千年小猴妖
论文摘要:本文以递归的方法解决历史上著名的德•梅齐里克砝码问题,并加以推广阐述了一种特殊的进制数方式,对此问题作出了一个普遍解:任意给定一个自然数,能够以最少的个数的项保证其和为给定数而又能遍历1到此数间的任意整数。关键词:进制数,遍历,基底,状态值;一.问题介绍一位商人有一个40磅重的砝码,由于跌落在地而碎成4块,后来称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整磅数的重物,问这4块砝码碎片各是多少。摘自《100个著名初等数学问题》二.问题解决考虑这样一个用法码称重物的问题,实际上是通过在天平两端放不同砝码使各砝码值相加减得到目的值。用递归的方法能很好的解决:设前i块碎片的总质量为,由这块能够称出1~之间所有整磅数,那么第+1块碎片则为2+1,。它依次减去前块得到的各个磅数就能得到(+1)~(2+1),它依次加上前块得到的各个磅数就能得到(2+2)~(3+1)2+1—=+12+1+=3+12+1—(—1)=+22+1+(—1)=32+1—(—2)=+32+1+(—2)=3—1………………2+1—1=22+1+1=2+22+1自己当然能够称出来;所以由这+1块碎片能称出1~(3+1)所有的整质量。设第块碎片重为,则有:=2+1;=21+1;两式相减得=3;=1,故各碎片的磅数分别为1,3,9,27.满足和为40的要求。
火炎焱加冰
不会哈克上不上课社保卡室内设计阿姐阿妈扣篮刷卡吗表示v杭州南站凯宾斯基在不在不宅男宅女在看着可能栅栏接啊烧脑舍伯吐赐死地方好开始吧我就是不说就不说就是就是比啥今年暑假是你说那就是你四级考试你手机安娜接啊接啊闹闹少看点撒娇啊就看你萨克斯你啊考计算机室内设计快睡觉啊男士健康室内设计师今年暑假手机少年神机妙算男士健康(ღ˘⌣˘ღ)付大姐夫一个哥哥古古怪怪古古怪怪看这架势;就是必胜客上班就是:不知真假我就在家啊精神病就诊卡:
雨神的女儿
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H· words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this the convenience of discuss, the simplest Heawood configuration model is given in [1] as shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s follows, the detailed Heawood configuration’s inevitable sets is is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A shown in , if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C shown in , if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B2-A2 chain and A1-D2 loop is intersectant in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu :〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
苏州大高中
数学建模论文格式模板以及要求
导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!
(一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。
(七)数学建模论文模板
1. 论文标题
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:
①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法
比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量
再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)
四、模型的建立与求解
这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:
①一定要有分析,而且分析应在所建立模型的前面;
②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;
③关系式一定要明确;思路要清晰,易读易懂。
④建模与求解一定要截然分开;
⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;
⑥结果必须放在这一部分的结果中,不能放在附录里。
⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!
⑧程序不能代替求解过程和结果!
⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!
⑩每个问题和问题之间以及5个小点之间都必须空一行。
问题一:
1.建模思路:
①对问题的详尽分析;
②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味
③完成内容阐述所必需的公式推导、图表等
2.模型建立:
建立模型并对模型作出必要的解释
对于你所建立的模型,最好能对其中的每个式子都给出文字解释。
3.求解方法:
给出你的求解思路,最好能想写算法一样,写出你的算法。
4.求解结果:
你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。
结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。
5.模型的分析与检验
在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:
①这个结果说明了什么问题?
②是否达到了建模目的?
③模型的适用范围怎样?
④模型的稳定性与可靠性如何?
问题二:
问题三:
问题四:
问题五:
五、模型的评价与推广
这一部分应包括:
①你的模型完成了什么工作?达到了什么目的?得出了什么规律?
②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?
③模型中有何不足之处?有何改进建议?
④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。
这一部分一定要有!
六、参考文献
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中
书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
七、附录
不便于编入正文的资料都收集在这里。 应包括:
①某一问题的详细证明或求解过程; ②流程图;
③计算机源程序及结果;
④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。
免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。
猴子kami
论文格式要求 一篇完整的论文应包括如下四部分: 第一部分:正文之前 (1)题目 (2)作者 (3)数学系 级 专业 班 (4) 指导教师 名字 空一行 (5)摘要(中文)200字以内; (6)关键词3—5个 空一行 第二部分:正文 (1)引言; (2)主要结论和必要的论证.(可分成若干节讨论) 第三部分:参考文献:应依引用次序编号,注意书写的规范性. 例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92 说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码. 例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985 说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份. 第四部分:英文部分 (1)英文题目 (2)作者姓名(拼音字母) (3)数学系 级 专业 班 (4)指导教师 名字 (3)英文摘要; (4)英文关键词. 二,文字字体要求: 用A4纸打印,其中 (1)题目用2号宋体(粗); (2)小标题用4号黑体; (3)其他用5号宋体(中文)(英文用5号Times New Roman); (4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求 三,其他 论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.
中国作家林建
论文格式要求一篇完整的论文应包括如下四部分:第一部分:正文之前(1)题目(2)作者(3)数学系 级 专业 班(4) 指导教师 名字空一行(5)摘要(中文)200字以内;(6)关键词3—5个空一行第二部分:正文(1)引言;(2)主要结论和必要的论证.(可分成若干节讨论)第三部分:参考文献:应依引用次序编号,注意书写的规范性.例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码.例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份.第四部分:英文部分(1)英文题目(2)作者姓名(拼音字母)(3)数学系 级 专业 班(4)指导教师 名字(3)英文摘要;(4)英文关键词.二,文字字体要求:用A4纸打印,其中(1)题目用2号宋体(粗);(2)小标题用4号黑体;(3)其他用5号宋体(中文)(英文用5号Times New Roman);(4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求三,其他论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.例文:活动片段展示: 我首先通过一个活动让学生进行操作,使学生亲身体验知识的形成。 师:小朋友们到野外秋游,带了三箱矿泉水,回来时只剩下一部分(黑板出现一箱9瓶,别外还有7瓶),请小朋友们算一算剩下的矿泉水有几瓶?请你们用小棒来代替矿泉水来数一数。 生1:我是1瓶1瓶地数……一共16瓶。 生2:我是2瓶2瓶数……一共16瓶。 生3:我是4瓶加5瓶加7瓶一共16瓶。 生4:我是先拿1瓶和9瓶合起来是10瓶,10瓶和6瓶合起来是16瓶。 (老师有意识地抽出各种数法的代表来比赛看谁数得快) 师:老师现在请三位小朋友来同时数一数老师这里一共有几朵花。(出示红花9朵,黄花8朵,分三组来数) 师:哪个小朋友数得最快?为什么他数得这么快?哪种方法好? …… 教学反思 上面的教学片段,我改变了以往教学中通过事先的设计一环一环、一层一层引着学生走,整个教学程序成了一部“教案剧”。而是从学生学习实际出发,组织和引导学生进行探索研究,较好地体现了现代数学教学的基本理念。 1、把学生当作研究者,满足学生心理需要。 苏霍姆林斯基说进:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要特别强烈。”小学生天生就有强烈的好奇心和求知欲。在以上教学片段中,我正是从这一特点出发,让小学生在活动中学习数学,重视学生学习的过程,让学生亲身体验知识的形成和发展,而不是单纯地把凑十法强加给学生,因为这些算法都是学生在动手操作、自主探索、动脑思考获得的。这样教学,学生的好奇心和求知欲得到了满足,并能感到自己是个研究者、发明者,体验到学习成功的快乐。 2、为学生创造条件,引导学生探索发现。《新课标》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验的基础上。教师应激发学生的学习积极性,向学生提供充分从事教学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”对一年级学生来说,他们对数数已经掌握了很多种方法,因此在教学中我不是简单的用一种方法强加学生掌握,而是引导、实践、探索,发现,虽然有些学生认知水平存在一定差异,他们不是用很优化的方法,但通过他们的亲身体验,感悟,也能发现其它方法比自己的方法好。这种多向交流,为学生创造了生动、愉悦、和谐的学习氛围,使每一位学生都能在自主探索中获得成功。 3、使学生学会学习,渗透数学思想方法。 爱因斯坦曾经说过:“在一切方法的背后,如果没有一种生机勃勃的精神,它们到头来不过是笨拙的工具。”这里的精神就是对方法的本质认识,即数学思想。学生在学习活动中一旦把数学精神、数学的思维方法、研究方法、推理方法等铭刻于头脑中,那么不管他今后从事什么工作,将会使他受益终身。正是鉴于这样的认识,在上面的教学片段中,我为学生创设了自主探索的时空,让他们像从事科学研究那样经历:“操作----发现”的过程。在这一过程中培养了学生的思维能力、口算能力,更为重要的是学生在这一过程中运用了数学思想和方法,体验到计算过程中的优化意识,促使学生在掌握知识与基本技能的同时,体会知识的产生、形成与发展的过程,获得积极的情感体验,为后继学习乃至于他们的终身发展奠定了基础。例文:随着九年制义务教育阶段数学教材的改革,“通过义务教育阶段的数学学习,使学生能够具有初步的创新精神和实践能力”的创新教育已成为数学教学的一个重点,在实际教学过程中对学生创新能力的培养,已引起广大数学教师的高度重视,如何培养学生创新能力,找到培养和发展学生创新能力的有效途径,在数学教学中愈来愈显得重要。本人在具体的数学教学过程中,注重了学生创新能力的培养,该文就“学生创新精神的培养和创新能力的发展”的几点做法和体会表述如下:一、数学教师的创新意识是培养学生创新能力的首要条件教育本身就是一个创新的过程,教师必须具有创新意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思想到教学方式上,大胆突破,确立创新性教学原则。(一)克服对创新认识上的偏差。一提到创新教育,往往想到的是脱离教材的活动,如小制作、小发明等等,或者是借助问题,让学生任意去想去说,说得离奇,便是创新,走入了另一个极端。其实,每一个合乎情理的新发现,别出心裁的观察角度等等都是创新。一个人对于某一问题的解决是否有创新性,不在于这一问题及其解决是否别人提过,而关键在于这一问题及其解决对于这个人来说是否新颖。学生也可以创新,也必须有创新的能力。教师完全能够通过挖掘教材,高效地驾驭教材,把与时代发展相适应的新知识、新问题引入课堂,与教材内容有机结合,引导学生再去主动探究。让学生掌握更多的方法,了解更多的知识,培养学生的创新能力。(二)建立新型的师生关系,创设宽松氛围、竞争合作的班风,营造创造性思维的环境罗杰斯提出:“有利于创造活动的一般条件是心理的安全和心理的自由”。首先,要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多学生是观众、听众的旧地教学模式。因为这种课堂教学往往过多地发挥教师的主导作用,限制了学生创造性思维的发展。教师应以训练学生创新能力为目的。保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生在教育教学过程中能够与教师一起参与教和学中,做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力;其次,班集体能集思广益,有利于学生之间的多向交流,在班集体中,取长补短。课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论、查缺互补、分组操作等内容,锻炼学生的合作能力。特别是一些不易解决的问题,让学生在班集体中开展讨论,这是营造创新环境发扬教学民主环境的表现在班集体中。学生在轻松环境下,畅所欲言,各抒己见,学生敢于发表独立的见解,或修正他人的想法,或将几个想法组合为一个更佳的想法,从而在学习过程中,培养学生集体创新能力。值得注意的是,任何合作,都不要让有的学生处于明显的从属地位,都是应细心把握,责任确定到每个学生,最大限度调动学生潜能。(三)教师应当充分地鼓励学生发现问题,提出问题,讨论问题、解决问题,通过质疑、解疑,让学生具备创新思维、创新个性、创新能力。教师运用有深度的语言,创设情境,激励学生打破自己的思维定势,从独特的角度提出疑问。鼓励学生进行批判性质疑。批判性质疑是创新思维的集中体现,科学的发明与创造正是通过批判性质质疑开始。让学生敢于对教材上的内容质疑,敢于对教师的讲解质疑,特别是同学的观点,由于商榷余地较大,更要敢于质疑。能够打破常规,进行批判性质疑,并且勇于实践、验证,寻求解决的途径,是具有创新意识的学生必备的素质。培养学生对复杂问题的判断能力,在课堂教学中随时体现。设计一些复杂多变的问题,让学生自己的判断来加以解决,或用辩论形式训练学生的判断能力,使学生思维更具流畅性和敏捷性,发表出具有个性的见解在课堂教学过程中,教师在每堂课里都要进行各种总结,也必须有意识地让学生总结,总结能力是一种综合素质的体现。培养学生总结能力,即锻炼学生集中思维的能力,这与培养学生的求异思维是相辅相成的,集中思维使学生准确、灵活地掌握各种知识,将它们概括、提取为自己的观点、作为求异思维的基础,保障了求异思维的广度、新颖程度和科学性。培养总结能力,课堂教学中要将总结的机会尽可能地放给学生,如总结一个问题总结一堂课的内容;总结一次讨论的结果;总结一次辩论的正、反意见等。每次总结,都挑选多位学生发言,要求他们说出自己的独特理解,不要众口一词,随声附和。总结完后,让学生提出自己发现的更深层次的问题,进一步延伸,拓展思维。二、学生的创新兴趣是培养和发展创新能力的关键教育学家乌申斯基说:“没有丝毫兴趣的强制学习,将会扼杀学生探求真理的欲望”兴趣是学习的重要动力,兴趣也是创新的重要动力。创新的过程需要兴趣来维持。(一)利用“学生渴求他们未知的、力所能及的问题”的心理,培养学生的创新兴趣。兴趣产生于思维,而思维又需要一定的知识基础。在教学中出示恰如其分的出示问题,让学生“跳一跳,就摘到桃子”,问题高低适度,问题是学生想知道的,这样问题会吸引学生,可以激发学生的认知矛盾,引起认知冲突,引发强烈的兴趣和求知欲,学生因兴趣而学,而思维,并提出新质疑,自觉的去解决,去创新。(二)合理满足学生好胜的心理,培养创新的兴趣。学生都有强烈的好胜心理,如果在学习中屡屡失败,会对从事的学习失去信心,教师创造合适的机会使学生感受成功的喜悦,对培养他们的创新能力是有必要的。比如:针对不同的群体开展几何图形设计大赛、数学笑话晚会、逻辑推理故事演说等等,展开想象的翅膀,发挥它们不同的特长,在活动中充分展示自我,找到生活与数学的结合点,感受自己胜利的心理,体会数学给他们带来的成功机会和快乐,培养创新的兴趣。(三)利用数学中图形的美,培养学生的兴趣。生活中大量的图形有的是几何图形本身,有的是依据数学中的重要理论产生的,也有的是几何图形组合,它们具有很强的审美价值,在教学中宜充分利用图形的线条美、色彩美,给学生最大的感知,充分体会数学图形给生活带来的美。在教学中尽量把生活实际中美的图形联系到课堂教学中,再把图形运用到美术创作、生活空间的设计中,产生共鸣,使他们产生创造图形美的欲望,驱使他们创新,维持长久的创新兴趣。 (四)利用数学中的历史人物、典故、数学家的童年趣事、某个结论的产生等等激发学生的创新兴趣。学生一般喜欢听趣人趣事,教学中结合学习内容讲述数学发展的历史和历史上数学家的故事,象数学理论所经历的沧桑,数学家成长的事迹,数学家在科技进步中的贡献,数学中某些结论的来历,既可以了解数学的历史,丰富知识,又可以增加学生对数学的兴趣,学习其中的创新精神。三、教师是保护学生创新能力发展的“监护人”(一)分清学生错误行为是有意的,还是思维的结晶。学生早求知的过程中属于不成熟的个体,在探索中出现这样或那样的错误是难免的,也是允许的。教师不要急于评价,出示结论,而是重在帮助弄清出现错误的原因,从而让他们以积极的态度去承认并且改正错误,与文过饰非相比在对待错误的态度上,这个不正是一种创新态度吗?作为教师对发展中的个体要以辩证的观点,发展的眼光,实行多元化的发展的评价。从客观上保护了学生思维的积极性,促使学生以积极的态度投入到学习中去。比如:教学中常见的“插嘴”,可理解为学生的不遵守纪律,也可以理解为学生思维快的表现,这就要看他们的动机是什么,再作结论。 (二)多给学生一些鼓励,一些支持,对学生的正确行为或好的成绩表示赞许。学生时期自我评价能力较低,常常默认教师的评价,而且常以教师的评价衡量自己在群体中的地位。同时,又常从成人的表情或语言判断对其的评价,带有一定片面性。因此,教师应对学生正确行为表示明确的赞扬,使学生明白教师对他们的评价,增强他们的自信心,使学生看到自己成功的希望。比如:教学中宜常使用表扬的语气词,如:“很好!”“太棒了!”“不错”“有进步”等等表示你的关注和赞许。(三)保护学生的好奇心。好奇是儿童与生俱来的天性,好奇是思维的源泉,创新的动力。因为好奇,学生有了创新的愿望,努力去揭开事物的神秘面纱,这种欲望就是求知行为在孩子心灵中点燃的思维的火花,是最可贵的创新性心理品质之一,但随着年龄的增长,好奇程度呈递减趋势,而创造性人才的特点却是永驻的,用好奇的眼光和心理去审视整个世界,每一个成才的人,必须保持这颗好奇的童心,教师对教学中学生好奇的表现应给予肯定。比如:对于学生“打破沙锅问到底”精神,应加以爱护和培养。教学实践中,学生创新能力的培养是多方位的,既需要教师的主导,也需要学生的主体,只有师生共同的配合下,才能教学相长.
为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪
随着国家素质教育目标的提出和新课程改革的推行,探究式教学开始在小学数学教学中逐渐被推广,数学的教学在小学生的教育中占据着至关重要的地位。下面是我为大家整理的小学
论文摘要:本文以递归的方法解决历史上著名的德•梅齐里克砝码问题,并加以推广阐述了一种特殊的进制数方式,对此问题作出了一个普遍解:任意给定一个自然数,能够以最少的
库存管理数据库系统原理与应用【摘 要】库存管理系统是典型的信息管理系统(MIS),其开发主要包括后台数据库的建立和维护以及前端应用程序的开发两个方面。对于前者要
室内设计是人类为了创造并美化自身的生存环境而进行的活动之一。下面是我为大家推荐的室内设计专业 毕业 论文,供大家参考。 室内设计专业毕业论文 范文 一: