343004227qq
1、是事先对总体的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理,即判断总体的真实情况与原假设是否有显著性差异。
2、或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
3、显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
扩展资料:
1、含义:
常把一个要检验的假设记作H0,称为原假设,与H0对立的假设记作H1,称为备择假设。
⑴ 在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵ 在原假设不真时,决定不放弃原假设,称为第二类错误,其出现的概率通常记作β;
(3)α+β 不一定等于1。
通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设 检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为、、等。一般情况下,根据研究的问题,如果放弃真假设损失大,为减少这类错误,α取值小些 ,反之,α取值大些。
2、原理:
(1)无效假设
显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的 。
(2)“无效假设”成立的机率水平
检验“无效假设”成立的机率水平一般定为5%,其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤。如果p≤,则认为两组间的差异为非常显著。
参考资料来源:百度百科-显著性检验
Lemonice柠檬冰
在作结论时,应确实描述方向性(例如显著大于或显著小于)。sig值通常用 P> 表示差异性不显著;
显著性差异是统计学(Statistics)上对数据差异性的评价。通常情况下,实验结果达到水平或水平,才可以说数据之间具备了差异显著或是极显著。
当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的。
一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。
扩展资料:
显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴ 在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵ 在原假设不真时,决定不放弃原假设,称为第二类错误,其出现的概率通常记作β
(3)α+β 不一定等于1。
通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设 检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为、、等。一般情况下,根据研究的问题,如果放弃真假设损失大,为减少这类错误,α取值小些 ,反之,α取值大些。
参考资料来源:百度百科-显著性差异
上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不
1、是事先对总体的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理,即判断总体的真实情况与原假设是否有显著性差异。 2、或者说,显著性检验
会。根据查询论文的相关信息得知,把显著为负改为正会被发现。硕士论文修改实证结果会被发现。硕士论文需要经过导师审核,预答辩,外审,答辩等多个环节,在这些环节中就会
p值不显著可以写论文 资料拓展: 论文评审的标准是论文质量是否达到一定的水平,而不是论文结果是否显著。因此,如果你的硕士论文进行的所有p检验结果都不显著,但你通
我建议你用卡方检验 就是crosstabs项 这是专门进行率的比较的 事先要把数据呈标准的状态建立在spss中 如何建立没法讲 自己看一下专业书 具体操作