• 回答数

    4

  • 浏览数

    334

shh小辣椒
首页 > 医学论文 > 诱病机制研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

大嘴闯天下

已采纳

发表主要论文:1. Ultrastructure of Transcellular Channel of the Outer Epidermis of the Garlic Clove Sheath and Evidence of F-actin as Component of Plasmodesmata,Molecular Biology of the Cell,2002,13:450a(第一)2. Evidence of Ultrastructure and Physiology of F-actin as Component of Plasmodesmata, <>,2002,44(11):1278-1285(第一)3. 蒜瓣鞘表皮组织中肌动蛋白纤丝跨胞分布的共焦荧光显微镜观察,植物学报,2000,42(3):327-330(第一)4. 共聚焦荧光镜检术揭示大蒜鳞片细胞间期核中的F肌动蛋白网络,植物学报(英文版),2000,42(11):1167-1171(第一)5. 小麦—叶锈菌互作的细胞间隙液对细胞过敏性坏死的诱导效应,植物病理学报,1997,27(4)(第一)6. 细胞骨架解聚药物对小麦与叶锈菌互作诱发的细胞过敏性反应的影响, 植物病理学报,2002,32(2)147-152(通讯作者)7. 接种叶锈菌的小麦叶片胞间洗脱液对叶肉细胞原生质体微丝骨架的影响,植物生理学与分子生物学报,2002,28(5):344-350 (通讯作者)8. 小麦与叶锈菌互作过程中细胞程序性死亡的细胞学观察,实验生物学报,2003,36(5):353-360(通讯作者)9. 小麦与叶锈菌互作过程中细胞程序性死亡的生化证据,实验生物学报,2004,37(4):329-332(通讯作者)10. 蒜鳞片休眠进程中胞间联络的变化及类外连丝结构与功能的研究,实验生物学报,2004,37(3):212-220(通讯作者)11. 小麦叶肉细胞原生质体中微管骨架的排列格局与[Ca2+]cyt的关系, 实验生物学报,2005,38(4):331-339(通讯作者)12. 蒜鳞片薄壁细胞衰退过程中酶的细胞化学定位及DNA生化分析,实验生物学报,2005, 38(5):387-396(通讯作者)13. A“Chinese spring wheat (triticum aestivum L)”bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome Appl ,111:1489-1494(第二)14. 玉米根冠中类外连丝的结构特征及其共质传输功能,分子细胞生物学报,2007,40(5):351-358(通讯作者)15. 激发子诱发小麦叶肉细胞原生质体微管骨架排列格局与[Ca2+]cyt的变化,分子细胞生物学报,2007,40(4)217-225 (通讯作者)16. 小麦与叶锈菌互作过程中的H2O2与HR, 分子细胞生物学报,2008,41(4)245-254 (通讯作者)17. 叶锈菌侵染的小麦细胞间隙液中激发子的分离纯化,中国农业科学,2008,41(10)3070-3076(通讯作者)18. Development of PCR-based markers for a major locus conferring powdery mildew resistance in mungbean (Vigna radiata).Plant Breeding ,2008,127, 429—432(第二)19. 蒜鳞片薄壁细胞衰败过程中类外连丝的形成及其共质传输能力的调节,分子细胞生物学报,2009,42(2)165-172(通讯作者)20. Early Stage SSH Library Construction of Wheat Near Isogenic Line TcLr19 under the Stress ofPuccinia reconditaf. sp. Stritici,Frontiers of Agriculture in China,2009,3(2):146-151(通讯作者)21. Evaluation of two-dimensional gel electrophoresis-based technology on plant calmodulin isoforms,Frontiers of Agriculture in China,2009,3(4)431-434(通讯作者)22. Cloning and expression of a ribosomal protein S7 in wheat under the stress of Puccinia triticina. Frontiers of Agriculture in China,2009,3(4)413-418(通讯作者)23. Calcium influx is required for the initiation of the hypersensitive response of Triticum aestivum to Puccinia recondita . tritici,Physiological and Molecular Plant Pathology , 2010,74: 267-273(通讯作者)24. IWF诱导小麦悬浮细胞H2O2迸发及其产生机制初探,中国农业科学,2010,43(8):1577-1584(通讯作者)25. 胞内钙库对小麦叶锈菌侵染之过敏反应的影响,作物学报,2010,36(5):833-839(通讯作者)26. Cloning and prokaryotic expression of TaCaM2-3 in wheat and preparation of antiserum, Frontiers of Agriculture in China,2010,4(3)317-322(通讯作者)27. 植物细胞微丝骨架对真菌侵染的反应,河北农业大学学报,2001,24(3)100-104(通讯作者)28. 植物细胞的外连丝与类外连丝的结构与功能, 细胞生物学杂志,2003,25(3):164-167(通讯作者)29. 小麦叶锈菌侵染过程的显微和超微结构,细胞生物学杂志,2003,25(6):393-397(通讯作者)30. 植物细胞程序性死亡的研究进展,河北农业大学学报,2002,25(通讯作者)31. 小麦细胞微管骨架的免疫荧光标记及其影响因素,河北农业大学学报,2002,(通讯作者)32. 荧光指示剂孵育法测定小麦叶肉细胞原生质体胞质游离Ca2+的变化,河北农业大学学报,2004,27(3)25-28(通讯作者)33. 胞间连丝结构与组分的研究进展,河北农业大学学报,2004,(通讯作者)34. 感染叶锈菌的小麦细胞间隙液对小麦悬浮细胞程序性死亡的诱导,河北农业大学学报,2005,28(3)13-17(通讯作者)35. 建立小麦洛夫林10悬浮系的初探,河北农业大学学报,2005,28(4)68-70(通讯作者)36. 细胞信号转导中Ca2+和微管骨架的关系,植物生理学通讯,2006,42(2)331-336(通讯作者)37. 影响钙离子代谢和钙通道的药物对小麦受叶锈菌侵染后诱发的HR的作用,河北农业大学学报,2006,29(6)4-8 (通讯作者)38. 钙与叶锈菌侵染诱导小麦防卫反应的关系,华北农学报,2007,22(1):145-147(通讯作者)39. 细胞骨架在植物抗病中的作用,细胞生物学杂志,2006,28(3)437-441(通讯作者)40. 河北省推广大豆品种对六个SMV株系的抗性鉴定,华北农学报,2006,21:183-186(通讯作者)41. 植物中活性氧的检测方法,生物技术通报,2007,5 :72-75(通讯作者)42. 红叶石楠离体快繁技术体系的建立与优化,河北农业大学学报,2007,30(5)44-47 (通讯作者)43. 不同大豆基因型耐低磷能力的评价,河北农业大学学报,2008,31(2):6-10(通讯作者)44. 两个不同株系大豆花叶病毒侵染大豆细胞的超微病变比较研究,河北农业大学学报,2008,31(4)1-6(通讯作者)45. 大豆胚尖再生体系的研究,河北农业大学学报,2008,31(4)7-13(通讯作者)46. 植物抗病防卫反应中的特异性钙信号,细胞生物学杂志,2008,30(5)611-616(通讯作者)47. 兔抗小麦钙调素抗血清的制备及其纯化, 河北农业大学学报,2008,31(6)55-58(通讯作者)48. 抑制性差减杂交技术(SSH)在植物学研究中的应用,华北农学报,2008,23:78-83(通讯作者)著作教材:1. 王冬梅 (主编). 植物生理与分子生物学研究 科学出版社,20092. 王冬梅 (主编).《生物化学》,科学出版社,20073. 王冬梅 (主编)《.基础生物化学学习指导》,中国林业出版社 2003(第一版);2007(第二版)4. 王冬梅 (主编).《生物化学实验指导》科学出版社,20095. 王冬梅 (副主编).《生物化学》,高等教育出版社,20056. 王冬梅 (主编).《生物化学》,科学出版社,20107. 王冬梅 (副主编).《生物化学》,高等教育出版社, 20108. 王冬梅 (副主编).《高级生物化学实验》,高等教育出版社,副主编,2010.主要奖励:1. 胞间连丝结构组成及其修饰与有机物的再分配 ,获得2008年河北省自然科学三等奖(第一)2. 钙和细胞骨架介导小麦抵抗叶锈菌侵染的细胞程序性死亡过程的研究,获得2005年河北省自然科学三等奖(第一)3. 诱发小麦抗叶锈病防卫反应的信号及其转导,获2001年河北省自然科学三等奖(第三)4. 《基础生物化学》课程体系的改革与实践,获得2004河北省教学成果二等奖(第一)主持课题:1. 国家自然科学基金:高等植物中微丝骨架的胞间连续性(2001—2003项目编号:30070365)2. 国家自然科学基金:类外连丝的结构与功能(2005—2007项目编号:30470861)3. 国家自然科学基金:小麦抵抗叶锈菌侵染的信号转导机制研究(2007—2009项目编号:30671244)4. 教育部科学技术研究重点项目:小麦与叶锈菌互作的信号分子途径(2002-2004,项目编号03014)5. 教育部2006年高等学校博士学科点专项科研基金项目:植物新老器官交替进程中盛衰组织界面物质运输的生理机制(2006-2009,项目编号:)6. 国家自然科学基金:胼胝质对胞间连丝的修饰在大豆抗病毒侵染过程中的作用(2010-2011,项目编号30971706)7. 农业部转基因生物新品种培育重大专项:抗逆转基因大豆新品种培育子课题(2008-2010,课题编号2008ZX08004-002-1-5)8. 农业部转基因生物新品种培育重大专项:抗旱耐盐转基因大豆新品种培育及种质创新(2009-2011,子课题编号2009ZX08004-001B)9. 河北省应用基础研究计划重点基础研究项目:小麦抗叶锈病的细胞生物学机制及抗病相关基因的研究(2008-2010,项目编号:08965505D)10. 河北省科学技术研究与发展计划子课题:大豆遗传转化体系的建立及无选择标记优质高产抗逆大豆新种质培育(2009-2011,项目编号:09220103D)11. 河北省自然科学基金项目:利用SSH和VIGS技术对小麦抗叶锈功能基因的分析鉴定 (2010-2012)

307 评论

skyblue086

这次分享的文章是近期由,中科院何祖华研究员和美国俄亥俄州立大学/中国农业科学院植物保护研究所王国梁教授受邀在 Annual Review of Plant Biology 撰写题为 “Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding” 的综述论文。文章分为两大部分,第一大部分1-3小节,主要是论述分子层面的抗病过程,第二大部分是4-5小节,提出了如何将BSR应用到育种过程中去,我主要关注的是第一大部分,后面的部分仅作了解。

Broad-spectrum resistance(BSR)是一个优良的性状因为它可以对超过一种病原菌或同一病原菌的大多数病原小种产生抗性。本文报道了不同物种BSR基因的鉴定和功能解析工作,并讨论了BSR在分子育种中的应用。

作物面临的病害有真菌,卵菌,细菌,病毒和线虫。

Broad-spectrum resistance(BSR): 植物能抵抗两种病原菌或对同一病原菌的多个病原小种产生抗性的。

Resistance(R) genes: 对病原菌产生抗性的基因,如编码表面受体(receptor-like kinases)的基因和细胞内受体NLRs(能直接或间接地检测同源的病原菌效应子)

Quantitative trait locus(QTL): 一段特定的染色体区域或负责生物体群体表型中数量性状变异的遗传位点。

Species-nonspecific broad-spectrum resistance(SNS BSR): 植物对多于一种病原菌产生抗性。

Race-nonspecific broad-spectrum resistance(RNS BSR): 植物对同一病原菌的多个小种产生抗性。

育种家早先使用单显性或隐性的R基因,因为它们效应强且容易选择。大多数基因具有对单一或少数病原菌的特异小种产生抗性;然而,致病菌种群的突变和毒力的转移使这些抗特异小种的R基因有效性很短,而由QTLs控制的部分抗病性通常没有小种特异性。尽管在同一遗传背景结合单一R基因和QTLs对抗病性是有效的,但是技术上是有难度的并且耗时长。因此,选择BSR就被提上了日程。

PTI和ETI。

PAMPs通常对于病原菌的生存是至关重要的并且进化上是保守的。植物的PRRs是膜定位的RLKs或RLPs。来自拟南芥,水稻和马铃薯的五个PRRs被报道是SNS BSR(T1)。拟南芥第一个RLK-PRR是FLS2,对包括假单胞菌在内的具有鞭毛蛋白细菌都有SNS BSR;在其他物种中异源表达FLS2增强了其对一些细菌的抗性。细菌的另一种PAMP,elf18,是EF-TU N端的抗原表位,被EFR识别,也作为一种SNS BSR蛋白来调节拟南芥对细菌病害的抗性。Xa21是作物中第一个RLK-PRR R基因,对Xoo和Xoc的大多数小种都有抗性。在柑橘、拟南芥、香蕉中异源表达Xa21增强了对多种细菌病害的抗性。水稻中包含Lysin motif的蛋白LYP4和LYP6是双功能PRRs,可以感知细菌肽聚糖和真菌几丁质,激活对细菌和真菌的抗性。拟南芥中RLP-PRR RLP23与LRR受体激酶SOBIR1和BAK1形成三聚体来调节微生物蛋白坏死和乙烯诱导(Necrosis and ethylene-inducing peptide 1-like protein,NLP)的免疫反应。因此可以说明,识别广泛的微生物模式的PRRs可能特别适合于设计作物免疫。

首次鉴定的SNS-BSR NLR蛋白是与拟南芥抗性相关的RRS1(RESISTANCE TO RALSTONIA SOLANACEARUM1)与RPS4(RESISTANCE TO PSEUDOMONAS SYRINGAE4),它们作为双重的R基因系统,对细菌和真菌都产生抗性。RPS4与RRS1成对工作,触发超敏反应(HR),对含有AvrRps4的丁香假单胞菌产生抗性。除了AvrRps4, RRS1/RPS4还能识别来自青枯菌的效应蛋白PopP2。此外,RRS1和RPS4都是抵抗真菌病原菌炭疽病所必需的,可能是通过识别一种未知的效应子。

Wall-associated kinases(WAKs): 植物的一类受体激酶,包含胞外的聚半乳糖醛酸结合结构域,跨膜结构域和胞内的Ser/Thr激酶结构域。

Defense-signaling genes: 在信号转导通路中发挥功能的基因,与病原菌的识别和防卫激活联系起来。

Pathogenesis-related(PR) genes: 在防卫响应下游的基因,负责抗菌类物质的产生。

NHR(Nonhost resistance): 植物对所有非适应性病原菌的抗病性;植物对大多数可能致病的微生物表现出的最常见的抗病性。

总共42个防卫信号基因被认为参与到SNS BSR抗性中(Supplemental Table1)。

MAPKs是众所周知的防御信号蛋白,它将防御信号从免疫受体传递到下游蛋白;例如,OsMAPK5负向调节水稻对细菌性病原菌 细菌性古枯病和真菌稻瘟病的抗性。OsMPK15负调控PR基因表达和ROS积累,osmpk15敲除突变体增强了对Xoo和多个稻瘟病小种的SNS BSR。

除了MAPKs,其他的激酶,如RLKs和RLCKs,也在SNS-BSR中发挥功能。两个水稻的WAKs,OsWAK25和OsWAK91,对于SNS BSR抗稻瘟病和白叶枯是重要的。

蛋白质泛素化介导的降解也在SNS BSR中发挥重要作用。水稻U-box E3基因Spl11(SPOTTED LEAF11)编码了细胞死亡的负调控因子,而spl11突变体增加了对稻瘟病和Xoo的SNS BSR。敲除SPIN6(SPL11-interacting Protein 6)也增强了植物对这两种病原菌的抗性。另一个多亚基E3泛素连接酶OsCUL3a (Cullin3a)通过靶向和降解OsNPR1(NONEXPRESSER OF PATHOGENESIS-RELATED 1)负调节细胞死亡和对稻瘟病和白叶枯的SNS BSR。OsBAG4是人BAG(Bcl2-associated athanogene)在水稻中的同系物,它与RING结构域的E3泛素连接酶EBR1(Enhanced Blight and blast)形成一个模块,控制程序性细胞死亡和SNS BSR对稻瘟病和白叶枯的抗性。

表观调控SNS BSR。如水稻中沉默HDT701(HISTONE H4 DEACETYLASE GENE 701)增强了对稻瘟病和白叶枯的抗性。

转录因子是植物免疫信号中关键的成分,在调控防卫基因表达中发挥重要的作用。如WRKY类转录因子,过表达OsWRKY45-1 or OsWRKY45-2激活了对稻瘟病的抗性但是抑制了对纹枯病的抗性,此外这两个转录因子在调控水稻对细菌的抗性中发挥相反的作用:OsWRKY45-1负调控水稻对Xoo和Xoc的抗性,而OsWRKY45-2正调控水稻对Xoo和Xoc的抗性。在拟南芥中,过表达NPR1增强了对细菌病原菌丁香假单胞菌和卵菌的SNS BSR,且这种抗性是有剂量效应的。值得注意的是,NPR1过表达会导致自发免疫和多效表型。

抗菌物质(保卫酶,防卫素,次级代谢物如植物抗毒素,ROS,胼胝质的沉积,细胞壁修饰和程序性细胞死亡)的产生通常受PR基因调控的,这在植物中是唯一的,并且对多种病原菌都有效。

这些PR基因的SNS BSR通常由过表达来实现,如在拟南芥中过表达CaAMP1(Capsicum annuum ANTIMICROBIAL PROTEIN1)增强了其对多种病原菌的抗性。

植物激素合成相关的蛋白也在BSR中发挥重要作用,如OsACS2(乙烯合成酶) 。过表达OsACS2增强了乙烯的产生,防卫基因表达,和对纹枯和大多数稻瘟病小种的抗性;但过表达OsACS2对农艺性状没有影响。

Susceptibility (S)gene: 促进感染过程或支持与病原菌感病性的任何植物基因。

S基因通常被病原菌靶向或诱导来负调控宿主抗病性。Xa5,编码TF IIA的γ亚基 ,是水稻中鉴定的第一个S基因和被发现负调节对Xoo和Xoc多个小种的SNS BSR。Xa13/OsSWEET11 编码一个糖运输蛋白,促进了细菌和真菌侵染,失活后增强了对Xoo和纹枯的抗性。

在水稻中克隆了Bsr-k1(BROAD -SPECTRUMRESISTANCE KITAAKE-1),发现其编码了一种肽重复结构域RNA结合蛋白,并且负调控SNS BSR。Bsr-k1敲除导致水稻苯丙氨酸解氨酶基因(OsPALs)表达上调,并且增强了水稻对稻瘟病和Xoo的抗性。

与主要的基因介导的抗性相比,QTLs控制的数量抗性通常被认为是非物种特异性的,且更持久。

Lr34/Yr18/Pm38编码一种ATP结合盒转运蛋白,该蛋白能部分抵抗小麦的叶锈病、条锈病和白粉病。

NHR是植物对大多数潜在致病性微生物表现出的最常见的抗病形式。第一个被分离的NHR基因是拟南芥的NHO1(NONHOST 1),它正调节对几种非宿主病原体的SNS BSR,如丁香假单胞菌和灰霉病菌。

水稻6号染色体上的Pi2/Pi9位点包含多个RNS-BSR基因,包括Pi2、Pi9、Pi50、piz-t和Pigm。

9个RNS-BSR R基因编码非NLR蛋白(补充表2);例如,水稻基因Xa4编码WAK蛋白,并在不影响粮食产量的情况下提供了对Xoo的持久的RNS BSR。在未接病的植物中,XA4激活纤维素合成酶基因CesA的转录,促进纤维素生物合成,抑制扩张素表达,增加植物细胞壁的机械强度,抑制Xoo侵染。

泛素化介导的信号通路通过激活NLRs和下游免疫信号从而在RNS BSR中发挥重要作用。水稻E3 OsBBI1(BLAST AND BTH-INDUCED 1)通过修改宿主细胞壁来对稻瘟病产生RNS BSR。过表达OsBBI1 增加了ROS,如H 2 O 2 的积累。水稻中另一种E3 OsPUB15与水稻稻瘟病的R蛋白Pid2互作,从而正调控细胞死亡和基础抗性,因此对稻瘟病有RNS BSR。

蛋白激酶类基因也参与RNS BSR。OsBRR1正调对稻瘟病的抗性;六倍体小麦克隆到的LecRK-V(L-type lectin receptor kinase V),在苗期和成熟期产生对白粉病的抗性。

Pyramiding: 通过遗传策略把两个或两个以上的基因结合起来形成优良品系或品种的过程。

Marker-assisted selection (MAS): 这是传统育种的一个补充工具,其中个体的选择取决于多态分子标记和性状之间的联系。

目前为止已鉴定五种S基因来传递 RNS BSR。Mlo是大麦中鉴定的第一个S基因,后来发现在几乎所有高等植物中都存在。MLO定位在膜上,包含保守的跨膜结构域和C端的钙调蛋白结合结构域。

水稻中的S基因,Pi21(QTL)编码富含脯氨酸的蛋白,有一个重金属结合结构域和蛋白互作结构域。pi21的隐性等位基因(在富含脯氨酸的motif上发生突变)对一些稻瘟病小种有RNS BSR。另一个水稻RNS-BSR S基因 Bsr-d1(Broad-spectrum resistance Digu 1) 编码C2H2类TF,在Bsr-d1启动子区一个单核苷酸的突变增强了与MYB转录因子 MYBS1的结合,抑制了Bsr-d1的表达,增强了对多个稻瘟病小种的抗性。一些S基因也在rice-Xoo的病理系统中起作用,包括Xa25/OsSWEET13和Xa41(t)/OsSWEET14,它们编码促进细菌侵染的糖转运蛋白,减少了对Xoo的RNS BSR

三个RNS-BSR QTL已在小麦、玉米和马铃薯中被克隆。小麦中的Fbb1,玉米中的ZmWAK-RLK,马铃薯的R8.

包含多个R基因的水稻通常比包含单个R基因的水稻抗谱要广。如,包含Pi2/Pi1, Pigm/Pi54,Pi2/Pi54, and Piz-t/Pi54对的水稻株系比只含单个R基因的抗性要好。使用MAS获得的Xa4、Xa21、Xa7、Xa23和Xa27聚合的优良水稻品种比只有一个基因的品系具有更广的抗性谱和更高的抗性水平。

当植物不受病原体侵袭时,通常严格控制植物基因的表达以避免自身免疫;然而,少数R基因的过表达可以激活免疫反应,产生抗多种病原菌的BSR,而不会引起高水平的细胞死亡。如使用不同的启动子,包括天然的WRKY13启动子和玉米ubi启动子,增加水稻R基因Xa3/Xa26的表达,可以增加对Xoo抗谱。过表达水稻PRRs OsLYP4和OsLYP6的使对Xoo和稻瘟病产生BSR。

利用防御信号和PR基因来设计BSR是可能的,因为它们通常在免疫受体的下游起作用。

使用TALEN/CRISPR靶向小麦的Mlo位点使得植物抗白粉病。番茄中,使用CRISPR敲除Mlo的同源基因SIMlo1导致抗白粉病。水稻中,CRISPR诱导的敲除Pi21的富含脯氨酸motif提供了对稻瘟病的RNS BSR,编辑三个SWEET基因的启动子区导致了籼梗稻中对所有测试的Xoo株系的BSR。

在水稻中,在多个地点混合种植两年的抗病和感病品种可以大大降低两个品种稻瘟病的严重程度。

pigm,bsr-d1,IPA1。

免疫受体、防御信号、PR和NHR基因等的过表达常常导致细胞死亡和侏儒表型。上游的开放阅读框,在5‘UTR区域,是翻译过程和mRNA周转强有力的顺势调控元件,在被子植物基因组中含量丰富。

BSR品种的广泛和长期种植可能会增加病原菌的选择压力,增加耐药群体的出现。建立用于评价不同品种抗病能力的自然病圃,也将有助于检验BSR基因的有效性。

将PRR和NLRs或QTLs结合,能够增强抗性水平和转基因的抗谱。

以前的研究表明,在一个金字塔中,一个R基因可能掩盖了其他基因的影响,这样一些R基因组合比其他组合提供更少的抗病性。含piz5和Pita的水稻抗病性低于单独含piz5的水稻。

活体性病原菌和死体性病原菌使用不同的策略:死体性病原体杀死宿主组织,因为它们在死细胞或垂死细胞的内容物上定植并茁壮成长,而活体性病原菌则依赖活的宿主细胞来完成它们的生命周期。在许多情况下,对活体性病原菌具有抗性的植物容易受到死体性病原菌的感染,反之亦然。

1.新品种BSR的选择是作物育种中重要的目标。

基因编码PRRs,NLRs和其他的防卫相关蛋白。

3.以QTLs、感病性丢失、非宿主抗性为基础的基因也涉及到BSR。

4.作物中长期的BSR能够通过不同的育种策略来实现。

5.低成本的定位策略,如RenSeq,能够应用到野生品种BSR基因的快速分离。

6.基因组编辑技术,如CRISPR,在BSR设计育种中发挥重要作用。

论文链接:

289 评论

堕落紅尘

说明他的实验的准确性还有就是他的理论的正确这个是性状分离定律用于我们做题是的比例计算

299 评论

lavenderheyijun

说明出现了积加作用呗所谓积加作用就是两种显性基因同时存在时产生一种性状,单独存在时则能产生第二种相似的性状,当2对都是隐性基因时则表现出第三种性状。F2产生9:6:1的比例给你举个例子吧你会比较明白点—————————————————例子———————————————————南瓜果形遗传:用两种不同基因型的圆球形品种杂交,F1产生扁盘形,F2出现三种果形:9/16扁盘形,6/16圆球形,1/16长圆形。 P 圆球形AAbb×圆球形aaBB ↓F1 扁盘形AaBb ↓自交 F2 9扁盘形(A_B_):6圆球形(3A_bb+3aaB_ ):1长圆形(aabb)可知,两对基因都是隐性时,为长圆形,只有A或B存在时,为圆球形;A和B同时存在时,则形成扁盘形。——————————————————例子————————————————

208 评论

相关问答

  • 诱病机制研究方法论文题目

    第一章 小麦条锈病的症状与危害一、症状二、生理病变(一)光合作用(二)呼吸作用(三)核酸和蛋白质代谢(四)水分关系三、产量损失第二章 病原菌及其侵染过程一、病原

    闪灯背后 3人参与回答 2023-12-11
  • 诱病机制研究进展论文题目

    随着社会的发展和人们道德、价值、法律观念的增强,现代社会要求一名合格医生应该具备丰富的专业知识同时具备良好的个人素质。医生应该本着严于律己的精神不断学习完善自己

    蹦蹬的小兔子 5人参与回答 2023-12-11
  • 诱病机制研究论文范文初中

    1.梨树锈病是由担子菌纲胶锈菌属菌引起的一种病害,该病菌主要危害梨叶,也危害幼果、新梢、棠梨苗,被害的梨叶、梨果早落,新梢和棠梨苗折断,对当年及次年的产量影响极

    林麓是吃货 4人参与回答 2023-12-08
  • 诱病机制研究论文范文大全

    未找到与您的查询“83647348”相关的结果。欢迎您来创建词条

    guokeren555 4人参与回答 2023-12-11
  • 诱病机制研究论文题目有哪些

    突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新

    在路上嘚吧嘚 2人参与回答 2023-12-08