• 回答数

    3

  • 浏览数

    143

yiliudewendu
首页 > 医学论文 > 医学论文中的标准差

3个回答 默认排序
  • 默认排序
  • 按时间排序

可乐你不乖

已采纳

1 标准差标准差(S 或SD) ,是用来反映变异程度,当两组观察值在单位相同、均数相近的情况下,标准差越大,说明观察值间的变异程度越大。即观察值围绕均数的分布较离散,均数的代表性较差。反之,标准差越小,表明观察值间的变异较小, 观察值围绕均数的分布较密集,均数的代表性较好。在医学研究中,对于标准差的大小,原则上应该控制在均值的12 % 以内,如果标准差过大,将直接影响研究的准确性。数理统计表明,在标准正态分布曲线下的面积是有规律性的,根据这一规律,人们经常用均数加减标准差来计算样本观察值数量的理论分布,并以此来鉴定样本的代表性。即: x ±110 s 表示68127 %的观察值在此范围之内; x ± 1196 s 表示95 %的观察值在此范围内; x ±2158 s 表示 99 %的观察值在此范围内。如果取得的样本资料的实际分布与理论分布非常接近, 证明该样本具有代表性。反之,则需要重新修正抽样方法或样本含量。x ±1196 s 是确定正常值的方法,经常在工作中被采用,也称为95 %正常值范围。 2 标准误标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工作中,我们无法直接了解研究对象的总体情况,经常采用随机抽样的方法,取得所需要的指标,即样本指标。样本指标与总体指标之间存在的差别,称为抽样误差,其大小通常用均数的标准误来表示。数理统计证明,标准误的大小与标准差成正比,而与样本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误的计算方法。抽样研究的目的之一,是用样本指标来估计总体指标。例如:用样本均数来估计总体均数。由于两者间存在抽样误差,且不同的样本可能得到不同的估计值,因此,常用“区间估计”的方法,来估计总体均数的范围。即: X ±1196 Sx 表示总体均数的95 %可信区间; X ±2158 Sx 表示总体均数的 99 %可信区间。 95 %可信区间指的是:在X ±1196 Sx 范围中,包括总体均数的可能性为95 % ,也就是说,在100 次抽样估计中,可能有95 次正确(包括总体均数) ,有5 次错误(不包括总体均数) 。99 %可信区间也是这个道理,只是包括的范围更大。在实际工作中,由于抽取的样本较小,不呈标准正态分布( u 分布) ,而遵从t 分布,所以常用t 值代替1196 或2158。可在t 值表上查出不同自由度( n ′) 下、不同界值时的t 值。可见到自由度越小, t 值越大,当自由度逐渐增大时, t 值也逐渐接近1196 或2158 ,当n ′= ∞时, t 值就完全被其代替了。所以,我们常用X ± t 0105 Sx 表示总体均数的95 %可信区间,用x ± t 0101 Sx 表示总体均数的99 %可信区间。综上所述,标准差与标准误尽管都是反映变异程度的指标,但这是两个不同的统计学概念。标准差描述的是样本中各观察值间的变异程度,而标准误表示每个样本均数间的变异程度,描述样本均数的抽样误差,即样本均数与总体均数的接近程度,也可以称为样本均数的标准差。二者不可混淆。由此可见,在众多的医刊上出现的x ±s 的表示方法是错误的。原因就是混淆了二者的概念。当两样本均数进行比较时,正确的用法应该是x ±t0105( n′) Sx 。

187 评论

独爱陌可可

小伙伴们知道什么是标准差与标准误吗?这两者有何关系?有何区别?下面就跟着我一起来看看吧。 标准差与标准误关系与区别 在日常的统计分析中,标准差和标准误是一对十分重要的统计量,两者有区别也有联系。但是很多人却没有弄清其中的差异,经常性地进行一些错误的使用。对于标准差与标准误的区别,很多书上这样表达:标准差表示数据的离散程度,标准误表示抽样误差的大小。这样的解释可能对于许多人来说等于没有解释。 其实这两者的区别可以采用数据分布表达方式描述如下:如果样本服从均值为μ,标准差为δ的正态分布,即X~N(μ, δ2),那么样本均值服从均值为0,标准差为δ2/n的正态分布,即?~ N(μ,δ2/n)。这里δ为标准差,δ/n1/2为标准误。明白了吧,用统计学的方法解释起来就是这么简单。 可是,实际使用中总体参数往往未知,多数情况下用样本统计量来表示。那么,关于这两者的区别可以这样表述:标准差是样本数据方差的平方根,它衡量的是样本数据的离散程度;标准误是样本均值的标准差,衡量的是样本均值的离散程度。而在实际的抽样中,习惯用样本均值来推断总体均值,那么样本均值的离散程度(标准误)越大,抽样误差就越大。所以用标准误来衡量抽样误差的大小。 在此举一个例子。比如,某学校共有500名学生,现在要通过抽取样本量为30的一个样本,来推断学生的数学成绩。这时可以依据抽取的样本信息,计算出样本的均值与标准差。如果我们抽取的不是一个样本,而是10个样本,每个样本30人,那么每个样本都可以计算出均值,这样就会有10个均值。也就是形成了一个10个数字的数列,然后计算这10个数字的标准差,此时的标准差就是标准误。但是,在实际抽样中我们不可能抽取10个样本。所以,标准误就由样本标准差除以样本量来表示。当然,这样的结论也不是随心所欲,而是经过了统计学家的严密证明的。 在实际的应用中,标准差主要有两点作用,一是用来对样本进行标准化处理,即样本观察值减去样本均值,然后除以标准差,这样就变成了标准正态分布;而是通过标准差来确定异常值,常用的方法就是样本均值加减n倍的标准差。标准误的作用主要是用来做区间估计,常用的估计区间是均值加减n倍的标准误。 标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异(即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度),标准误不是标准差,是样本平均数的标准差。 标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。 在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。 标准误差定义 标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。 设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差ζ等于: (此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。) 由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。测量时能够得到的是算术平均值(),它最接近真值(N),而且也容易算出测量值和算术平均值之差,称为残差(记为v)。理论分析表明①可以用残差v表示有限次(n次)观测中的某一次测量结果的标准误差ζ,其计算公式为 (此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。) 对于一组等精度测量(n次测量)数据的算术平均值,其误差应该更小些。理论分析表明,它的算术平均值的标准误差。有的书中或计算器上用符号s表示)与一次测量值的标准误差ζ之间的关系是 (此处为一公式,显示不出来,你看下文字就可以知道这个公式是什么样的。) 标准误差 需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为ζ时,则其中的任何一个测量值的误差εi有的可能性是在(-ζ,+ζ)区间内。 世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。 猜你喜欢 1. 论文写作常见统计学问题处理技巧 2. 关于体育统计学论文 3. 统计类论文投稿 4. sci论文写作解析 5. 医学论文表格的规范化标准 6. 医学论文写作格式

146 评论

后海大鲨鱼鱼

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式:假设有一组数值X₁,X₂,X₃,......Xn(皆为实数),其平均值(算术平均值)为μ,公式如图1。标准差也被称为标准偏差,或者实验标准差,公式为简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为分,B组的标准差约为分,说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义正态分布图所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之 68%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99%。

133 评论

相关问答

  • 医学论文标准差如何计算

    标准差计算公式是标准差σ=方差开平方。 标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示: 样本标准差=方差的算术平方根=s=sq

    一心不二 3人参与回答 2023-12-07
  • 医学论文的标准差

    EVIEWS也可以算出来

    zcp1211小窝 4人参与回答 2023-12-06
  • 医学论文均数标准差

    均数加减标准差是点估计,直接用样本均数作为总体均数的点估计值。标准差反映了样本中各个测量值之间的差距,即变异程度。标准差越大,表明数据之间差别越大,这说明可能你

    咖喱鱼蛋89 3人参与回答 2023-12-09
  • 医学论文年龄标准差怎么算

    综述:一种。用(均数+-标准差)表示平均年龄。 26 28 33 45 48 51 50 55 56 58,这几个人的平均年龄计算: 均数=(26+28+33+

    梦想成真罗 4人参与回答 2023-12-07
  • 医学论文平均数加减标准差

    平均数加减标准差的范围内代表大概率事件,范围外代表小概率事件。用成绩为样本,则范围内的成绩为正常的大部分考生的成绩,范围外的为特殊的少部分考生的成绩(包括特别好

    做老婆饼的人 3人参与回答 2023-12-12