要提供专科资料。

3:直接搜自考办中心,网报就行,现在报名截止到八月底,九月现场确认,十月开始考试。

4:自考没有地域限制,在那都可以直接报考。

5:自考是不说学习几年的,所有科目考完就可以申请毕业。在此,我给你发个截图,跟统招本科有一定区别,有两个公章,一个是自考办和一个您报考的院校。我给你发两个统招和自考区别

6:自考毕业后,所有成绩合格,学位英语合格,毕业论文达到优良,就可以申请学位,一年一  般可以申请一次,都是有学位的。

7;自考的话,不会去学校上课的,都是自学,也可以报考机构培训,去机构学习,去机构学习要产生费用,小自考是要去您报考的院校学习。

8:自考话,如果是自己考试要2-3年时间,每科目好像涨价了40多应该,总的下来也就三四千,这个是自学的。如果是报考机构的话,可能费用是一万多,基本不用学习,保证您通过,所有的都是机构帮你,自己不用操心一点,可是费用较高,一般一年多就可以毕业.

9:最后说一句,祝你能够选择好院校和专业,希望能够帮助您, 我一直在线,可以继续咨询我。望采纳,给你最贴切的回答。

235 评论

κiξs飛揚

关键字:社会、经济、文化、风俗习惯等因素摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。模型1在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数,方程(1)的解为结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别这两种人。模型2SI模型假设条件为1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。2.每个病人每天有效接触的平均人数是常数,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。方程(5)是Logistic模型。它的解为这时病人增加的最快,可以认为是医院的门诊量最大的一天,预示着传染病高潮的到来,是医疗卫生部门关注的时刻其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。模型3SIR模型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人即非健康者(易感染者),也非病人(已感染者),他们已经退出传染系统。这种情况比较复杂,下面将详细分析建模过程。模型假设1.总人数N不变。人群分为健康者、病人和病愈免疫的移出者(Removed)三类,称SIR模型。三类人在总数N中占的比例分别记作s(t),i(t)和r(t)。病人的日接触率为l,日治愈率为m(与SI模型相同),传染期接触为s=l/m。模型构成由假设1显然有s(t)+i(t)+r(t)=1(12)根据条件2方程(8)仍然成立。对于病愈免疫的移出者而言有方程(14)无法求出s(t)和i(t)的解析解,我们先作数值计算。模型4SIR模型SIR模型是指易感染者被传染后变为感染者,感病者可以被治愈,并会产生免疫力,变为移除者。人员流动图为:S-I-R。大多数传染者如天花流感肝炎麻疹等治愈后均有很强的免疫力,所以冰域的人即非易感者,也非感病者,因此他们将被移除传染系统,我们称之为移除者,记为R类假设:1总人数为常数,且i(t)+s(t)+r(t)=n;2单位时间内一个病人能传染的人数与当时健康者人数成正比,比例系数为k(传染强度)。3单位时间内病愈免疫的人数与当时的病人人数成正比,比例系数l。称为恢复系数。可得方程:模型分析:由以上方程组的:=p/s-1p=l/k,所以i=plns/-s+n.容易看出当t无限大时i(t)=0;而当p时,i(t)单调下将趋于零;上批示,i(t)先单调上升的最高峰,然后再单调下降趋于零。所以这里仍然出现了门槛现象:p是一个门槛。从p的意义可知,应该降低传染率,提高回复率,即提高卫生医疗水平。令t→∞可得:―=2*(―p)/p所以:δps0=p+δ,当时,s≈2δ,这也就解释了本文开头的问题,即统一地区一种传染病每次流行时,被传染的人数大致不变。模型的应用与推广:根据传染病的模型建立研究进而推广产生了传染病动力学模型。传染病动力学[1]是对进行理论性定量研究的一种重要方法,是根据种群生长的特性,疾病的发生及在种群内的传播,发展规律,以及与之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力学性态的定性,定量分析和数值模拟,来分析疾病的发展过程,揭示流行规律,预测变化趋势,分析疾病流行的原因和关键。对于2003年发生的SARS疫情,国内外学者建立了大量的动力学模型研究其传播规律和趋势,研究各种隔离预防措施的强度对控制流行的作用,为决策部门提供参考.有关SARS传播动力学研究多数采用的是SIR或SEIR模型.评价措施效果或拟合实际流行数据时,往往通过改变接触率和感染效率两个参数的值来实现.石耀霖[2]建了SARS传播的系统动力学模型,以越南的数据为参考,进行了MonteCarlo实验,初步结果表明,感染率及其随时间的变化是影响SARS传播的最重要因素.蔡全才[3]建立了可定量评价SARS干预措施效果的传播动力学模型,并对北京的数据进行了较好的拟合.参考文献:[1]姜启源编辅导课程(九)主讲教师:邓磊[2]西北工业大学(数学建模)精品课程[3]耀霖.SARS传染扩散的动力学随机模型[J].科学通报,2003,48(13)1373-1377附录:[1]数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容[2]数学建模的几个过程:模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。模型分析:对所得的结果进行数学上的分析。模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用:应用方式因问题的性质和建模的目的而异。

226 评论

舟舟的食儿

1,自考无任何限制,小学文凭没有都可以报考,只用身份证或户口簿(16周岁以下无身份证可用户口簿报名)去常住地区招生考试办公室报名。每门课程30元。2,先在省自考网上报名,然后去报考点去确定(一般都是常住地区招生考试办公室)交钱。第一次一定要去报考点交钱办准考证,以后在交通银行办张交行卡在网上报考。3,自考的内容基本上是教辅《自考通》或《一考通》上的重点提示或原题,历年试卷上的考点很多重复考,比较有规律,平时多做教辅习题,考前多做历年试卷和模拟试卷,过关不成问题。4,如果中学基础差就报:行政管理,法律,汉语言文学,学前教育等无数学的专业,这些专业是自考高过关率专业,很多只有初中基础的考生都已过关拿证。5,从2014年开始,湖北省一年就三次(四月,七月,十月)。有的地方是两次。6,一般一次四门全部报满最好。7,自考的难度无法与普通高考和中考相比,基础差的考生报无数学的专业应该可以过关。8,专科和本科可以一起考,考专科是无任何限制的,但是办本科毕业证必需要有专科毕业证。 考试规律总结1,自考的内容就是教辅《自考通》或《一考通》上的重点提示或原题。多做教辅习题。2,自考历年试卷上考点有些重复考,最近四年的试卷要多做。模拟试卷要多做。3,考试前三周死拼教辅。光看教材效果不显著,多关注教辅才是关键。4,考试难度大的题目占百分三十不到,将简单题和中等题掌握就行了。5,如果是记忆的话:将每段话的第一句强记住,后面的内容掌握大义即可。文科和理科有区别的,文科宏观性强。只要你答题不跑偏,大义写对就可捞分。6,多项选择实在拿不了主意:ABCDE全选满,总能碰对几分。7,考前三周反复做《自考通》或《一考通》,记住重点提示和习题。模拟试卷和历年试卷上的题目每天做一套,力争全面掌控。最牛自考生(两个完全自学者)2002年3月19日,14岁的上海少年丁磊,8岁开始自考.经过6年的艰苦奋斗,终于拿到了山东大学计算机信息管理专业的本科文凭,成为我国目前年龄最小的自考本科生(烟台日报) 当我们连夜赶到上海,向他表示祝贺时,见他又在捧着一本厚厚的英文版《编译原理技术与工具》,准备他的下一步计划——考硕攻博。我们在他8平方米不到的寒舍里,听他成长的故事。2004年3月,14岁的陇原少年王大可,以优异的成绩考取了北京大学数学科学院2004届基础数学硕士研究生。他因此成为北京大学历史上年龄最小的研究生,被国内许多媒体称为“神童”。全国最小自考生考上北大研究生[4]全国庞大的自考生大军中,年龄最小的是王大可:小学仅上了一个月,9岁自考本科,14岁考上北大硕士研究生。惊叹之余,不少人难免心存疑惑:他是如何完成中、小学教育的?他有本科文凭吗?天资聪慧但却从小体弱多病的王大可,直到8岁才上小学一年级。入校没多长时间,他竟然向班主任提出:直接参加六年级的数学考试!在众人怀疑的目光中,他按规定的时间答完了六年级的数学试卷,获得满分。原来,在父母亲的辅导和刻苦自学下,大可6岁时就学完了小学数学,7岁时学完了初中数学,8岁时学完了高中数学,用当年高考满分150分的数学试题测试,他得分146分。从9岁起,王大可结束了只有个把月的正规学校生活,开始踏上了自学考试之路。到今年6月,王大可通过了自学考试数学专科和本科的全部课程,数学专业课程的成绩都在80分到95分,公共课程的考分在64分与78分之间。2004年5月21日,在西北师大数学与信息科学学院举行的本科论文答辩中,王大可的毕业论文“传染病数学模型的建立与分析”获得了85分的较高分。专家在他的论文上写下了这样的评语:论文中数学模型建立正确,推理清晰,语言表达明确,是一篇相当不错的本科论文。北大读研[5]王大可2004年北大读研时[6]2004年9月6日,王大可到北大已经快半个月了,已接受了校内和校外的好几家媒体的采访。“一见报,就带来了很多麻烦,以前我就是学习,后来我们楼上的人也开始关心这事了。”他说,接受媒体采访后,周围的环境发生了很大的变化,也给他带来了很多麻烦。王大可爸爸也担心孩子接受媒体采访会影响学习,“现在的学习压力很大,接受媒体采访会对孩子的成长和学习都不利。”因怕王大可不会照顾好自己,他爸爸已经在北京呆了半个月了。同时,也限制跟大可在一起的时间,每天只在晚上7时左右陪上王大可半个小时左右,“就是想锻炼一下他的独立能力。”到北京大学读研是大可的愿望。这次他参加北大研究生考试,原本是想为明年正式考试做准备,没想到顺利过关。考虑到王大可年龄尚小,数学学院专门为他制订了培养计划。

123 评论

相关问答

  • 研究某种传染病的数学模型论文

    `文艾防艾论坛 可以领取免费艾滋病检测试纸.

    垂杨紫陌 7人参与回答 2023-12-12
  • 传染病防冶论文答辩

    医院感染的预防与控制【摘要】 目的 加强医院感染管理,预防和控制医院感染的发生。 方法 建立健全医院感染监控体系,强化医院感染意识,做好医院感染的各项监测。结

    啦啦啦啦7 3人参与回答 2023-12-09
  • 传染病论文模板范文

    社会的变迁对我国的高等 教育 也带来了巨大影响,在给当代大学生提供了广阔的发展空间和新的机遇的同时,对他们的生活方式、人生观、价值观巨大的变化,下面是我为你

    微凉菇凉 3人参与回答 2023-12-09
  • 研究病毒传染人论文

    关于石正丽的论文解析如下: 《自然》论文提到,石正丽团队发现新型冠状病毒序列与一种蝙蝠冠状病毒在全基因组水平上相似度高达96%,表明蝙蝠可能是该冠状病毒的来源。

    豆豆腐腐点 3人参与回答 2023-12-05
  • 传染病的数学建模与研究论文

    不正当竞争,鄙视!

    小夜公主 6人参与回答 2023-12-11