missohmygod
统计学中P一般指概率。
以古典概率模型为例,概率的计算方法为:
古典定义
如果一个试验满足两条:
(1)试验只有有限个基本结果;
(2)试验的每个基本结果出现的可能性是一样的。
这样的试验便是古典试验。
对于古典试验中的事件A,它的概率定义为:P(A)=
其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。
这里,仅仅举例了简单的古典概率,其还有很多种模型。你可以找统计学的相关书籍进行学习。
拓展内容:
概率亦称“或然率”。它反映随机事件出现的可能性大小的量度。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。该常数即为事件A出现的概率,常用P (A) 表示,与“几率”不同,一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。
参考资料:百度百科《概率》词条
陈宏立夏
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
天秤座dan
P值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ > F}或P = P{ > F}。
假设检验是推断统计中的一项重要内容。用SAS、SPSS等专业统计软件进行假设检验,在假设检验中常见到P值( P-Value,Probability,Pr),P值是进行检验决策的另一个依据。
扩展资料:
P值由来
从某总体中抽
⑴、这一样本是由该总体抽出,其差别是由抽样误差所致;
⑵、这一样本不是从该总体抽出,所以有所不同。
如何判断是那种原因呢?统计学中用显著性检验来判断。其步骤是:
⑴、建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的。
⑵、选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示。
⑶、根据选定的显著性水平(或),决定接受还是拒绝H0。如果P>,不能否定“差别由抽样误差引起”,则接受H0;如果P<或P <,可以认为差别不由抽样误差引起,可以拒绝H0,则可以接受另一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别。
P值的计算:
一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}
双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:
如果α > P值,则在显著性水平α下拒绝原假设。
如果α ≤ P值,则在显著性水平α下接受原假设。
在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。
参考资料:假设检验中的P值-百度百科
江南装饰
P值即概率,反映某一事件发生的可能性大小。
不同的P数值所表达的含义也是不一样的。
统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。
其含义是样本间的差异由抽样误差所致的概率小于 、、。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ > F}或P = P{ > F}。
拓展资料:
计算P值的相关注意事项:
1、P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。因此,与对照组相比,C药取得P<,D药取得P <并不表示D的药效比C强。
2、P>时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。在药效统计分析中,更不表示两药等效。哪种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的。
3、统计学主要用上述三种P值表示,也可以计算出确切的P值,有人用P <,无此必要。
4、显著性检验只是统计结论。判断差别还要根据专业知识。抽样所得的样本,其统计量会与总体参数有所不同,这可能是由于两种原因。
P值的其他含义:
1、 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2、拒绝原假设的最小显著性水平。
3、观察到的(实例的)显著性水平。
4、表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
参考链接:百度百科:假设检验中的P值
采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据
1、t值是t检验的统计量值,t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n
统计学中P一般指概率。 以古典概率模型为例,概率的计算方法为: 古典定义 如果一个试验满足两条: (1)试验只有有限个基本结果; (2)试验的每个基本结果出现的
1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n
P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过