ruby纸鸢
金堆城斑岩钼矿床地质地球化学特征及成因①徐兆文②② 杨荣勇 陆现彩 任启江 (南京大学地球科学系,南京,210093)摘 要 金堆城斑岩钼矿是东秦岭超大型钼矿带内最重要钼矿床之一 ,该矿床的形成与中生代花岗斑岩有关 ,且岩体顶部发育了典型的钾长石2石英条纹岩。矿区内含脉率和裂隙发育程度可作为矿化强度的一个重要标志。成矿流体研究表明主要成矿阶段温度为 200 ° C±;成矿流体含盐度具有双配分模式特征 ,盐度介于 2715~4215 w (NaCl) eq %和 0161~17 w (NaCl) %两个区间之内;成矿流体成分以富 Cl-、 K+、 SO2 -4 、 贫 F -、 Na+、 HCO-3 为特征。稳定同位素研究表明δ 34S‰介于1123~4134 之间;δ 18O‰介于 11183~8159 之间 , δ D‰介于257122~2120169 之间;稳定同位素数值说明成矿热液早期以岩浆热液为主 ,晚期有雨水加入。关键词 斑岩钼矿床 ,地质地球化学 ,成因 ,陕西省金堆城金堆城斑岩钼矿床位于陕西省华县境内 ,处于华北地台南缘 ,黑沟2栾川断裂北侧 ,南邻北秦岭造山带 ,是东秦岭超大型钼矿带内最重要钼矿床之一 ,其特点是规模大、 矿石品位低[1 ] [2 ]。本文借助于含矿裂隙、 成矿流体和稳定同位素研究揭示金堆城斑岩钼矿地质地球化学特征及矿床成因。1 矿区地质矿区内出露地层为下中元古界熊耳群( Pt2 - 1 ) ,岩性主要为安山 — 橄榄安粗岩类 ,以富钾质为特征 ,主要分布于老牛山岩体东南部;上中元古界官道口群高山河组( Pt12 - 2) ,岩性主要为石英砂岩、 泥岩和板岩 ,分布于矿区南部 ,呈不整合盖于熊耳群火山岩之上。矿区内褶皱构造为金堆城背斜 ,轴向大致呈 NEE 向展布 ,由熊耳群火山岩构成;断裂构造为 NE—NEE 和第13 卷 第4 期1998 年12 月 地质找矿论丛 1998 年①② 第一作者简介:徐兆文,男,1950 年3 月生。副教授,长期从事矿床学研究。收稿日期 1998208230 改回日期 1998210212本文为国家自然科学基金(编号:49070101)和南京大学内生金属矿床成矿机制研究国家重点实验室资助项目NW—NNW向 ,且矿区内节理构造发育 ,多为后期各种脉体所充填。矿区内火成岩为加里东期辉绿岩 ,燕山期改造型花岗岩(老牛山岩体)和同熔型钾长花岗斑岩(金堆城岩体)及脉岩(图1) 。2 与矿化有关岩体特征2. 1 矿化岩体地质特征与矿化有关的岩体是金堆城钾长花岗斑岩 ,该岩体呈岩筒状 ,地表长 450 m ,宽 150 m ,面积约 01067 km2;钻孔证实深部长2000 m ,宽450 m ,面积约0135 km2。岩体为北宽南窄 ,向北西延伸。岩体侵入于下中元古界熊耳群火山岩中。岩石的主要矿物为石英、 钾长石、 斜长石、黑云母 ,且斜长石几乎全部被绢云母和白云母交代;副矿物主要为磁铁矿、 磷灰石、 锆石、 黄铁矿、 辉钼矿 ,以富磁铁矿为特征[3 ]。岩石结构为斑状结构 ,岩石蚀变强烈 ,主要为钾长石化、 黑云母化、 青盘岩化、 硅化、 绢云母化、 黄铁绢英岩化 ,其中钾长石化最强烈[1 ]。且在岩体顶部或围岩接触部位发育了典型的钾长石2石英条纹岩 ,此特征可与美国西部超大型斑岩钼矿相对比[7 ,8 ]。图 1 金堆城斑岩钼矿床地质简图(据聂凤军改制,1984)Fig. 1 Sketch geological map of porphyry molybdenum deposit in Jinduicheng1.熊耳群 2.高山河组 3.花岗斑岩 4.老牛山岩体 5.辉绿岩脉 6.破碎带 7.不整合接触 8.断层 9.地质界线2. 2 矿化岩体地球化学特征及形成时代岩石化学分析表明金堆城钾长花岗斑岩属于碱2钙碱系列岩类 ,岩石以高硅富碱为特征w ( K2O + Na2O) = 8124 %~10107 % , K2O/ Na2O = 1151~2155 ,DI值比较高 ,SI值偏低;微量元素分析表明岩体中Li、 Be、 Sr、 Co、 Ni、 Cl 偏低 ,而Ba、 Cr、 Cu、 Pb、 Zn、 Mo、 F 偏高;稀土元素分析表明岩体中∑REE = (32188~84131) ×10 - 6,配分模式呈右倾平滑型 ,属于轻稀土富集; δEu9 1 第13 卷 第4 期 徐兆文等:金堆城斑岩钼矿床地质地球化学特征及成因= 0174 左右 ,Eu属于中度亏损;La/ Yb = 8151~10143。上述研究表明金堆城钾长花岗斑岩分异演化程度较高。金堆城钾长花岗斑岩 Rb2Sr 同位素年龄值为 132 Ma (严阵等 ,1983)[4 ], (87Sr/86Sr) i 为017139 ,与研究区太华群的初始比值相近[1 ]。钾长花岗斑岩中石英斑晶δ18O ‰值介于 8155~10128 之间 ,均值为 9142 ‰。同位素资料研究表明成岩物质主要来自下部地壳。3 矿床地质3. 1 矿体产状及规模矿体呈一连续的扁豆体 ,沿 325° ~145° 方向延伸 ,延深 700 m ,向 ES方向翘起尖灭。地表出露长度约1600 m左右 ,钻孔控制长度约2200 m ,厚度约600~700 m。矿体赋存于花岗斑岩和与围岩接触带内 ,矿化最强的地段为花岗斑岩或邻近花岗斑岩地段的围岩 ,远离岩体矿化减弱。3. 2 矿石类型、 结构构造及矿物组合金堆城斑岩钼矿床矿石类型为斑岩型 ,矿石结构为粒状结构 ,矿石构造为浸染状 — 细脉状、 网脉状、 脉状。矿石中主要矿石矿物为辉钼矿和黄铁矿 ,次要矿石矿物为黄铜矿、 方铅矿、 闪锌矿和磁铁矿;脉石矿物主要为钾长石、 斜长石、 石英、 黑云母 ,次要矿物为绢云母、 白云母、 萤石、 绿帘石、方解石等。3. 3 矿化期矿化阶段金堆城矿区热液活动大致可以分为早、 中、 晚三期 ,早期为无矿化的钾长石2石英脉;中期为成矿阶段 ,主要为硫化物2石英、 硫化物2萤石2钾长石2石英脉;晚期为硫化物2方解石2石英、 黄铁矿2沸石2石英脉(表 1) 。4 金堆城斑岩钼矿床含矿裂隙研究矿区内含矿裂隙比较发育 ,据矿区露天采场内 210 个观察点 ,近 23 000 条裂隙观察和描述 ,笔者发现含矿裂隙与矿化存在密切关系[5 ]。4. 1 含矿裂隙分布规律及相互关系金堆城矿区裂隙主要为 325° ~340° 、 310° ~290° 、 220° ~250° 、 210° ~195° 四组 ,以 325° ~340° 裂隙为主 ,次为 310° ~290° 。成矿前、 成矿期、 成矿后裂隙产状变化不大。野外统计表明金堆城矿区露天采场平均每平方米内含矿裂隙为 44 条左右 ,估计整个露天采场各种裂隙至少在 200 万条左右。经室内各种参数统计计算 ,并用计算机绘制出钼品位、 含脉密度、 含脉率等值线。0 2 地质找矿论丛 1998 年表 1 金堆城斑岩钼矿床围岩蚀变及矿化期矿化阶段特征表Table 1 Characteristics of alteration ,mineralization period and mineralizationstages in Jin duicheng prophyry molybdenum deposit矿化期 蚀变类型 矿化阶段 特 征早期角岩化 钾长石化石英化 黑云母化 钾长石2石英阶段,基本上无矿化安山岩中铁镁矿物蚀变为黑云母、 斜长石。以钾长石2石英、 钾长石、 石英细脉充填为主。中期硅化 钾长石化 硫化物矿化 萤石化 绢(白)云母化硫化物2石英阶段硫化物2萤石2钾长石2石英阶段① 辉钼矿2石英、 辉钼矿2黄铁矿2黄铁矿2石英,辉钼矿2石英2黄铁矿细脉交代充填。②云英岩化呈团块状集合体交代。③ 石英主要表现为粒间交代,硫化物呈浸染状,黑云母分布于脉壁两侧。① 黄铁矿2辉钼矿2黄铜矿2(闪锌矿或方铅矿)2萤石2钾长石2石英细脉。② 黄铁矿2辉钼矿2黄铁矿2(闪锌矿或方铅矿)2萤石2绿帘石2钾长石2石英细脉。③闪锌矿2方铅矿2石英2萤石细脉。④辉铋矿2萤石2石英细脉。晚期硅化 方解石化 硫化物矿化沸石化 绿帘石化 绿泥石化 硫化物2方解石2石英阶段黄铁矿2沸石2石英阶段①黄铁矿2方解石2石英细脉。②黄铁矿2绿帘石2方解石2石英细脉。石英2沸石2黄铁矿,石英2黄铁矿,黄铁矿,石英细脉。 金堆城矿区钼品位等值线图(图 22A) ,总含脉率等值线图(图 22B)和总裂隙密度等值线图(图 22C)对比研究 ,可以看出矿区内总含脉率等值线轮廓与钼品位等值线轮廓基本相似 ,两者极值区都位于图的东缘(露天采场的东南端 ,花岗岩体主体露头附近) ,而总裂隙密度等值线轮廓与钼品位等值线相差甚远 ,总裂隙密度等值线极值区接近图的中心部位 ,但是总裂隙密度等值线图型产状与金堆城斑岩钼矿床矿体产状大体相近。因此矿区内含脉密度和含脉率全面反映了裂隙与矿化和矿体之间的关系 ,特别是含脉率与含矿流体的运移直接有关 ,并且控制了矿石品位的变化。4. 2 含矿裂隙与成矿关系金堆城钼矿床含矿裂隙系统研究表明 , ① 研究区含矿裂隙系统形成于以挤压为主的构造环境中 ,如用简单的板块碰撞2削减模式尚难解释该区中生代构造形式 ,它可能与壳内俯冲或A型俯冲有关(胡受奚 ,1985 ;贾承造 ,1986) , ②含矿裂隙主要受两种因素控制 ,一是岩浆侵位的压力和热应力;二是岩浆上侵的部位 ,往往也是构造活动最强烈的部位因此也是裂隙最发育的部位; ③ 成矿期的构造活动对含矿裂隙的形成起了重要作用 ,矿区内各阶段矿物和有用组份分布 ,取决于成矿期各成矿阶段裂隙的布局变化 ,因而主导的原生分带应属于脉动分带。金堆城花岗斑岩周围是高含脉率和高渗透率区 ,这一地区不仅有利于岩浆上升 ,同时也造成地下水与热液对流 ,导致成矿流体温度、 盐度降低 ,使成矿物质迅速沉淀 ,形成充填式矿床。1 2 第13 卷 第4 期 徐兆文等:金堆城斑岩钼矿床地质地球化学特征及成因图 2 金堆城斑岩钼矿床钼品位、 裂隙密度和含脉率等值线图Fig. 2 Isopleth diagram of molybdenum tenor , crack density and fissure abundance in Jinduicheng porphyrymolybdenum deposit22A 矿区钼品位等值线图 22B 矿区总含脉率等值线图 22C 矿区总裂隙等值线图裂隙密度(n) =一定矿化期间内形成的裂隙总长度50 ×50 cm2 (cm- 1)含脉率(k) =裂隙长度×宽度50 ×50 cm2 ×100 %5 金堆城斑岩钼矿床成矿流体研究5. 1 流体包裹体特征金堆城斑岩钼矿床流体包裹体形态主要呈椭圆型、 圆形 ,次为不规则形;气液比为 1/ 5~1/ 10 ,1/ 10 占多数;颜色主要为无色 ,次为褐色、 浅褐色、 黑色等;包裹体直径为 3~30μm ,主要为 10~20μm;包裹体主要呈零星分布 ,偶见带状分布[6 ]。5. 2 流体包裹体均一温度金堆城矿区流体包裹体均一化温度为 83~412 ° C(图 3) ,从图 3 可以看出金堆城矿 区流体包裹体均一温度呈现两个峰值区 ,其一为 100~170 ° C ,其二为 200~230 ° C ,但主要集中于100~290 ° C之间 ,且成矿温度为 200 ° C左右 ,这一结果明显低于 Henderson 斑岩钼矿床流体包裹体均一温度[7 ]。5. 3 流体包裹体含盐度金堆城斑岩钼矿床流体包裹体含盐度介于 w (NaCl) eq %0161~4215 之间 ,具有典型的双配分模式特征(图 4) ,其一含盐度介于 w (NaCl) eq %0161~17 之间 ,其二含盐度介于 w (Na2Cl) eq %2715~4215 之间 ,主要成矿阶段介于 w (NaCl) eq %0161~17 之间。其结果明显低于美国 Henderson斑岩钼矿床流体包裹体含盐度[5 ,7 ]。5. 4 流体包裹体成分研究金堆城斑岩钼矿床流体包裹体成分分析显示 ,包裹体中富 Cl-、 K+、 SO2 -4 贫 F -、 Na+、2 2 地质找矿论丛 1998 年图 3 金堆城斑岩钼矿床流体包裹体均一温度频数直方图Fig. 3 Frequency histogram of temperature of fluid inclusions in Jinduicheng por2phyry molybdenum deposit图 4 金堆城斑岩钼矿床含盐度频数直方图Fig. 4 Frequency histogram of salinities of fluid inclusions in Jin2duicheng porphyry molybdenum depositHCO -3 , (F -/ Cl-) / ( K+/ Na+) 、 HCO-3 / SO2 -4 比值低(图 5) 。波谱分析显示包裹体中 CO2 含量高[5 ]。3 2 第13 卷 第4 期 徐兆文等:金堆城斑岩钼矿床地质地球化学特征及成因图 5 金堆城斑岩钼矿床流体包裹体(F -/ Cl-)2( K+/ Na+)和 SO2 -4 2HCO-3 图Fig. 5 F-/ Cl-versus K+/ Na+and SO2 -4 versus HCO3- of fluid inclusionsp composition inJinduicheng porphyry molybdenum depositⅠ成矿前 Ⅱ成矿期 Ⅲ成矿后6 金堆城斑岩钼矿床稳定同位素研究6. 1 硫同位素金堆城斑岩钼矿床硫同位素显示 ,辉钼矿与黄铁矿中的δ 34S‰ 组成基本一致 ,分布范围介于1123~4134 之间 ,均值为 3143 ‰,具有明显的塔式分布特征(图 6) ,说明硫的沉淀过程 ,其物理化学条件处在一个相对稳定的环境下。并且黄铁矿和辉钼矿δ 34S ∑s = 5 ‰,证明金堆城斑岩钼矿床的硫主要来自岩浆。6. 2 氢、 氧同位素表2 为金堆城斑岩钼矿床氢、 氧同位素组成 ,从表中可以看出δ 18O ‰ 介于11183~8159 之间 ,均值为 9154 ‰,其中成矿前δ18O ‰介于 10103~8199 之间 ,成矿期δ18O ‰介于 11183~8177 之间 ,成矿后δ18O ‰介于 9187~8159 之间;δ18OH2O ‰介于 7177~ - 10112 ,均值为- 1103 ‰,其中成矿前δ18OH2O ‰ 介于 7177~3116 之间 ,成矿期δ18OH2O ‰介于 1183~3103 之间 ,成矿后δ18OH2O ‰介于 1185~ - 10112 之间;金堆城斑岩钼矿床氢同位素δD ‰介于 -57122~ - 120169 之间 ,均值为 - 82183 ‰,其中成矿前δD ‰介于 - 57122~ - 96170 之间 ,成矿期δD ‰ 介于 - 79100~ - 84135 之间 ,成矿后δD ‰介于 - 79179~ - 120169 之间。上述研究表明金堆城斑岩钼矿床从成矿前 →成矿期 →成矿后δ 18OH2O ‰、 δD ‰值有逐渐降低的趋势 ,而且成矿前或成矿后 , δD ‰值变化范围较大 ,说明从成矿前至成矿后 ,雨水的混入量不断增加 ,说明成矿热液早期主要来自岩浆热液 ,晚期伴有大量雨水(图 7) 。4 2 地质找矿论丛 1998 年图 6 金堆城斑岩钼矿床硫同位素组成Fig. 6 Composition of sulfur isotopes in Jin2duicheng porphyry molybdenum deposit(部分资料来自孙晓明)7 矿床成因 详细的野外工作和室内分析研究证明 ,金堆城斑岩钼矿床的形成与 f CO2、 f HF、 f O2值高及富钼的花岗岩热液体系有关。花岗岩浆在侵入固结成岩的同时也使上覆火山岩蚀变为致密块状角岩 ,由于晚期岩浆热液继续上移 ,致使上部已固结的壳体破碎 ,导致晚期岩浆热液发生减压沸腾而转变成富钼的成矿流体。在晚期岩浆热液减压沸腾过程中引起了花岗斑岩云英岩化和上覆角岩黑云母化及富钼的成矿流体在裂隙中运移。当雨水大量混入时 ,富钼的成矿流体温度和盐度随之降低 ,造成了富钼成矿流体沿裂隙充填形成钼矿床[8、 9 ]。表 2 金堆城斑岩钼矿床氢、 氧同位素组成Table. 2 Composition of H and O isotopes in Jinduicheng porphyry molybdenum deposit序号 矿物 矿化期 δ18O δ D δ18OH2O‰ 资料来源1 石英 10103 - 96170 7177 本文 2 石英 成 8199 6173 本文 3 石英 9103 - 66114 6177 本文 4 石英 矿 9162 - 57122 7136 本文 5 石英 9169 - 96158 7127 本文 6 石英 前 9170 - 64197 3116 孙晓明7 石英 9187 3133 孙晓明8 石英 9177 3123 孙晓明9 石英 8196 - 1155 孙晓明10 石英 8198 - 1153 孙晓明11 石英 成 9196 - 1190 本文12 石英 8169 1183 本文13 石英 矿 11183 - 84135 1166 本文14 石英 9103 - 1148 孙晓明15 石英 期 10139 - 79100 - 3103 本文16 石英 8177 - 1174 孙晓明17 石英 9174 - 1156 本文18 石英 9136 - 120169 - 10112 孙晓明19 石英 成 8159 - 6112 本文20 石英 矿 9141 - 5113 本文21 石英 后 9182 - 5159 本文22 石英 9187 - 79179 1185 本文 南京大学地球科学系中心实验室5 2 第13 卷 第4 期 徐兆文等:金堆城斑岩钼矿床地质地球化学特征及成因图 7 金堆城斑岩钼矿床δ18OH2O2 δ D图Fig. 7 δ 18OH2O versusδ D diagram in Jinduicheng porphyry molyb2denum depositMWL 天水演化线 SMOW标准大洋水 PMW原生岩浆水Ⅰ成矿前 Ⅱ成矿期 Ⅲ成矿后参考文献1.胡受奚,林潜龙,陈泽铭,等.华北板块与华南板块拼合带地质与成矿.南京大学出版社,19882.任启江,徐兆文,杨荣勇,等.东秦岭超大型钼矿床的形成条件(秦岭造山带学术讨论会论文选集) .西北大学出版社,1991 ,261~2723.徐兆文,邱检生,任启江,等.河南栾川南部地区与 Mo2W矿床有关的燕山期花岗岩特征.岩石学报,1995 , (4) :397~4084.尚瑞钧,严阵,等.秦巴花岗岩.中国地质大学出版社,19885.任启江,吴俞斌,武耀城,等.陕西金堆城斑岩钼矿含矿裂隙的分布规律与成因.矿床地质,1987 , (3) :127~1396.张文淮,陈紫英.流体包裹体地质学.中国地质大学出版社,19957. Richard B Carten ,Ennis R Geraghty ,Bruce M Walker and Ames R Shannon. Cyclic development of igneous features and theirrelationship to high2temperature hydrothermal features in the Henderson porphyry molybdenum deposit . Colorado ,Econ. Geol1988 ,vol ,85 :266~2968. White W H ,Bookst rom A ,Kamili R J ,Ganster M W,Smith R P ,Ranta ,D E and Steininger R C. Character and origin of Cli2max2type molybdenum deposits. Econ. Geol . 1981 ,vol . 75 ,270~3169. West ra G and Keith S B. Classification and genesis of stockwork molybdenum deposits. Econ. Geol 1981 ,vol . 76 ,864~873 10. Carten R B ,Walker B M ,Geraghty E P and Gunow A j . Comparison of field2based studies of the Henderson porphyry molyb2denum deposit , Colorado with experimental and thoretical models of porphyry systems : Canadian Inst . Mining MetallurgySpec. 1988 ,vol . 39 ,351~3666 2 地质找矿论丛 1998 年GEOLOGICAL2GEOCHEMICAL CHARACTERISTICS ANDGENESIS OF THE J INDUICHENG PORPHYRYMOL YBDENUM DEPOSIT ,SHANXI PROVINCEXu Zhaowen Yang Rongyong L u Xianchai Ren Qijiang( Department of Earth Sciences , Nanjing University , Nanjing 210093)AbstractJ induicheng porphyry molybdenum deposit is one of the most important in the East QinlingLarge 2molybdenum metallogenic belt . The porphyry molybdenum deposit is associated with aMesozoic granite porphyry. There is potash feldspar2quartz crenulate on the top of the granitc por2phyry. In this paper ,authors point out that the fissure abundances and developing degree of thefissure are important indicators of mineralization scale. The ore2 forming temperature is 200° C±.The salinity of mineralizing solutions manifest s bimodal dist ribution pat tern with two ranges f rom2715 to w(NaCl) eq 4215 % and f rom 0161 to w(NaCl) eq 17 % equiv. The composion of inclusionis characterized by rich in Cl-,K+,SO2 -4 and poor F -,Na+,HCO -3 . The data of sulphur ,oxygenand hydrogen haveδ34S range f rom 1125 to 4134 ‰, δ18O ranges f rom 11183 to 8159 ‰, δD rangesf rom - 57122 to - 120169 ‰. These isotopic data suggest that the ore2 forming fluids and materialswere originated mainly f rom the magma there entered meteoric water at late Words porphyry molybdenum deposit ,geochemical characteristics ,genesis ,J induichengShanxi Province7 2 第13 卷 第4 期 徐兆文等:金堆城斑岩钼矿床地质地球化学特征及成因
叶烨夜夜
萤石多的很,不值钱夜明珠自古 就是金刚石?记者:作为研究夜明珠的专家,您对这颗“拍出1800万英镑天价的夜明珠”作何评价?王春云:这个交易很乌龙:报道没有交代交易时间、地点、买家资料、钱款支付途径等情况,而且之前还有“以1800万美元卖给法国收藏家”、“文莱皇帝代表者,欲以1200万港币购入”等说法,前后数字很混乱。这个两公斤多一点的萤石球无论发光与否,以现在的市场价格而言,也就是600元左右。记者:可报道说这颗“夜明珠”是经中国地质大学、中山大学等三所高校组织的专家鉴定的呀?王春云:我没有看到鉴定证书,所以无从置评。但有报道说中山大学彭明生教授和中国地质大学张建宏教授测定后认为,其科学名称应为“稀土萤石”。我个人认为,该鉴定不应被断章取义地理解为他们证明了夜明珠是萤石。记者:其实,夜明珠之谜在2004年之前是世界性的学术难题和人类文明史上的未解之谜,据说您在这一领域里倾注了大量心血并有所突破。王春云:是的。我在论文“夜光的本质与夜明珠千古之谜的揭开”中指出:夜明珠夜光的本质不是传统的矿物磷光,因为磷光矿物无法满足“夜明珠”概念所隐含的夜晚时时有光和夜夜有光的特征。由此可得出结论:夜明珠的夜光绝非过去两个世纪里人们认为的自发性的矿物磷光,而是对夜间光线的不同寻常的被动反光和折光,即夜明珠的光学特性是夜有光明,但却未必夜里发光。所以,夜明珠夜光的本质实际是指巨粒金刚石自然出火的光学性质,是金刚石对于白光(包括在夜晚常见的弱光,如蜡烛光、火把光、油灯光、生物光甚至月光、星光等等)折射、反射、全反射和色散等综合光学作用的结果。而金刚石这种自然出火的光学性质在自然界所有矿物中是独一无二的。由此可以断言,夜明珠自古以来的唯一所指就是大金刚石,而光学性质与其类似的锆石、金红石、石榴石以及折光率和色散系数明显低于金刚石的其他宝石、工艺石材、料珠或者珍珠等,都不可能是夜明珠;萤石、水晶、锂辉石、方解石、电气石、锆石等尽管都可以发磷光,但其自然产出非珠状形态表明,这些矿物没有一个可称为“夜明珠”的。王春云简介1985年毕业于中山大学地质学系, 1995~1997年留学美国密歇根大学安娜堡分校,现为中国科学院广州地球化学研究所兼职副研究员。以夜明珠为专题,王春云先后发表了“廉价萤石不可能是夜明珠”、“夜光的本质与夜明珠千古之谜的揭开”、“中国金刚石历史溯源研究概论”、“慈禧太后嘴中随葬夜明珠科学研究 —— 材质、命名与来源”等科学论文,在国际学术界首次破译夜明珠世界自然历史文化之谜,并首次将中国金刚石自然历史推进到4500年前。
金堆城斑岩钼矿床地质地球化学特征及成因①徐兆文②② 杨荣勇 陆现彩 任启江 (南京大学地球科学系,南京,210093)摘 要 金堆城斑岩钼矿是东秦
石油工程钻井论文 随着经济的发展,人们对石油的需求不断增长,为满足人们需求,石油工程技术也呈现出了不断发展的趋势。以下是我搜索整理一篇石油工程钻井论文,欢迎大家
恩啊来帮你的,,行
为什么有些萤火虫会同步闪烁?夏季开始的时候,在美国的Smoky Mountains地区,雄性Photinus carolinus萤火虫会向同类的雌性萤火虫上演一
相似宝玉石的常规仪器鉴定摘要:笔者对相似宝玉石进行了论述,重点叙述了28种相似宝玉石品种的鉴别与相似宝玉石品种的区别特征。关键字:相似宝玉石鉴定特征区别 1、钻