清风百荷
暖通技术中的地源热泵是一项新技术,随着经济的蓬勃发展,越来越多的人开始关注它,对暖通工程的需求越来越大。因此本文根据其原理及特点进行分析,对地源热泵系统在暖通工程实践中的应用问题提出探讨,进一步推进地源热泵在暖通工程中的应用,从而更有效的提高工程质量。地源热泵对于暖通工程来时是有着重要意义的新技术,因为暖通工程中的地源热泵技术是可以降低能源的消耗,是一个很好的暖通系统。只有更深入的通过地源热泵技术的原理和特点进行分析,从而才能更好的掌握暖通工程中地源热泵的实际应用。1地源热泵的技术原理地源热泵是利用地球表面浅层地热资源作为冷热源,进行能量转换的采暖/制冷空调系统。它不受地域、资源等限制,量大面广、无处不在。这种储存于地表浅层近乎无限的能源,使得地能成为清洁的,可再生能源的一种形式。地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是很好的热源和冷源。这种温度特性使得水源热泵比传统空调系统运行效率要高40%,因此节能和节省运行费用40%左右。另外,地表30 m以下的温度具有较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。2地源热泵系统形式1)地表水系统。如果空调建筑附近有河、湖、水池等地表水,可将闭环换热盘管放入河水、湖水、水池中作为地源热泵的室外系统。夏季从热泵冷凝器吸热后的冷却水经密封的管道系统进入湖或池中,利用温度稳定的湖水或池中水散热。冬季吸取湖水或池水的热量并将热量传递给热泵机组的蒸发器。这种方式可保证河水(湖水)的水质不受到任何影响,而且可以大大降低室外换热系统的施工费。2)地下水系统。另一种室外系统可采用地下水系统,地下水系统一般采用开环系统,包括一定数量的抽水井和回灌井。冷却水经热交换器向地下深井散热(冬季吸热),地下水从取水井中抽取进入热交换器吸热(冬季散热)后由回水井回灌到地下。3地源热泵的技术特点地源热泵分为地下水源热泵、地表水源热泵和地埋管地源热泵。地埋管地源热泵系统为闭式系统,通过循环液(水或以水为主要成分的防冻液)在封闭的地下埋管中流动,实现系统与大地间的传热。1、节能:地源热泵制冷时比传统中央空调系统运行效率要提高30%-50%;供暖时要比热力管网集中供热或燃油燃气供热系统降低20%~60%。2、减排:以清洁能源代替燃煤供暖,系统无燃烧设备不产生CO,CO2等温室气体。房间内采用水作为循环介质,没有氟利昂的泄漏。3、环保:没有燃烧过程,不存在污染物排放问题,属绿色环保技术。4地源热泵系统在暖通工程实践中的应用钻孔施工(1)钻孔前应勘测现场,做好和其他专业(如土建、给排水、消防、电缆等)的交叉与衔接。根据施工钻孔平面图的孔数、间距和面积,进一步核实现场的施工面积以满足打孔要求;(2)核实无误后,按施工平面图定位放线,排水、泥浆倒运工序,合理安排土方、泥浆池、安全通道及堆土场的位置,保持通道畅通无阻;(3)钻孔就位,要保证钻机钻杆垂直度,防止垂直偏差将已埋管道损坏。钻井机械定位保证水平度偏差≤1%;保证垂直偏差≤;(4)在钻孔的两孔之间挖l400mm×700mm×500mm泥浆池,位置在地埋管挖沟方向两孔之间,用作钻井机在施工中水循环载体,不至于流到其他地方,保证施工现场的整洁;(5)根据在其他工程的施工经验,可采用正循环回转钻井;(6)钻孔过程中安排质量检查员随时检查钻孔的位置,确保钻孔位置的正确性,并做好检查记录工作,如发现偏差超过标准要求,应及时纠正重新进行定位。现场预组装施工(1)地埋U型管宜在现场预组装,管材预组装前应水平堆放在平整的地面上,不应局部受压使管材变形,堆放高度不宜超过2m;管件贮存应成箱存放在货架上或码堆在平整平面上,地面上码堆高度不宜超过2m。HDPE管运至工地采用彩条布覆盖,严禁长时间在太阳下暴晒;(2)HDPE管在地面连接完成,试压、合格后方可埋管;灌浆回填后须再次试压、合格后方可连接水平干管;水平总管连接完试压、合格后方可回填土。总管连接完后进行系统试压;(3)HDPE管连接时应注意热熔管头清洁,管道的连接可采用热熔连接(热熔承插连接、热熔对焊连接),与金属管道连接应采用法兰连接;(4)热熔对接:管材外径Φ≥63mm的HDPE管均可采用热熔对接方式连接,该方法经济可靠,其接头在承拉和承压时都比管材本身具有更高强度。热熔连接温度:200-210℃。使用该方法时,设备仅需热熔对接机,步骤如下:①把待连接管材置于焊机夹具上并夹紧;②清洁管材连接端并铣削连接面;③校直两对接件,使其端面错位量不大于管道壁厚的10%;④放入加热板加热;⑤加热完毕,取出加热板;⑥迅速接合两加热面,升压至熔接压力并保压冷却。(5)HDPE管连接的注意事项:①管道连接前应对管材、管件及附属设备、阀门、仪表按设计要求进行核对,并在施工现场进行外观检查,符合要求方准使用。连接时应使用同一生产厂家的管材和管件,如确需将不同厂家(品牌)的管材、管件连接则应经试验证明其可靠后方准使用。每次连接完成后,应进行外观质量检验,不符合要求的必须返工;②施工人员应进行上岗培训;③每次施工后,管口应临时封堵。下管施工钻孔完成后应立即下管,停留时间越长,孔内的积压现象越严重,甚至可能发生塌孔现象,管子也就越难放。下管前U型管下部端头应设保护装置(软质塑料带)。当采用人工下管时,可采用在U型管底部加装配重的方法下管施工,依靠配重的重量和HDPE管内水的重量下井,这样既保证下管的速度又可保证HDPE管能有效地到达地源井底,同时,还能保护HDPE管材在下井过程中免受井壁尖石的刮伤、损坏。一般采用人工下管时必须多人合作,提起管子时不得在地上拖拉,不应形成不自然的弯曲,更不允许产生角度。为避免热桥损失,U型管管间距应严格按设计要求,下管时尽量保持同心度并且管与管不要接触太紧,施工时每隔2~4m设置固定支卡将U型管分开,以确保垂直地源换热管的相对位置不变,垂直换热管不会贴在一起。HDPE管下井完成后,须将U型管两个端口密封。 灌浆回填竖直井灌浆回填料宜采用膨润土和细砂的混合浆或专用灌浆材料,当埋设在密实或坚硬的岩土体中时,宜采用水泥基料灌浆回填。竖直地埋管换热器安装完成后应在12小时内用灌浆材料回灌封孔,灌浆采用高压注浆泵,从孔底向上灌浆,且每次提升灌浆导管的高度距离浆面≤,以保证灌浆密实,无空腔。当上返泥浆密度与灌注材料的密度相等时,认为灌浆过程结束。 水平地埋管施工(1)水平埋管铺设前,为保护管道,沟槽底部应先铺设150-200mm左右的细砂;(2)水平埋管安装时,应防止石块等重物撞击管身;(3)管道敷设时不应有折断、扭结等现象,转弯处应光滑,应在水平方向蜿蜒铺设,留有一定膨胀、收缩空间。5结束语地源热泵作为一种环保节能的空调方式,目前正在我国迅速发展。作为一个新兴的技术领域,它的成功应用还有待进一步得到验证。作为施工和管理人员都应该积极参与到推广这项节能环保的新技术中,不断总结经验。相信不久的将来,地源热泵在我国一定有广阔的市场。查询更多建筑企业中标业绩、诚信信息、资质条件,马上一键查询结果,下载建设通app更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
了无痕Sky
王立发 江剑
(北京市地质工程勘察院)
摘要:水文地质勘察技术是地下水地源热泵技术的核心,也是地下水地源热泵项目能否成功运用于实践的关键。本文通过介绍北京人民警察学院水源热泵项目实例,对此做了论述。
引言
水源热泵技术由成熟的暖通空调技术、热泵机组技术和地质勘察技术组成。在我国,暖通空调技术和热泵机组技术已经得到了长时间、广泛的应用,已非常成熟。因此,水源热泵技术能否成功应用的关键是地质勘察技术能否解决能源的提取与水资源的保护的问题。在推广水源热泵技术实践过程中,由于各地区地质和水文地质条件的复杂性和多变性,岩(土)层的导热性和水文地质参数差异巨大,在一个地区能成功应用的地下换热系统,在另一地区往往并不适用。目前,由于一些水源热泵工程承包方(主要为热泵机组厂家、系统集成商和暖通空调安装公司)不了解各地区地质、水文地质条件和回灌工艺,盲目承包水源热泵系统工程,导致出现了许多不该出现的问题,如抽取的地下水回灌不下去或回灌量不足,不仅浪费了宝贵的地下水资源,还造成不良的生态、环境和经济后果。本文以北京人民警察学院水源热泵项目为例,详细介绍了传统水文地质勘察技术在水源热泵市场上的应用。
1 项目简介
北京人民警察学院位于昌平区南口镇辛庄村北,太平庄西侧。工程总建筑面积约18万m2。
校区共有20余栋多层建筑。行政教研楼5层,地下1层;礼堂3层,地下1层;其余为2~4层建筑。外墙材料为300mm厚加气混凝土砌块,传热系数为(m2·K)。屋面保温材料为60mm厚的聚苯板或金属保温板,传热系数为~(m2·K)。外窗铝合金双玻璃窗,传热系数为(m2·K)。
2 热泵技术方案选择
工程设计方在综合比较了各种传统的供暖、制冷方案后,决定采取经济、环保、节能的热泵中央空调技术实现冬季供暖、夏季制冷和常年生活热水。经设计方计算,采暖热负荷为15153kW,空调冷负荷为16081kW。
北京市地质工程勘察院受北京人民警察学院筹备处委托,承担了热泵技术方案的地下换热系统的勘察设计与施工。依据当地水文地质条件,拟采用地下水地源热泵技术。
接受任务后,我院立即组织了地质及水文地质专家对现场进行了初步踏勘,并结合分析、整理前人工作的成果资料,初步查明:
(1)场区位于虎峪冲洪扇顶部,第四系地层以砂卵砾石层夹粉土、粘土层为主,埋深在40~90m之间,下伏蓟县系县雾迷山组灰岩,场区地层岩性见表1。
表1 场区地层岩性表
(2)场区第四系含水层以砂卵砾石层为主,富水性不均一,单井出水量一般小于150m3/d。由于场区位于冲洪积扇顶部,地下水埋藏较深,场区内原有农业井地下水位埋深达到,砂卵砾石层大多处于疏干状态。
(3)场区第四系地下水补给来源主要有:雨季洪水形成地表径流入渗、大气降水入渗和山区基岩地下水侧向径流。场区地下水消耗主要为侧向径流和人工开采。
(4)场区地下水动态明显具有冲洪积扇顶部潜水动态特征,雨季来临前地下水处于最低水位,雨季水位迅速回升,水位变幅10~20m。
上述水文地质条件分析得出,在场区采用地埋管地源热泵技术存在两个主要问题:①初步测算,为了满足系统最大负荷运行,按每孔深度100m,下入单U,PE管计算,需凿孔4000个左右,由于场区地层主要为砂卵砾石层,施工小口径孔(<150mm)难度巨大,几乎不可能完成,如果加大成孔口径则成本大幅度上升;②如果按正方形布置4000个孔,需占地超过10万m2,场区无法满足这个条件。由此得出:地埋管地源热泵技术在场区存在两个无法解决的技术障碍,不能采用。
3 水源热泵地下水换热系统勘察
通过初步的水文地质勘察论证,场区唯一能采用的热泵技术方案只有地下水地源热泵方案。经设计部门计算,系统按最大负荷运行时,总计需水量1170m3/h。
场区第四系含水层富水性不均一,受季节性影响较大,旱季时含水层已部分被疏干,不具有稳定的供水意义。至此,一般非地质勘察专业的水源热泵工程承包方将放弃该项目,或盲目在第四系地层中凿井取水,导致在旱季出现主机、外管线、室内中央空调系统已安装就绪的情况下却无水可取的局面,带来巨大的经济损失。因此,通过地质勘察技术能否找到足够的地下水资源已成为北京人民警察学院水源热泵供暖、制冷工程能否上马的关键。
我院地质勘察专家在初勘时已发现场区下伏基岩为蓟县系雾迷山组白云岩、白云质灰岩。该地层为北京地区三大基岩岩溶地下水供水岩层之一(奥陶系灰岩、寒武系灰岩和蓟县系白云岩),也是北京地区地热资源主要开采目的层。因此确定勘察场区下伏蓟县系雾迷山组白云岩、白云质灰岩含水层为本次勘察工作的重点。
勘察工作任务、方法
勘察工作任务是:评估拟建场区基岩(蓟县系雾迷山组)含水层小时取水量1170m3的可行性;如果取水可行,进一步评估所取水量全部回灌的可行性;然后设计抽、灌井数量、分布、结构等。
我院在拟建场区地质及水文地质研究程度较高,本次勘察工作以搜集、整理和分析前人研究成果为主,并适当补充地下水位动态观测。
勘察工作分级及工作区范围
经设计部门计算,系统最大负荷运行时,需水量为1170m3/h,也就是高峰日需水量已达28080m3。按GB50027⁃2001《供水水文地质勘察规范》要求,符合中型水源地标准(1万m3/d≤需水量<5万m3/d)。
场区附近地质构造复杂,断裂发育,主要为北东向和北西向断裂构造,在场区西南~3km处分布有南口-孙河断裂,场区西北处分布有南口山前断裂及阳坊-西沙屯断裂。场区下伏蓟县系雾迷山组含水层位于岩溶地下水补给区,埋藏较深,富水性不均一,属水文地质条件中等的地区。
我院在该区已进行了一定的水文地质勘察工作,已有多份其它勘查目的的勘察成果报告供参考,据此,将场区勘察阶段定为勘探。
勘察工作成果
通过一个月左右勘察,查明了场区下伏蓟县系雾迷山组含水层的岩性、埋藏分布特征、富水性等,成果简述如下。
(1)勘察工作目的层岩性特征。蓟县系雾迷山组白云岩、白云质灰岩,主要分布于太平庄山前至平原地带,隐伏于山前第四系冲洪积物之下,在场区呈NE—SW条带状分布。岩性主要为灰白色白云岩、白云质灰岩、燧石团块白云质灰岩及结晶白云岩。
(2)勘察工作目的层水文地质特征。场区下伏蓟县系雾迷山组岩石风化破碎严重,岩溶裂隙发育,特别是在断裂构造带附近岩溶裂隙尤其发育,表明该含水层富水性好、储存量大、渗透性强、回灌能力强,是理想的供水水源目的层。据前人抽水试验资料,该含水层涌水量可达150m3/h。近年来,由于地下水位持续下降,出水量应该有所降低。
(3)勘察工作目的含水层补、径、排条件。场区下伏蓟县系雾迷山组含水层补给来源除少量大气降水通过入渗补给第四系,再进一步渗透补给本层外,主要为北部裸露基岩山区接受大气降水入渗补给后侧向径流补给。人工开采和向南侧向径流出本区是含水层主要排泄渠道。
(4)勘察工作目的层水化学特征、水温。据前人资料,场区下伏蓟县系雾迷山组含水层地下水水化学类型单一,属⁃Ca2+⁃Mg2+型水,矿化度400mg/L左右,总硬度220mg/L左右,水质良好,符合《饮用水卫生标准》(GB5749⁃85)。根据前人资料,该区地下水实测水温为15℃。
(5)勘察工作目的层地下水动态特征。场区下伏蓟县系雾迷山组含水层地下水位埋深在80m左右,每年6、7月份水位最低,8、9月份水位最高,年均变幅在5m左右。
勘察成果综合评估
蓟县系雾迷山组含水层岩溶裂隙发育,富水性好,渗透性强,单井涌水量可达150m3/h,并且其储存量大,水质良好,施工8眼水井即可满足水源热泵项目的用水需求。
蓟县系雾迷山组含水层补给区位于北部山区,补给面积大,加之所取水量在提取能量后还要全部回灌入地下,因此取水量是完全有保证的。蓟县系雾迷山组含水层水质、水温均符合水源热泵项目要求,但由于水位埋深大,需多耗电能从井中抽水。
为尽量将抽取的地下水回灌入同一含水层中,还需施工8眼与抽水井完全相同结构的回灌井。因单井回灌量小于取水量,还需施工4座沉砂回灌辐射井,其原因是减少造价昂贵的基岩井数目,从水文地质角度讲由于场区第四系地下水渗透补给蓟县系雾迷山组含水层地下水,因此地下水回灌入第四系地层中后,实际上也能渗透补给基岩水。
因此,只要抽、灌井分布、设计合理,场区隐伏蓟县系雾迷山组含水层完全可以满足水源热泵工程需水量的要求。
4 抽、灌井分布、设计、施工
抽、灌井分布
水源热泵空调系统夏季制冷和冬季供暖运行时,必然会改变区域地下水原始流场。在抽水井周围地下水等水位线呈“锥”状,相反在回灌井周围地下水等水位线呈“漏斗”状。地下水温度场也会随着地下水流场的改变而改变。具体地说,随着回灌水在含水层中的缓慢流动,回灌水的温度会逐步与地下水常温趋于一致,也就是回灌水在地下含水层中会有一个“温度影响半径”,其大小受到回灌量、回灌温度与地下常温的差值大小、含水层的渗透性和热传导率等因素控制。如果抽、灌井之间的距离小于“温度影响半径”,将发生“热突破”现象,导致在夏季制冷期,抽水井处的温度将升高,而在冬季供暖期,抽水井处的地下水温度降低。结果导致水源热泵空调系统的运行效率降低。因此,合理的抽、灌井间距是水源热泵空调系统高效运行的重要因素。
开采井、回灌井的布设原则应是在充分了解当地水文地质条件的基础上结合以下因素共同确定:①工程的开采(回灌)水量;②地下水开采时温度和回灌温度(能量提取大小);③地下含水层的渗透性和空隙率;④地下含水层厚度、地下静、动水位及地下水流场;⑤应尽量避免对地下水的自然状态产生影响,不能产生相关的环境地质问题。
在综合考虑了上述因素及地下水流向(由东北流向西南)后,8个供水井沿校区西、南边界布置,井间距200~300m。8个回灌井布置在校区中部较大范围内,使回水回灌至上游,以保证水源的充足、稳定。
抽、灌井设计
抽、灌井设计严格按GB50296—99《供水管井技术规范》要求进行。泵室段深度需综合考虑抽水试验成果资料、地下水位年变幅和近年来由于连续干旱造成的地下水位持续下降的情况确定。
抽、灌井施工
抽、灌井施工严格按GB50296—99《供水管井技术规范》要求进行。2003年8月,我院施工完成了所有抽、灌井及沉砂辐射井。
5 项目运行情况
全部水源热泵系统于2003年10月建成,同年底在冬季供暖中投入使用,到目前已正常运行了三个供暖/制冷季(含生活热水)。监测表明:抽水井出水量、水位、水温、水质等参数保持稳定,所有抽取的地下水全部回灌入地层中,区域地下水位未有明显变化,也未产生任何相关的环境地质问题。
由于整个系统还采用变频调速控制技术,根据热泵机组流量、压力的要求,潜水泵变频运行,最大限度地实现了节水节电,因此整个系统经济效益十分显著,同时也带来巨大的社会效益和环境效益,参观团络绎不绝,建设单位十分满意。
6 结语
水文地质勘察技术是地下水地源热泵技术的核心,也是地下水地源热泵项目能否成功运用于实践的关键,北京人民警察学院项目就是一个很好的实例。通过水文地质勘察工作,逐步否决采用①地埋管地源热泵技术;②第四系地下水地源热泵技术,同时创新性的提出采用基岩岩溶地下水作为冷热源,是本项目能够成功的基础。
严格按照供水水文地质勘察规范要求,进行水源热泵项目地下水换热系统的勘察工作也是水源热泵项目能否成功运用的重要因素。在本项目勘察过程中,从勘察的分级、范围、阶段到抽、灌井的设计和施工,我们均严格执行规范要求,所有抽、灌井成井质量都达到优级,这也是保证项目能够成功的重要组成部分。
2006年1月1日实施的GB50366—2005《地源热泵系统工程技术规范》,已将地下水换热系统水文地质勘察列为强制性条款,这足以说明水文地质勘察在水源热泵项目中的重要性,同时也证明传统水文地质勘察在水源热泵项目中是大有作为的。
参考文献
[1]徐伟,郎四维.地源热泵工程技术指南.北京:中国建筑工业出版社,2001
[2]罗英.北京警察学院集中空调水源热泵系统设
狮子跃峡谷
1.地埋管地源热泵系统原理、特点
地埋管地源热泵系统获取浅层地温能方式是采用地埋管换热系统,其工作原理是传热介质(主要是水或乙二醇)在密闭的竖直或水平地埋管中循环,利用传热介质与地下岩土层、地下水之间的温差进行热交换,达到利用浅层地温能的目的,并进而通过热泵技术实现对建筑物的供暖和制冷,工作原理图见3-11和图3-12。
图3-11夏季地埋管地源热泵工作原理图
图3-12冬季地埋管地源热泵工作原理图
地埋管地源热泵除具有地源热泵的所有特点外,还具以下显著的特点是:
(1)项目需根据的冷、热负荷大小钻凿数量众多的钻孔,下入有一定强度、抗腐蚀和传热性能好的密闭循环管,然后将所有的循环管连接起来进入机房和主机。
(2)地源热泵系统与地下岩土体、地下水之间通过传导散(吸)热,区别于地下水地源热泵系统主要通过对流散(吸)热,热交换效率低于地下水地源热泵系统。
(3)与传统空调系统相比,地埋管地源热泵系统的主要缺点是其地埋管换热器初投资较高,并且一般情况下也高于地下水地源热泵系统的初投资,这也是阻碍地源热泵系统发展的主要原因之一。
(4)与地下水地源热泵系统相比,地埋管换热器占地面积较地下地下水热泵系统大。这也是阻碍地埋管地源热泵系统在人口、建筑密集区发展的另一重要原因。地埋管换热器一般布置在绿地、道路、停车场、广场、学校操场等下面,也有布置在建筑物基础下和建筑物的桩基内。
(5)与地下水地源热泵系统相比,地埋管地源热泵系统因不从地下取水,从理论上讲对地下空间环境影响较地下水地源热泵系统小,办理手续也较地下水地源热泵系统简单。
(6)具有绿色环保、高效节能、运行成本低、一机多用、技术成熟、应用范围广(原则上适用于任何地层和建筑)、无需抽取地下水等特点,未来应用前景广阔。
(7)从水文地质角度讲,松散层孔隙地下水的富水性主要受含水层的粒径影响,粒径越大,孔隙度越大,地层富水性越好、渗透性越强。因此,地下水地源热泵和地埋管地源热泵项目对水文地质条件要求具有一定的互补性,也就是不适合地下水的地区,往往适合地埋管。以北京地区为例,地下水地源热泵主要分布在永定河冲洪积扇中上部的海淀、丰台两区,而地埋管地源热泵主要分布在顺义、昌平、朝阳、海淀山后地区,也就是温榆河、永定河、潮白河冲洪积扇的中下部的广大地区。
2.地源热泵系统的组成和基本情况介绍
地埋管地源热泵系统与地下水地源热泵系统相似,由地埋管换热系统、机房系统和末端系统三部分组成。从专业技术角度上讲,末端系统的设计和施工属于由暖通空调专业;机房系统主要由主机、电气自控系统和水流控制系统组成,其核心是热泵机组技术;地埋管换热系统的设计和施工属于地质和水文地质专业,必须由有地质勘察和凿井施工资质的专业部门来完成。因此,地埋管地源热泵系统的核心实际上是以单独的暖通空调技术、热泵机组技术和地质勘察技术为支撑的、多学科相互配合和有机组成的综合新型、环保、节能技术。
根据地埋管路埋置方式的不同,地埋管换热系统可分为水平地埋管换热器和竖直埋管换热器,见图3-13和图3-14。水平地埋管是在地面挖~深的沟,每个沟中埋设2、4或6根换热塑料管,因水平埋管占地面积较竖直埋管大,效率较竖直埋管低,故我国已建的地埋管地源热泵系统大多采用竖直埋管系统。
图3-13水平地埋管换热器
图3-14竖直地埋管换热器
竖直地埋管系统埋管深度一般在50~150m之间,以100m左右深度的钻孔居多,钻孔口径一般在120~150mm之间,大多数钻孔施工在第四系松散层中,少部分项目钻孔施工在基岩中,如北京市昌平区山水宜家别墅、房山区天湖国际会议酒店项目等;钻孔与地埋管之间采用回填料填实,回填方式主要有原浆回填、中砂回填、素土回填和水泥砂浆回填等;地埋管材质以HDPE管为主,直径绝大多数φ32mm。
根据竖直地埋管埋入换热孔内U形管的数量,系统又可分为单U和双U埋管系统,见图3-15和图3-16;地埋管与周围岩土体换热方式为传导散热或吸热,为避免换热孔之间的相互干扰和节省占地,地埋管孔设计间距一般4~6m;根据设计要求的不同,地埋管内的循环液(换热介质)可以是水或防冻液。
图3-15单U竖直埋管地源热泵换热系统
图3-16双U竖直埋管地源热泵换热系统
3.地源热泵系统核心技术——单孔换热能力分析
在推广地埋管地源热泵技术实践过程中,由于各地区地质和水文地质条件的复杂性和多变性,尤其是地下水位埋深和地下水的渗透速度的差异,导致各地区岩(土)层的导热性和地埋管单延米换热能力差异巨大,在一个地区能成功应用的地下换热系统,在另一地区往往并不适用,即使在同一地区,也因项目地点位于河道冲洪积扇的上、中、下游的不同,导致项目设计的单孔换热能力不同。因此,与地下水地源热泵系统相同,地质勘察技术仍是地埋管地源热泵系统技术的核心,也是浅层地温能开发利用工程能否成功应用于实践的关键。
地埋管换热器是地源热泵技术的核心,它由众多的地埋管孔及其连接它们的U型管、水平管组成。在一定的冷、热负荷情况下,如果地埋管孔数量设计偏多,单孔换热量未达到最佳的单孔换热能力,就意味着项目初投资偏大,占地面积也越大,地埋侧末端循环泵也越大,运行的经济性降低;如果地埋管孔数量设计偏少,单孔换热量不能满足负荷要求,就意味着循环液在冬季出水温度会越来越低,出现“末寒”现象,夏季出水温度会越来越高,出现“末热”现象,降低主机运行的能效比,甚至导致主机停机保护,系统无法运行,其结果最终是影响系统的经济性和系统的稳定性。
地埋管换热器设计是否合理,决定着地源热泵系统的经济性和运行可靠性。因此,单孔换热能力分析是地埋管换热器设计的核心。增强地埋管换热器传热的方法与传统的换热器基本相同,即应提高传热温差,增加传热面积,减少传热热阻。
传热温差的改变要受到地层温度、循环液温度及热泵主机的参数的限制。地层温度在各地区是恒定的,无法改变。循环液温度也就是蒸发器或冷凝器出口温度,它受主机性能和参数控制,过高或过低的出口温度会降低主机运行的能效比,影响系统的经济性。
增加传热面积实际上就是增加地埋管换热器长度,这也就是增加项目初期投资,增大占地面积,过度的地埋管换热器长度不但不会提高系统的经济性反而会降低地埋管地源热泵项目的经济性。
因此,增强地埋管换热器传热的方法主要是降低传热热阻。循环液与地下岩土体、地下水之间的传热过程受以下两种因素控制:一是地埋管换热器;二是岩土体、地下水的传热性能。在工程实践过程中,通常以钻孔壁为界,把所涉及的空间区域划分为钻孔内的地埋管、回填料部分和钻孔以外的岩土体部分。钻孔以外部分的传热由两部分组成,一是从钻孔壁到末端未受到干扰的远端介质的岩土层热阻,该项热阻主要取决于岩土体导热系数;二是各地埋管之间温度场的相互干扰而形成的附加温变热阻,这部分热阻主要取决于地埋管的布置形式和间距,及其释、放热量的平衡程度。钻孔内部的传热热阻主要由管内热阻和管外回填料的热阻构成,这部分热阻容易通过工程措施控制,可增加单孔换热能力。
1)钻孔外热阻
岩土体的导热系数和热扩散率对地埋管换热器设计非常重要,决定了地埋管换热器长度、地埋管的布置形式和间距、占地面积。岩土体导热系数表示通过大地的热传导能力。热扩散率是衡量大地传递和存储热量能力的尺度。岩土体的含湿量对岩土体的导热系数和热扩散率有很大影响,夏季工况运行时地埋管换热器内循环液温度高于岩土体温度,导致地埋管周围的岩土体水分扩散减少,岩土体变得干燥,降低其导热系数,形成热不稳定现象。在设计换热器长度时,在地下水缺乏或地下水埋藏较深的地区,尤其需要注意。
地埋管换热器运行过程中,地埋管周围的岩土体温度场会发生变化,随着地温变化程度的增加和区域的扩大,相邻地埋管之间换热将受影响,把这种因地温变化而引起的换热阻力的增加与换热量的减弱,称为温变热阻。如果一年内,地埋管换热器从岩土体中吸收或散发的热量不平衡,会引起多余热量(冷量)的积累,引起地下恒温的变化,导致温度热阻的增加。
地下水渗流对地埋管换热能力有着非常重要的影响。由于地下水的热容量大,吸收或散发热量也大,在有地下水渗流情况下,热量或冷量很容易被流动的地下水带走,形成另一条热流通道,大大降低传热热阻。即使冷、热负荷不平衡的区域,地下水流动也将减弱“温变热阻”的影响。
2)钻孔内热阻
钻孔内热阻主要由地埋管和回填料的传热性能所控制。地埋管应采用化学稳定性好,有一定强度(主要是考虑埋管较深时,循环液对埋管的压力)、耐腐蚀、导热系数大、流动阻力小的塑料管材和管件。在目前技术、经济水平的情况下,大多已建工程采用聚乙烯管(PE管),这是综合考虑上面各项要求的选择结果。
在目前技术、经济水平的情况下,选择恰当的回填料是大多数地埋管地源热泵项目能够减少投资、提高系统运行经济性的最适宜手段。回填料介于地埋管与孔壁之间,其目的是增强地埋管与周围岩土体的换热能力,同时防止地表水通过钻孔向地下渗透,污染地下水和避免不同含水层地下水之间的交叉污染。回填材料的选择以及正确的回填施工对保证地埋管换热器性能有重要意义。采用导热性能不良的回填材料将显著增大钻孔内的热阻,在同样情况下导致所需的钻孔总长度增加,同时也意味着系统初投资以及运行费用增加。
根据《地源热泵工程技术规范》(GB50366—2005),“灌浆回填材料宜采用膨润土和细沙(或水泥)的混合浆或专用回填材料;当地埋管换热器设在密实或坚硬的岩土体中时,宜采用水泥基料灌浆回填;回填材料及其配比应符合设计要求”。笔者建议:在地下水位面以下采用粗砂、砾石回填,在地下水位面以上采用水泥砂浆回填,其原因是:
(1)在地下水位面以下的钻孔区域,采用粗砂、砾石(D2~4mm,要求磨圆度好)回填将能够充分利用地下水热容量大和流动性好的特点,将产生的热量或冷量尽快带走,形成对流散(吸)热通道。由于存在地下水交叉污染的风险,在地下水有分层污染情况的地区,谨慎采用;
(2)在地下水位面以上的钻孔区域,回填料必须回填密实、完整,完全隔绝空气与地埋管之间接触,彻底避免空气混入回填料中,采用水泥砂浆回填将能够做到上述要求,更重要的是水泥砂浆回填具有良好的导热性、经济性及足够的耐久性等。
4.地源热泵系统设计和施工技术要求
地源热泵系统设计和施工应严格遵守《地源热泵工程技术规范》(GB50366—2005)。根据多年地埋管地源热泵项目施工及运行监测经验,同时应注意以下几点:
(1)在场地条件许可的情况下,地埋管换热器的施工尽量靠近的控制机房,以最大幅度节省地埋侧循环功率,提高系统的功效比。据调查,北京昌平区某地埋管地源热泵项目夏季运行时循环泵耗电量(包括末端循环泵)占到总耗电量40%~50%,明显高于正常值,其原因是地埋管换热器施工场地距机房较远,循环泵功率过大所致。
(2)在条件许可的情况下,地埋管地源热泵项目建成后最好首先运行制冷季,其目的是保证冬季运行效果,防止发生循环液(如果是水的话)冰冻的风险。
(3)地下水对地埋管孔的换热能力有非常重要的影响,但一般情况下地下水渗流速度快的区域含水层颗粒较大,施工地埋管孔难度较大,增大了项目的施工成本,故应综合考虑施工成本和换热能力的关系。
(4)当建筑物分散,且场地条件许可的情况下,宜采用分散式机房,有利于提高项目的经济性。
(5)地埋管孔一般深度在100m左右,一旦地埋管地源热泵系统建成并投入运行后,就需要永久占用地下空间(2m以下区域),将对区域规划(如地铁线路)和管线布置产生影响;
(6)在进行回填料回填施工时,务忙用铁铲一铲一铲的回填,速度不宜过快,防止因过快回填导致的回填料不实的情况发生。严禁用小推车整车灌入式回填。
(7)项目运行阶段,应密切关注和记录主机的供回水温度,主机和循环泵耗电量,为科学分析项目的运行情况打下基础。
(8)由于地埋管孔的单孔换能力测试试验时间有限(一般为10天左右),并且未能考虑到“温变热阻”的影响,因此其热物性结果往往并不能完全反映一个供暖或一个制冷季的运行情况,建议设计时参考相同地区、相同水文地质条件已建项目的经验值。
(9)地埋管孔的布置应综合考虑“温变热阻”影响和项目经济性。
(10)在进行地埋管地源热泵项目设计时,必须保证各地埋管孔的水力平衡,确保每个循环管内流速基本一致。
(11)应精确计算地埋管内流速,流速过大不会增加换热量,反而降低项目的经济性;流速过小将降低单孔换热能力。
地埋管地源热泵项目由于施工地埋管钻数量众多,因此地埋管钻施工成本往往是初投资大小的主要决定因素,建议在项目的论证阶段务必施工勘探试验孔,掌握项目的施工难度和施工成本大小,为项目的预算打下基础。根据《地源热泵工程技术规范》(GB50366-2005)要求,地源热泵系统方案设计前,也应进行工程场地状况调查,并应对浅层地热能资源进行勘察。地埋管地源热泵系统方案设计前,应对工程场区岩土体地质条件进行勘察,勘察内容包括:
(1)岩土层结构;
(2)岩土体热物性;
(3)岩土体温度;
(4)地下水静水位埋深、水温、水质及分布;
(5)地下水径流方向、速度;
(6)冻土层厚度。
天然气管道安全可靠性研究天然气长输管道安全防范与平稳供气保障天然气管道安装与防腐技术《科技传播》杂志国家级科技学术期刊中英文目录百度空间有详细期刊信息
烘干机有好几种类型,其中热泵烘干机比较常见,人们对它接受程度比较高,热泵烘干机的原理是什么?烘干机烘干衣服速度以及耗电量,与其功率有关,功率越大耗电量会越多。那
液压舵机故障与排除摘要:液压舵机是船舶重要设备之一,其质量、性能的好坏直接关系到船舶安全航行, 从目前发生的船舶海损事故中分析, 船舶发生海损有相当大的比例是与
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从
船舶焊接毕业论文船舶焊接毕业论文-谈船舶焊接中的常见缺陷的成因和防止措施摘 要:船舶焊接是保证船舶密性和强度的关键。本文详细介绍了船舶焊接中几种常见的缺陷原因并