• 回答数

    4

  • 浏览数

    198

幸福的小猫zz
首页 > 职称论文 > 岩石学报几区

4个回答 默认排序
  • 默认排序
  • 按时间排序

虎妞1989

已采纳

订阅一本然后看看就知道了。

225 评论

小南子zzz

一、引言

新疆土屋-延东斑岩铜矿被认为是新疆找矿工作的重要突破,先后已有大量工作投入,公开发表的研究成果亦较多。然而,对于成矿时代及其与构造活动的关系,尚有诸多争议,特别是关于成矿时代问题,认识分歧较大。芮宗瑶等(2002)获得含矿斑岩(斜长花岗斑岩)Rb-Sr等时线和单颗粒锆石U-Pb同位素年龄为369~356Ma,属于泥盆纪末期产物;含矿火山岩Sm-Nd等时线和单颗粒锆石U-Pb法同位素年龄变化于416~360Ma,属于泥盆纪;矿石中辉铜矿的Re-Os等时线年龄为(±)Ma,属于早石炭世产物。赤湖斜长花岗斑岩单颗粒锆石U-Pb法年龄为(±)Ma和(任秉琛等,2002),新疆地质一大队(1995)测得企鹅山群中花岗闪长岩 Rb-Sr 法年龄为(287±42)Ma、浅色石英闪长岩U-Pb法年龄为(芮宗瑶等,2002)。秦克章等(2002)获得土屋-延东斑岩铜矿蚀变矿化斜长花岗斑岩单颗粒锆石U-Pb年龄为(356±8)Ma,蚀变岩绢云母K-Ar年龄为(±4)Ma,含矿石英39Ar/40Ar年龄为(±)Ma,其成岩成矿时代均为早石炭世。土屋铜矿区东部(TC42槽)斜长花岗斑岩中测得的单颗粒锆石U-Pb同位素谐和曲线年龄为(301±13)Ma,岩体侵位时代为晚石炭世(李文明等,2002)。陈毓川等(2003)认为现有年龄数据变化较大,是反映测试问题还是构造演化本身的复杂性还有待深入探讨,但火山岩中包含有多时代的锆石信息,给确定成岩时代带来了困难;存在3组相对比较集中的年龄:434~426Ma,~320Ma和260Ma,其中早、晚两组年龄可能反映两次岩浆活动事件,而中间一组年龄很可能代表火山岩形成年代。

总之,对于成矿地层和成矿时代看法不一,并且均属于海西期,没有印支期乃至燕山期成矿作用的证据。本书工作将主要依据锆石和磷灰石裂变径迹分析,探讨区内成矿时代、成矿期次和构造活动,获得区内具有多起成矿作用以及印支期和燕山期依然可能成矿的新认识。

二、地质特征

东天山地区在大地构造位置上处于古亚洲洋南缘,是西伯利亚板块和塔里木板块的聚合地区.在长期的演化过程中经历了极其复杂的裂解和拼合,具有多种多样的构造环境。研究区新疆土屋-延东大型-特大型斑岩铜矿区,位于康古尔塔格深大断裂以北、大草滩断裂以南,地理坐标为东经92°15′~93°05′;北纬42°00′~42°15′,属于东天山晚古生代大南湖增生拼贴岛弧带。区内以断裂构造为主,区域性大断裂大草滩断裂带和康古尔塔格断裂带穿过本区,总体走向近EW向,在东段略向北偏,呈NEE向。大草滩断裂以北为下泥盆统大南湖组火山岩和中泥盆统头苏泉组沉积岩;康古尔断裂以南则出露石炭系干墩组沉积岩;两条大断裂之间主要为泥盆(石炭)系企鹅山群,岩性为玄武岩、安山岩、安山质角砾熔岩、火山角砾岩、岩屑砂岩、复成分砾岩和沉凝灰岩等,并且泥盆系地层直接被侏罗系含炭岩系覆盖(图1-4-26)。自下而上可划分为3个岩性段:①基性熔岩夹中性熔岩段:由早期爆发相火山角砾岩、凝灰岩始向上变为巨厚的基性熔岩夹中性熔岩。②火山碎屑-沉积岩段:厚度约500m左右,由火山碎屑和陆源碎屑形成基性凝灰岩、凝灰砂岩、沉凝灰岩、含砾凝灰砂岩、火山质砾岩等,岩相变化较大。③基性熔岩与中性熔岩互层夹火山碎屑岩岩性段:厚度巨大,由数个喷溢期(熔岩)和喷发间歇期(火山碎屑岩)组成(任秉琛等,2002)。地层产状南倾,倾角43°~63°。区域上广泛分布有晚古生代侵入岩。另一特点是在康古尔塔格深大断裂及其附近,片理化特别发育,其产状与地层基本一致。

矿体产于火山碎屑-沉积岩段,矿化围岩还有闪长纷岩、斜长花岗斑岩及火山-沉积岩。斑岩岩石类型为斜长花岗斑岩和闪长玢岩。这些岩体的产出空间主要集中在火山-沉积岩性段中,岩体呈细脉状、岩株状、岩瘤状产出,斜长花岗斑岩大部分地段被砂砾岩所掩盖,可见斜长花岗斑岩具有穿切闪长玢岩。在容矿岩中,斑状-似斑状结构的钠质酸性中酸性次火山岩(钠长石英斑岩、石英斑岩)约占20%,且矿体Cu品位相对较高;粒状交织结构为主的钠质中酸性-中基性火山岩、次火山岩(安山玢岩)约占50%;富铝基性火山岩(高铝玄武岩)约占20%,赋存其中的矿体的铜品位相对较低;以凝灰结构、碎屑结构为主的钠质中酸性-中基性火山碎屑岩约占10%(陈文明等,2002)。容矿岩以富钠富铝贫钾为特征,明显钠长石化、硅化、绿泥石化、绿帘石化及碳酸盐化。蚀变带内有两个矿体:I号矿体地表控制长1400m,最大宽度。深部厚度和延深很大。铜品位~,平均,伴有银金。Ⅱ号矿体地表控制长1300m,最大宽度。铜平均品位。矿体呈厚板状,向南倾斜,倾角65°~81°。土屋铜矿以西10km处的延东铜矿,特征与土屋相同,地表铜含量平均为,ZK001孔累计矿体现厚约557m,铜平均品位,伴有铝、金、银。矿体与围岩并无自然边界,呈渐变关系,表内外矿化连续演变。

图1-4-26 东天山土屋-延东斑岩铜矿区域地质略图

(转引自张连昌等,2004)

三、样品与实验结果

穿越土屋-延东大型-特大型斑岩铜矿区及其南北两侧的康古尔塔格断裂带和大草滩断裂带,进行区域剖面磷灰石和锆石裂变径迹采样分析,研究剖面位于东经92°36′30″~92°40′20″、北纬42°03′21″~42°09′40″范围内,并且基本垂直区域构造线。

将采集的岩石样品粉碎,粉碎后的粒径应与岩石中矿物粒度相适应,通常为60目左右,经传统方法粗选后,利用电磁选、重液选等手段,进行单矿物提纯。锆石与磷灰石的实验方法不同。对于锆石,采用聚全氟乙丙烯热压法制样,将若干锆石颗粒放在载玻片上,加热烘烤4~5min后,用厚约的聚全氟乙丙烯塑料片盖于其上,并以另一载片压盖,使锆石颗粒嵌入塑料片中。待冷却后将聚全氟乙丙烯塑料片从载玻片上揭下,即可研磨抛光。利用KOH+NaOH溶液在210℃下蚀刻约25 h揭示自发径迹,达到专业光学显微镜可观测的程度。采用N2国际标准铀玻璃法(Bellemans et al.,1994)标定辐造中子注量。对于磷灰石,则是将磷灰石颗粒置于玻璃片上,用环氧树脂滴固,然后进行研磨和抛光,使得矿物内表面露出。在25℃下用7% HNO3蚀刻30s揭示自发径迹,将低铀白云母外探测器与矿物一并入反应堆辐照,之后在25℃下40% HF蚀刻20s揭示诱发径迹,中子注量利用CN5铀玻璃标定。利用从澳洲进口的AUTOSCAN自动测量装置,选择平行c轴的柱面测出自发径迹和诱发径迹密度,水平封闭径迹长度(Gleadow et al.,1986),依据Green(1986)建议的程序测定。根据IUGS推荐的ξ常数法和标准裂变径迹年龄方程(Hurford and Green,1982)计算年龄值。矿物的裂变径迹是用高精度光学显微镜,在高倍镜下测量,裂变径迹的正确识别至关重要。

已经获得锆石裂变径迹分析结果9件(表1-4-7)和磷灰石裂变径迹分析结果7件(表1-4-8)。除红化花岗斑岩样品(K78-3)外,其他样品的x2检验值P(x2)均远大于5%,表明属于同组年龄。样品岩性包括砾岩、片岩、火山岩和花岗斑岩,除1个磷灰石样(K80)采自大草滩断裂带北部外,其他均采自大草滩断裂带与康古尔塔格断裂带之间的大南湖增生拼贴岛弧带。锆石裂变径迹年龄为158~289Ma,其中7个样集中在200~289Ma,样品锆石年龄亦小于其地层时代,反映它们是受后期热事件影响的结果。断裂带内强片理化片岩也为222Ma,强劈理化火山岩为220Ma,土屋矿区成矿花岗斑岩脉年龄最高(276±26)Ma,凝灰岩(289±29)Ma。两个年龄较小的样品,均系强蚀变样,其中K78-3采自探槽内的红化花岗斑岩,红化作用是金属矿物氧化的结果,同时具有较强的硅化,应属矿化蚀变。因此,锆石年龄反映了两期热事件,即200~289Ma和158~165Ma左右。

表1-4-7 锆石裂变径迹分析结果

表1-4-8 磷灰石裂变径迹分析结果

磷灰石裂变径迹年龄在64~140Ma之间,其中断裂带内强片理化片岩为(97±9)Ma,蚀变安山岩和英安岩分别为(104±10)Ma和(135±14)Ma,2个成矿花岗斑岩分别为(140±13)Ma和(109±10)Ma。矿区北侧的砾岩为(132±14)Ma;位于大草滩断裂带北部的样品安山玢岩K80,磷灰石裂变径迹年龄最小,仅为(64±6)Ma。

四、成矿期次

图1-4-27不仅反映锆石裂变径迹年龄与高程之间的关系,而且显示各个样品的年龄分布状况。由图1-4-27可见,锆石年龄呈现3个年龄组,即①289~276Ma,②232~200Ma和③165~158Ma。第①和③年龄组的高程较小,并且变化不大;第②年龄组的高程变化大。与图1-4-27类似,磷灰石裂变径迹年龄与高程关系图(图1-4-28)同样显示3个年龄组:140~132Ma,109~97Ma和64Ma,并且依然是第2年龄组具有较大的高程变化。这一方面说明锆石和磷灰石年龄所体现第2年龄组,在区内比较重要和活跃;另一方面说明锆石和磷灰石年龄分别反映的3个年龄组,实际上具有对应关系,即从锆石封闭温度250℃降至磷灰石封闭温度100℃时的年龄对应关系(表1-4-9)。

表1-4-9 锆石和磷灰石裂径迹分析所反映的3个期次

图1-4-27 锆石裂变径迹年龄与样品高程关系图

图1-4-28 磷灰石裂变径迹年龄与样品高程关系图

矿化闪长玢岩Fe2O3/(FeO+Fe2O3)=~,斜长花岗斑岩Fe2O3/(Fe2O3+FeO)=~,说明岩体的形成和矿化发生于地表浅部。矿区成矿温度为120~350℃(王福同等,2001)。锆石裂变径迹的封闭温度为250℃,退火带温度一般在200~350℃之间,所以,锆石裂变径迹年龄可以代表成矿时代。因此,我们认为土屋铜矿区289~276Ma、232~200Ma和165~158Ma左右的3期热事件,很可能属于成矿热事件。锆石与磷灰石3个年龄组相互对应,二者纵向持续时间(即从250℃到100℃)从第1期、第2期到第3期,分别约为146Ma、108Ma和100Ma,具有从早到晚持续时间变小的趋势。与阿尔泰地区相比,土屋铜矿区纵向持续时间较长。样品主要为矿区矿石和矿化蚀变岩,邻区样品年龄与矿区一致,所以,它们应是成矿活动和区内构造作用的体现,这种特征与阿尔泰地区相符。

土屋铜矿区最新研究成果依据锆石SHRIMP年龄、辉钼矿Re-Os等时线年龄、蚀变绢云母K-Ar年龄和石英Ar-Ar年龄认为,斜长花岗斑岩的成岩时代为361~333Ma,斑岩铜矿的成矿年龄在347~323Ma之间,其主成矿年龄为347~343Ma(张连昌等,2004),主要属于早石炭世。然而,据新疆地调院的资料,保存完好的赋矿地层内发现有多种晚石炭世动植物化石,例如:Angaropteridium Cordi⁃ptoroides(Schmaln)Zalessky(小羊齿型准安加拉羊齿),Fusulina sp.(纺锤),Triticites sp.(麦粒)等,证实土屋铜成矿时代不应早于晚石炭世。因此,上述成矿年龄与化石时代有矛盾。之所以如此,原因之一可能是由于SHRIMP年龄和Ar-Ar年龄的封闭温度远比成矿温度高之故。矿区成矿温度是120~350℃,锆石裂变径迹年龄封闭温度是250℃,第1期年龄组为289~276Ma,符合赋矿地层化石时代。

当然,上述锆石裂变径迹年龄,有可能是后期构造作用使其退火改造后的结果,从而并不代表成矿作用。若果真如此,至少同一矿区应该具有相同或相近年龄,但事实不尽然。矿区3个成矿斜长花岗斑岩锆石裂变径迹年龄为(276±26)Ma,(232±19)Ma,(165±15)Ma,英安岩为(289±29)Ma,安山岩为200Ma。可见,同一矿区,具有不同的年龄,特别是矿化斜长花岗斑岩的年龄明显不同,应属于不同成矿期。锆石年龄较小的第3期样品,分别为斜长花岗斑岩矿化脉和矿化蚀变英安岩,均系强蚀变矿石样,是成矿活动的结果,所以,直接代表成矿时代。例如年龄为165Ma的样品K78-3,采自探槽内的红色矿化花岗斑岩,具金属矿化、面状硅化和线状硅化,同时可见被后期矿化脉穿切,而后期矿化脉亦呈红色,但具线状碳酸盐化,无硅化。显然,K78-3属于成矿样品。

本区上述3期成矿作用,与阿尔泰地区的成矿作用时代相符。由于它们均处于相同的大区域构造背景下,所以,具有相同的成矿期次和成矿时代。另外,获得赤湖斜长花岗斑岩锆石U-Pb法年龄为(±)Ma和,企鹅山石英闪长岩单颗粒锆石UPb法年龄为(任秉琛等,2002);在康古尔塔格韧性剪切带内发现金成矿时代为244~288Ma(秦克章等,2002),亦说明在早二叠世存在成矿作用的可能性。同时,区域上印支期和燕山期岩浆岩体的存在,说明存在与岩浆活动相应的成矿作用亦在情理之中。

前已述及,锆石与磷灰石年龄所反映的期次(年龄组)相互对应,而磷灰石裂变径迹的封闭温度为100℃,矿区成矿温度为120~350℃(王福同等,2001),所以,磷灰石裂变径迹年龄可能代表成矿后的热活动。已取得两个矿化斜长花岗斑岩(样品K71-2和K77)的磷灰石裂变径迹年龄分别为140Ma和109Ma,这两个样的锆石裂变径迹年龄分别是276Ma和232Ma,锆石与磷灰石年龄之差(即两个样纵向持续时间)分别为136Ma和123Ma。

土屋矿区具有多期成矿作用,而且持续时间较长,也可在矿床特征上获得支持。首先,土屋铜矿多期蚀变,并至少具有两期斑岩矿化蚀变(杨兴科等,2002),这与成矿斑岩体年龄不同、且具有不同期次特性相符;再者,矿体赋存于火山-沉积岩段、次火山相闪长玢岩和斜长花岗斑岩中,说明海底热泉活动、次火山热液和斜长花岗斑岩的矿化作用,均提供了成矿物质;另外,秦克章等(2002)指出很可能为深部晚期叠加矿化,即本区存在二次矿化值得注意,联系北部已发现喀拉塔格铜金矿成矿特征及控矿因素的某些相似性,它们极有可能组成一个斑岩-次火山岩脉状-浅成低温成矿带。因此,多期岩浆活动和矿化叠加,不仅是巨量金属堆积的主导因素,而且是存在多期矿化以及矿化持续较长的原因所在。

五、构造活动期次

陈文等(2005)最新研究成果表明,前人根据卷入韧性剪切带的地层及相关的Rb-Sr和K-Ar同位素测年结果推测剪切变形的时代为石炭纪末-二叠纪初,但由于所采用年代学方法的局限性,所获得的数据范围大,缺乏精确性。利用最适合测定构造变形时代的40Ar/39Ar法定年技术,证实秋格明塔什-黄山韧性剪切带具有多期活动,早期挤压推覆剪切发生于300Ma之后,至终止;晚期右行走滑剪切变形作用助活动期在东段土屋-延东地区(糜棱岩)为~。考虑到糜棱岩的40Ar/39Ar年龄封闭温度高于锆石裂变径迹年龄,所以,300~和~的两期活动,与上述锆石裂变径迹法289~276Ma和232~200Ma的两期成矿作用,应该是一致的。当然,锆石年龄还记录了165~158Ma的另一期热事件。

因此,土屋地区的成矿期次与构造活动期次相一致,裂变径迹研究表明总计具有3期。依据区域地质演化特征(Xiao et al.,2003;Laurent-Charvet et al.,2003;Xu et al.,2003),第1期构造-成矿作用与东天山晚古生代板块俯冲-碰撞有关,之后受碰撞后陆内造山变形作用控制。

图1-4-29 磷灰石裂变径迹年龄与样品距断裂带距离间的关系图

若将样品南北相距离与磷灰石年龄和锆石年龄作图(图1-4-29,图1-4-30),则磷灰石年龄对距离图(图1-4-29)显示区内断裂带对样品具有控制作用。在锆石年龄对距离关系图(图1-4-30)上,随着距离的变化,年龄变化不大,这说明断裂带对锆石年龄的影响不大,原因可能是锆石年龄的封闭温度较高,一致受影响不明显。不过,铜矿区以南的样品年龄十分接近,3个样的年龄在200~222Ma之间,而矿区内的样品年龄变化较大,在158~289Ma之间(图1-4-30)。

图1-4-30 锆石裂变径迹年龄与样品距离的关系图

图1-4-31 土屋地区地质演化热历史

横坐标为时间/Ma,纵坐标为温度/℃。图中数字分别代表样号、实测长度和模拟长度、实测年龄和模拟年龄、K-S和GOF(Kolmogorov-Smirnov检验值)。K-S和GOF均大于时,说明模拟结果较好。实线代表最佳地质热历史路径,虚线区代表较好的地质热历史范围,点线区代表可接受的地质热历史范围

基于裂变径迹相关参数和基本地质特征,进行地质热历史模拟,采用Ketcham(1999)退火模型和蒙特卡罗法。模拟温度从高于裂变径迹退火带的~130℃到现今地表温度。依据样品裂变径迹年龄特征,确定模拟开始时间。模拟结果见图1-4-31,各个样均获得了最佳的热历史路径(见图中粗线),虚线区代表反演模拟的较好拟合区,点线区代表可接受的热历史范围。每个图标出样品代号、实测径迹长度和模拟径迹长度,实测Pooled年龄和模拟Pooled年龄,以及K-S检验和GOF年龄拟合参数。当K-S值和GOF值均大于时,一般认为模拟结果较好。

磷灰石裂变径迹反演模拟结果总体上呈缓慢冷却地质热历史(图1-4-31),大致可分为3各阶段:首先是较快的冷却;在150~140Ma左右冷却速率变缓甚至基本保持不变;到约20Ma开始快速冷却,直到地表温度。与矿化蚀变作用有关的样品K77(斜长花岗斑岩)和K79(英安岩)在20~0Ma的快速冷却特征不明显。150~140Ma恰好是构造成矿期的分界时间。

地质热历史特点与阿尔泰地区类似。锆石和磷灰石年龄值完全在阿尔泰锆石年龄范围之内。构造期次亦与阿尔泰基本一致。

综上特点,认为土屋地区经历了与阿尔泰地区极为相似的演化过程,具有十分相似的构造活动、成矿作用和地质热历史。这可能与他们同受西伯利亚板块和印支板块控制有关。

参考文献

陈文明,曲晓明.2002.论东天山土屋-延东(斑岩)铜矿的容矿岩,矿床地质,第21卷第4期,331~340

陈毓川,王登红,唐延龄,周汝洪,王金良,李华芹.2003.土屋-延东铜铜矿田与成矿有关问题的讨论.矿床地质,22(4):334~344

李文明,任秉琛,杨兴科,李有柱,陈强.2002.东天山中酸性侵入岩浆作用及其地球动力学意义.西北地质,第35卷第4期,41~64

秦克章,方同辉,王书来,朱宝清,冯益民,于海峰,修群业.2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,第20卷第4期,302~308

任秉琛,杨兴科,李文明,李有柱,邬介人.2002.东天山土屋特大型斑岩铜矿成矿地质特征与矿床对比.西北地质,第35卷 第3期:67~75

芮宗瑶,王龙生,王义天,刘玉琳.2002.东天山土屋和延东斑岩铜矿床时代讨论.矿床地质,21(1):16~22

王福同,冯京,胡建卫,王磊,姜立丰,张征.2001.新疆土屋大型斑岩铜矿床特征及发现意义.中国地质,28(1):36~39,25

张连昌,秦克章,英基丰,夏斌,舒建生.2004.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报,20(2):259~268

Bellemans F.,De Corte F.,Van Den Haute of SRM and CN U-doped glasses:significance for their use as thermal neutron fluence monitors in fission track Measurements,24(2):153~160

Etcham R A,Donelick R A,Carlson W of apatite fission-track annealing kinetics:Ⅲ.Extrapolation to geological time :1235~1255

Gleadow AJW,Duddy IR,Green PF and Lovering fission track lengths in apatite:A diagnostic tool for thermal history analysis[J]..,94:405~415

Green the thermo-tectonic evolution of northern England:evidence from fission track analysis,Geology,5:493~506

Hurford Green .,A users′guide to fission-track dating calibration,Earth .,59:343~354

Laurent-Charvet,S.,Charvet,J.,Monie,P.,Shu, Paleozonic strike-slip shear zines in eastern central Asia(NW China):New structural and geochronological ,22(2):1009

Mock C,Arnaud N O,Cantagrel J Planet Sci :107~122

Xiao,.,Zhang,.,Qin,.,Sun,S.,Li, accretionary and collisional tectonics of the Eastern Tianshan(China):Implications for the continental growth of central Journal of Science,304:370~395

Xu,.,Ma,.,Sun,.,Cai, and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the Eastern Tiashan Mountains, of Structural Geology,25:1901~1915

(袁万明,保增宽,董金泉,高绍凯)

254 评论

马路小花

地球物理学报 Chinese Journal of Geophysics岩石学报 Acta Petrologica SinicaScience China Earth Sciences 中国科学 地球科学(英文版)Progress in Natural Science 自然科学进展(英文版)Journal of Mountain Science 山地科学学报(英文版)Journal of Geographical Sciences 地理学报(英文版)Journal of Earth Science 地球科学学刊(英文版)Earthquake Engineering and Engineering Vibration 地震工程与工程振动(英文版)Chinese Geographical Science 中国地理科学(英文版)Applied Geophysics 应用地球物理(英文版)Acta Geologica Sinica(English Edition) 地质学报(英文版)找了会,主要的都在这了,都是SCI(2009)

319 评论

呼啦啦达人

马庄山金矿位于新(疆)甘(肃)交界处,是新疆东天山地区代表性金矿床之一。该矿床是1982年由甘肃省地质局第二区调队发现,后经进一步工作,目前已探明金储量达大型规模。

马庄山金矿产于下石炭统白山组的一套浅海—滨海相火山碎屑沉积岩、火山碎屑岩和碳酸盐岩建造中,是一个典型的与火山-次火山活动有关的金矿床,在空间和成因上受控于次火山侵入岩体。

1 区域成矿地质环境

大地构造单元

马庄山金矿位于天山-内蒙褶皱系北山褶皱带中部,星星峡-明水复背斜南翼马庄山单斜构造中,破城山-坡子泉区域性大断裂从其南侧穿过。

区域地层

区域上出露的地层有长城系、蓟县系、石炭系、二叠系、三叠系和(古近—新近系)、第四系,其中,下石炭统白山组是金矿成矿的直接围岩。

区域岩浆活动

区内岩浆活动频繁,火山岩、侵入岩均有发育,华力西中晚期的一套中酸—酸性岩浆岩与金矿成矿关系密切。

成矿单元

马庄山地区位于北山裂谷的北部,塔里木板块与西伯利亚板块的交界处。

2 矿区地质特征

矿区地层

矿区内出露地层为下石炭统白山组,是一套浅海-滨海相火山碎屑沉积岩,以火山碎屑岩和碳酸盐岩地层分布最广,是金矿矿体的主要赋矿层位(图1)。根据岩性特征可分为下、中、上3个岩组。 下岩组

主要为石英砂岩、绢云板岩、阳起石化安山岩、安山质角砾凝灰岩和结晶灰岩。该岩组火山喷发具有宁静→喷溢→爆发→喷溢→宁静的喷发韵律。

中岩组

主要为安山岩、英安质角砾凝灰岩、英安质熔岩、流纹质凝灰岩及凝灰熔岩、流纹岩和绢云板岩。火山喷发呈中基性火山熔岩喷溢、喷发,凝灰质砂岩及硅质板岩沉积,中酸性火山凝灰岩喷发,流纹质熔岩喷溢的喷发韵律,是马庄山金矿床的主要赋矿岩石。

上岩组

主要为灰岩、生物碎屑灰岩、安山岩和英安质火山碎屑岩。上述白山组火山活动表现出:①火山喷发由基性→中性→酸性演化;②喷发活动具有韵律性或旋回性,喷发强度与岩流涌出量呈正相关;③在凝灰岩间夹正常沉积的碎屑岩和碳酸盐岩,具有海相火山岩沉积特征。

图1 马庄山金矿区地质略图

(据郭晓东等,2002)

Q—第四系; —下石炭统白山组安山质凝灰岩、流纹质凝灰岩、含角砾凝灰岩;

C1b3—白山组灰岩;γ4—华力西期花岗岩;γξ—花岗正长岩;λπ—石英斑岩;βμ—辉绿岩脉;

wg—隐爆角砾岩。1—金矿脉(体)及编号;2—断裂及编号;3—金异常范围及编号

矿区岩浆岩

矿区岩浆岩有火山岩、次火山岩和中深成岩。火山岩分布于下石炭统白山组各岩性段内,构成一个由基性向酸性演化的火山活动旋回,主要岩性有玄武岩、安山岩、安山质角砾凝灰岩、英安岩、英安质凝灰岩和流纹岩;次火山岩有石英斑岩、次英安岩、流纹岩、花岗斑岩、花岗闪长斑岩和辉绿岩,中深成岩有花岗正长岩和花岗岩等。

矿区规模最大的次火山岩为石英斑岩体,当其侵入流纹质熔岩而使之角岩化,花岗斑岩、花岗闪长斑岩和辉绿岩呈脉状,规模较小;花岗正长岩和花岗岩分布在矿区外围的东南和东北部;隐爆角砾岩则在马庄山山峰以南。其中,次火山岩与金矿成矿关系密切。

矿区构造

区内褶皱有星星峡-明水复背斜、双井子背斜、马庄山单斜。双井子背斜由下石炭统白山组中基性、中酸性火山岩组成,地层呈NE向延伸,倾向SE,倾角30°~40°,背斜南部及轴部发育华力西中期花岗岩、花岗闪长岩。马庄山单斜构造呈NE向展布,走向40°,倾向SE,倾角35°~50°。断裂按展布方向分为近EW,NE,NW,近SN和NNE向5组。近EW向的规模大、形成早、活动时间长,构成该区构造格架,是导矿构造。

NE 向断裂

是矿区最为发育的压剪性顺层断裂,常发育宽20~150m的挤压片理化带。火山角砾岩中有宽100~300m褪色蚀变带,蚀变以绢云母化、硅化为主,局部形成硅化带、石英(细)脉。

NW 向断裂

断裂走向300°~330°,倾向30°~60°,倾角40°~65°,控制Ⅰ,Ⅸ,Ⅹ,Ⅺ,Ⅻ,ⅩⅢ号矿体的产出,为张剪性,与NE向断裂具有共轭关系。

EW 向断裂

走向近EW,多向N倾,倾角65°~85°,为剪张性,控制Ⅲ,Ⅳ,Ⅵ,Ⅶ号矿体的产出,以Ⅳ号规模最大,它是主要的导矿和容矿构造。

近SN 向断裂

大多倾向E,个别倾向W,倾角较陡甚至直立,其断面形态和位移迹象显示为剪性断裂。控制Ⅷ号矿体的产出,也是主要的控矿构造之一。

NNE 向断裂

走向20°~30°,倾向SE,倾角50°~65°,控制花岗正长岩和石英斑岩体分布,为压剪性断裂,具有多次活动的特点。

围岩蚀变

围岩蚀变发育,主要有次生石英岩化、硅化、碳酸盐化和黄铁矿化,次为绢云母化、叶蜡石化等。

次生石英岩化是矿区最重要的、与金矿化关系最密切的蚀变,主要发生在金矿体内和次火山岩体中。蚀变与裂隙关系密切,其变化规律是以金矿体为中心,裂隙和破碎发育地段是次生石英岩化作用最强的地方,远离矿体及裂隙则蚀变强度减弱,次生石英岩化最彻底的地段往往是金矿化富集部位。

硅化,这里的硅化是指以热液渗透充填为主,在成因上与高铝矿物无明显的联系。与金矿化关系密切,尤其是在次生石英岩化之上又叠加了硅化的地段金矿化较强,硅化期是Au的重要成矿期。

碳酸盐化,在矿区分布较广,各类岩石中均有发育,形成于金矿体内,是金矿化作用最后阶段的蚀变类型。

黄铁矿化,是区内重要的蚀变类型之一,分布范围局限,仅见于金矿体及近侧围岩中,与金矿化关系密切。

3 矿床(体)地质特征

矿体特征

矿体受次火山侵入体控制,大部分产于次生石英岩中,并集中分布于矿区西部。矿体平面上呈脉状,剖面上呈“Y”字型,小矿体平行于大矿体呈透镜状产出,区内以Ⅸ号矿脉为主,它包括Ⅰ,Ⅱ,Ⅲ号3条矿体。

Ⅰ号矿体:分布于矿区西部次火山岩体趋于尖灭地段,局部产于次火山岩顶盖围岩流纹质凝灰熔岩中。产状稳定,呈弧形带状展布,走向由NWW渐变为近EW向,倾向N,倾角30~50°,倾向与两侧地层产状相反,矿体呈脉状或透镜状产出,局部出现膨缩、分叉、复合现象,总体向E 倾伏,厚度一般1~3m,最厚。矿体与围岩界线清楚,含矿岩石为次生石英岩。

Ⅱ号矿体:呈不规则状沿300°方向展布,倾向NE,倾角30°~70°,长530m,主矿体旁侧平行分布有数条小矿体,产于主矿体上下盘围岩中。矿体沿走向和倾向连续性好,但厚度变化大,总的变化规律是浅部厚,向深部变薄或趋于尖灭。含矿岩石为次生石英岩,矿体围岩为次火山岩。

Ⅲ号矿体:位于Ⅰ号以东Ⅱ号之北,含矿岩石为次生石英岩。次生石英岩地表出露长310m,由西向东逐渐分成两条含Au脉体,呈网脉状近EW向展布,倾向N,倾角45°~75°,并且由西向东逐渐变陡。

矿石成分

矿石分为含金蚀变岩型和含金次生石英岩型。金属矿物主要有黄铁矿、磁黄铁矿、黄铜矿、闪锌矿、方铅矿、毒砂以及金-银系列矿物,以黄铁矿为主。非金属矿物主要有石英、方解石、钠长石、绢云母和叶蜡石等。

金矿物主要为银金矿和金银矿,次为自然金和自然银,颜色为浅黄色及金黄色,形状极不规则,多为浑圆状、多角状,次为骨状、棒状和树枝状等。粒度较细,粒径~,多在~之间,集中在<,属微细粒金。自然金多嵌布于石英集合体,黄铁矿、褐铁矿边缘或其他硫化物晶隙,以及石英、硫化物的微裂隙中。赋存状态有裂隙金、晶隙金和包裹体金3种,以裂隙金为主。

矿石组构及成矿阶段划分

矿石组构

矿石以不等粒状结构为主,次为变晶、碎裂、交代残余及再生结构。构造主要有碎裂、扭曲、浸染状和脉状构造。

成矿阶段

根据矿物共生组合,马庄山金矿的形成可划分为两个大的成矿期,即热液成矿期和表生成矿期。

1)热液成矿期可分为两个阶段,火山-次火山中温热液充填阶段;火山-次火山低温热液充填阶段。

2)表生成矿期:发生在矿床形成以后,由于表生淋滤作用形成一些氧化物,如褐铁矿、水铁矿和软锰矿等。这种作用发生在浅部近地表或构造发育地段,使金品位明显提高,同时可使部分强硅化体出现局部金富集。

4 矿床成因分析

流体包裹体特征及成矿物理化学条件

李新俊等(2002)对38个石英流体包裹体测温结果表明:均一温度主体介于220~270℃之间,冰融温度介于~℃之间。将冰融温度换算成盐度,为~,平均。可见,成矿流体为中温、中低盐度的流体。

液相成分中,阴离子以Cl-为主,F-含量甚微。F-/Cl-比值介于~ 之间。阳离子以Na+为主,其次是 K+,而 Ca2+,Mg2+甚微。Na+/K+比值介于~ 之间。Na+/(Ca2++Mg2+)基本上均>,除一个样品为 外,其余介于~ 之间。可见,成矿流体液相成分具有富Na+,K+,Cl-特点,为Na+-K+-Cl-型。

气相成分(表1)主要为H2O,其次是CO2,CO,CH4,N2,C2H6,Ar,O2,H2S的含量变化于~之间。但石英和黄铁矿流体包裹体的气相成分的含量表现出较大差异。二者相比而言,石英流体包裹体中明显富H2O,而黄铁矿流体包裹体中明显富CO2,O2,H2S和CO,而CH4,C2H6,N2和Ar在二者中的含量相似或者在黄铁矿中稍富。上述富集趋势表明,在成矿过程中,有成分上有明显差异的两种流体存在。

表1 石英和黄铁矿流体包裹体的气相组成 w(B)/%

(据李新俊等,2002)

同位素地球化学特征

氢、氧同位素

如表2所示,石英流体包裹体水的δD值变化于-93‰~-106‰之间,表现出大气降水来源的特征。石英的δ18O值变化,集中于‰~‰之间。根据均一温度测定值,可以假定石英与成矿流体在250℃温度下达到了同位素平衡,由分程式103lnα石英-水=×(Clayton 等,1972)计算成矿流体的δ18O值,变化于‰~‰之间。在图2上,马庄山金矿6个样点远离变质水的区间,而位于大气降水线与岩浆水区间之间。这表明,成矿流体中水有两个主要来源:岩浆水与大气水,二者发生了混合作用。

表2 氢、氧同位素组成 w(B)/‰

(据李新俊等,2002)

硫同位素

S稳定同位素测试表明,δ34S最高‰,最低‰,平均‰,极差‰,与地幔衍生花岗质岩石接近,表明S主要来自上地幔。马瑞士等对4个矿石样品的测试表明,δ34S的化范围为‰~‰,平均‰,与深源S同位素组成相似。

稀土元素地球化学特征

靖军等(1997)对主要含金石英脉、石英斑岩、花岗-流纹斑岩和火山凝灰岩作了稀土分析,对其含量用球粒陨石标准化后做出稀土元素配分曲线,结果表明:①矿区内各地质体稀土元素曲线特征十分相似,均为右倾型(轻稀土富集型),具有弱—中等铕亏损特征。表明它们之间存在成因上的联系。按稀土总量可分为2个组合,即石英斑岩、花岗流纹斑岩、英安质晶屑凝灰岩组合,稀土总量明显高于含金石英脉组合中的稀土总量。②矿区内两种类型矿体稀土总量明显不同,即强硅化交代体稀土总量高于石英脉型矿体。③金矿成矿与白山组中段英安质火山-岩浆活动有关,它们均具有相似的稀土配分曲线,尤其与石英斑岩有关。强硅化交代型矿体的形成早于石英脉型矿体。

图2 马庄山金矿成矿流体的δD-δ18O 图

成岩和成矿时代

李华芹等(1999)对马庄山次火山岩及含金石英脉进行了年代学研究,获得马庄山火山机构中次流纹斑岩和次英安斑岩的Rb-Sr等时线年龄分别为301±21 Ma(图3)和303±26 Ma(95%置信度),获得含金石英(网)脉Rb-Sr等时线年龄为298±28 Ma(95%置信度)(图4)。表明马庄山火山机构形成时代与金矿成矿时代均为中-晚石炭世,二者在成因上有密切的联系。

图3 马庄山次流纹斑岩Rb-Sr 等时线图

t=301±21 Ma(95%置信度);(87Sr/86Sr)i= 84± 02;=

图4 马庄山含金石英脉Rb-Sr 等时线图

(据李华芹等,1999)

t=298±28 Ma(95%置信度);(87Sr/86Sr)i=± 73;=

矿床成因

综上所述,马庄山金矿床成矿作用与古火山作用有关,受马庄山古火山机构控制,火山-次火山岩浆作用不仅为成矿提供了热源和成矿热液,成矿物质也来源于次火山岩及下石炭统白山组中酸性火山碎屑岩,尤其是次流纹岩和次石英斑岩,华力西中期的构造-岩浆活动使Au等成矿物质发生活化、迁移,在NWW—SEE向的追踪张裂隙中沉淀、富集。为华力西中期与酸—中酸性次火山岩有关的中低温热液型金矿床。

参考文献

郭晓东,金宝义,徐燕夫等.2002.新疆东部马庄山金矿地质特征及矿床成因.黄金地质,8(1):21~25

靖军,徐斌.1997.马庄山金矿地质特征及成矿地球化学条件.新疆地质,15(4):327~341

李华芹,陈富文,蔡红等.1999.新疆东部马庄山金矿成矿作用同位素年代学研究.地质科学,34(2):251~256

李新俊,刘伟.2002.东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约.岩石学报,18(4):551~558

(李文良编写)

203 评论

相关问答

  • 岩石力学与工程学报初审几次

    网上提交论文,论文要经过初审-二次初审-外审1-外审2-复审-终审-退修-录用等过程,一般3月给结果

    飞云纵览 6人参与回答 2023-12-08
  • 岩石学报2022年4月

    石家庄铁道大学四方学是民办的。学校前身是创建于1950年的中国人民解放军铁道兵工程学院,系当时全军重点院校;1979年,被列为全国重点高等院校;1984年,转属

    粉红猪大大 3人参与回答 2023-12-06
  • 岩石学报是中科院几区

    您好,根据中国影响因子查询网(http://www.isshp.com)统计和整理的数据,可以分析得出,影响因子为3-4已经是非常非常高了,中文期刊被SCI收录

    rayyeung23 8人参与回答 2023-12-10
  • 石油学报是中科院几区

    法律分析:sci 一区、二区 、三区、四区指的是SCI论文分区,SCI期刊分区影响较为广泛的有两种:一种是 Thomson Reuters 公司制定的分区(简称

    无锡捞王 3人参与回答 2023-12-07
  • 岩石学报投稿难度

    《岩土工程学报》是EI检索,但不属于SCI检索。两种学报各有所长,关键是根据自己需要。

    tonyxiaozb 6人参与回答 2023-12-08