• 回答数

    5

  • 浏览数

    237

zhzhohohzh
首页 > 毕业论文 > 数学系毕业论文矩阵

5个回答 默认排序
  • 默认排序
  • 按时间排序

辣椒0908

已采纳

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

247 评论

旺泰纺织

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

303 评论

孫冭冭1229

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

327 评论

莫奈小兔

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

106 评论

明天再说0865

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

355 评论

相关问答

  • 矩阵毕业论文设想

    matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 corrcoef(X,Y) 函数功能:其中%返回

    柠檬朱古力 4人参与回答 2023-12-09
  • 矩阵经济学毕业论文

    随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:

    猪猪爱吃草 5人参与回答 2023-12-06
  • 矩阵乘积的关系毕业论文

    矩阵相乘秩的关系:矩阵相乘之后秩变小或者不变。矩阵相乘可以理解为一种映射,比如本来矩阵是3维的,要映射到2维空间,那么秩就是2了,但是要映射到4维空间,不够分,

    无锡小呆 5人参与回答 2023-12-12
  • 毕业论文里swot矩阵

    1、优势——机会(SO) 战略是一种发展企业内部优势与利用外部机会的战略,是一种理想的战略模式。当企业具有特定方面的优势,而外部环境又为发挥这种优势提供有利机会

    天晴0608 6人参与回答 2023-12-12
  • 在毕业论文中矩阵

    matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 corrcoef(X,Y) 函数功能:其中%返回

    老鼠笨笨 3人参与回答 2023-12-08