行列式都是方阵,没有第二种那么分的
定理里只有,主对角线,下三角,上三角三种形式的分块矩阵。没有反对角线的,不要靠猜测强行造个定理然后问为什么不对。这种反对角线型的,是可以可以通过列交换变成主对角线型的的。
注意副分块对角矩阵的行列式计算公式是若D=O AB O其中A,B分别为m,n阶方阵,则|D|=(-1)^mn|A||B|如果你按第一种方式分块,则结果是(-1)^4|A||B|=2如果你按第二种分块方式,则结果是(-1)^2|A||B|=2结果是相同的。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
毕业论文初稿应注意论文选题,论文写作格式毕业论文是高校毕业生在毕业前必须独立完成的作业,是对几乎全部学习成绩的总结,同时也是探讨学科领域中专门性问题的文章。对于完成毕业论文的写作而言,有很多需要注意的问题,而选题是关键。这是因为选题是写作毕业论文的第一步,也是很重要的一步。常言道:“题好文一半”,确定好了一个论文的主题,也就等于确定好了你的主攻目标和方向。 如何选好主攻的目标?在此谈谈我的看法:一、选题的原则 对此可用以下几句话来概括:1.大处着眼的原则即在论文的选题上应首先考虑选题的理论价值和现实意义。一篇文章的主题在理论上是否具有真知灼见,是否能帮助读者准确认识事物的本质和规律,是否能扩大人们的学术视野,提高大家的知识水平,是否真正具有在?D定的社会环境里帮助人们解决现实问题的作用,对于一份论文来说,这都是至关重要的,也是选题首要考虑的因素。2.小处着手的原则对每一门学科来说,都是包含着许多事物和一系列的矛盾而组成的矛盾的统一体。选题时可挑选其中个别事物的某个单一过程或矛盾的某个侧面,或过程的某个阶段来分析研究,这类论题属于是“小题目”,例如《论保险的消费心理及其影响因素》、《论北京市人才资源的现状及发展);也可以对整个学科体系来进行综合研究,如《论中国保险市场的“机遇”与“挑战”》、《论中国人才资源》等,这类论题属于是“大题目”。“小处着手”就是指在选题时不要贪大求全,对于初学写作的人来说,更应该如此。题目小,容易写深写透,题目过于宽大,费时费力不说,还不易出成绩。有的人为了“求全”,往往论述起来面面俱到,想“自成体系”,却难于深入,弄得只在题目表面做文章,写不出独道的东西,甚至淹没在材料堆里,不能自拔,最后只有仓促换题或勉强成文,这样也不会有什么好结果。3.选题中的“存同求异”的原则毕业论文是属于学术论文范畴的文章。学术研究的标志就是要找问题,就是“求异”,探索未知的事物,而不是“存同”,不是人云亦云,拾人牙慧。毕业论文它不同于教科书,编写教科书有没有新内容并不重要,而毕业论文的可贵之处就在于有新的突出的创见。毕业论文中有属于自己的研究心得和独道见解的是优秀论文的标志。 根据这一原则,在选题时可采用这样一些方法:(1)尽量选择别人没有研究过的问题。(2)选择别人已研究过,但结论不妥或者还有研究余地的题目。(3)选择一些有争议的问题,作为选题的目标。对这三种选题而言,第一类题目难度最大,是属于开辟新探索领域的研究,是带有创造性的工作;第二类题目是在前人研究基础上的一种发展性的研究;第三类选题则要求在众说纷纭的基础上拿出自己有新意的观念,也许有的同学对创新求异有畏难情绪,觉得这样没法下手。其实创新的突破点很多,它既可以是观点上的创新,也可以是材料上或研究角度、方法能上能下的创新;既可以用正面的方法去论述,也可以采用反面的批评等等,这些都能使你的论文与众不同。二、选题应注意的问题1.根据自己的专长、能力去确定选题自己对哪方面的论题比较熟悉,比较有经验或收集资料比较有优势,就确定哪方面作为自己的选题目标。如若只是看到别人选哪方面的题,自己有个一知半解就去凑热闹,结果肯定是搞不好的。对于成人学生来说,我认为应尽量避开那些纯理论性的、学术性要求较高的选题,而应多选择那些能理论联系实际,能将工作经验、生活积累都运用起来的较具体的题目。这类题目能充分发挥成教学员社会经验丰富、动手能力强的优势,而避开了理论基础相对较薄弱的劣势,把这类文章写深写透也同样能收到好的效果。2.选题时要多查看文献资料 这样做的目的在于了解别人对某个问题的研究程度,看看别人是否已经有了与自己类似的结论或相反的结论。如果结论不同,就可以拿出自己的观点来做一番比较,如果结论相同,就应另选题目了。3.多听听别人的意见,从而减少弯路 选题时向指导老师谈谈自己的想法,多听听指导老师的意见,也是必要的。总之,论文的选题是一项关键又复杂的工作,它需要我们本着认真、慎重的态度去做,只有这样,才能为我们论文的写作打下一个良好的开端,从而在毕业前交上一份令人满意的答卷。一、毕业论文结构的基本型人们在长期的写作实践过程中,对某些文体文章的写作逐步形成了一些特定规范——即结构的基本型。这种“型”开始是某个人的创造,但是由于它符合人们的思维规律,所以一直被沿,用下来,并在人们的反复运用中逐步完美、定型化。所以,这种“型”的产生不是偶然的,它是在人们共同思维规律的基础上形成的。我们利用这些“型”来写作,不但能比较省力,便于组织材料表达观点,而且这种“型”符合人们的思维规律而便于人们阅读。这是一种事半功倍的方法。当然,“型”不是个死板的套于,不考虑内容如何,一律削足适履地塞到里边去也是不行的。利用“型”写作,一要注意富于变化,灵活地运用;二要注意当现成的“型”有损于内容表达时,就要坚决地把它丢开。毕业论文的结构形式是多种多样的。但是,它也有其基本型,即序论、本论、结论的三段式:(一)序论毕业论文的序论,在写作上应包括下列内容:说明研究这一课题的理由、意义。这一部分要写得简洁。一定要避免像作文那样,用很长的篇幅写自己的心情与感受,不厌其烦地讲选定这个课题的思考过程。提出问题。这是序论的核心部分。问题的提出要明确、具体。有时,要写一点历史的回顾,关于这个课题,谁作了哪些研究,作者本人将有哪些补充、纠正或发展。说明作者论证这一问题将要使用的方法。如果是一篇较长的论文,在序论中还有必要对本论部分加以扼要、概括地介绍,或提示论述问题的结论。这是便于读者阅读、理解本论的。序论只能简要地交代上述各项内容,尽管序论可长可短,因题而异,但其篇幅的分量在整篇论文中所占的比例要小,用几百字即可。至于序论的几种常见写法,因为后面专门有章节论述,这里不再展开。(二)本论这是展开论题,表达作者个人研究成果的部分。它是毕业论文的主体部分,必须下功夫把它写充分,写好。有些毕业论文,序论部分中提出的问题很新颖、有见地,但是本论部分写得很单薄,论证不够充分,勉强引出的结论也难以站住脚。这样的毕业论文是缺乏科学价值的,所以一定要全力把本论部分写好。一般议论文的本论安排,有所谓直线推论,又称为递进式结构(即,提出一个论点之后,一步步深入,一层层展开论述。论点,由一点到另一点,循着一个逻辑线索直线移动。)和并列分说,又称为并列式结构(即,把从属于基本论点的几个下依论点并列起来,一个一个分别加以论述。)。两者结合起来运用称为混合型。由于毕业论文论述的是比较复杂的理论问题,一般篇幅又较长,所以常常使用直线推论与并列分论两者相结合的方法。而且往往是直线推论中包含有并列分论,而并列分论下又有直线推论,有时下面还有更下位的并列分论。毕业论文中的直线推论与并列分论是多重结合的,其他一些篇幅较长、论述问题比较复杂的论文也多采用这种方式,如《中国社会各阶级的分析》开头提出问题,接着就对各阶级进行分析,然后综合起来得出结论。文章步步深入,层层展开,用的是直线推论。然而,在对各阶级分析的那一层次中,又逐一分析了地主买办阶级、中产阶级、小资产阶级、半无产阶级和无产阶级,用的是并列分论。就整篇而言,就叫直线推论中包括着并列分论。毛泽东同志运用这种结合形式,完满地表达了文章的内容,收到了很好的表达效果。至于本论部分的具体写法,因后面章节要论述,这里不再重复。(三)结论结论是论文的收束部分。毕业论文的结论应包括下述内容:写论证得到的结果。这一部分要对本论分析、论证的问题加以综合概括,引出基本论点,这是课题解决的答案。这部分要写得简要具体,使读者能明确了解作者独到见解之所在。最值得注意的是,结论必须是序论中提出的,本论中论证的,自然得出的结果。毕业论文最忌论证得并不充分,而妄下结论。要首尾贯一,成为一个严谨的、完善的逻辑构成。对课题研究的展望。个人的精力是有限的,尤其是作为学生对某项课题的研究所能取得的成果也只能达到一定程度,而不可能是顶点。所以,在结论中最好还能提出本课题研究工作中的遗留问题,或者还需要进一步探讨的问题,以及可能解决的途径等。最后,对在整个研究过程中给予自己帮助的同志表示谢意。上面所说的是毕业论文结构的基本型。这个基本型是一般常用到的,但不是一成不变的死板公式,作者可以根据表达的研究内容加以灵活地变通处理。二、毕业论文常用的几种结构形式前面所讲的序论、本论、结论是毕业论文结构的基本型,就毕业论文全文的具体结构安排,常见的有如下几种:(一)总提分述所谓总提分述f就是先提出中心论点,然后分别从几个方面去论证,阐明中心论点。这种形式也叫“首括式”(演绎法);。。。。
我们可以对矩阵进行任意划分,叫做 分块 。每个块的大小是任意的没有必要都是方阵 如果是两个分块矩阵相加,只有相同划分的矩阵才能相加与矩阵的数乘一模一样 如果是两个分块矩阵相加,只有相同划分的矩阵才能相乘 假设我们有矩阵:可得:其中 都是方阵其余位置为 0,称 A 为 分块对角矩阵 。 现在我们来说它的性质: 主对角线与副对角线上对角阵的总结: 其中第四条与第五条有一个口诀:
一般在3-4月份交。
每一稿的上交时间也是不同的,主要是看导师和院系的要求。具体来说终稿一般会在5月中旬要求上交吧,一般5月下旬到6月初可以进行答辩了。当然以上的情况每所学校要求不一样,时间也就不一样了。
初稿还要修改,修改好要盲审,盲审完根据盲审意见再次修改定稿,5月份就要申请答辩了。
毕业论文(graduationstudy),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。
文章是你自己写的,心中应该有数的,如果你觉得你的文章质量不错,初稿时可以不查,如果质量不行(抄袭部分很多),你直接交上去,会被导师骂,所以初稿完成后最好先去查重修改。
初稿检测现在很多查重网站都适合,而且初稿查重还有免费版本
学姐经常使用的“蝌蚪论文查重”和“paperpass”,这两个查重网站都可以领取免费查重次数,其中“蝌蚪论文”目前每天可以领取一次免费查重!除了初稿查重以外,定稿前查重版本(收费版)性价比也非常高。最重要的是可靠,查重结果不至于偏差的太离谱,参考价值高!
好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^
矩阵对角化有三种方法
1、利用特征值和特征向量将矩阵对角化
由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。
2、利用矩阵的初等变换将矩阵对角化
矩阵的初等变换
矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:
1 对调两行;
2 以数k≠0乘某一行的所有元素;
3 把某一行所有元素的k倍加到另一行对应的元素上去。
把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。
如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。
另外:分块矩阵也可以定义初等变换。
3、利用矩阵的乘法运算将矩阵对角化
矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。
摘 要:分块矩阵在高等代数中有着很重要的应用,本文主要总结了矩阵的分块在矩阵证明和矩阵运算中的应用,并通过具体的例子加以说明。 关键词:分块矩阵 秩 行列式 逆矩阵 方程组 特征根 在《高等代数》中,我们知道矩阵的分块就是把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样,这样可以使矩阵的结构看得更清楚,从而使大量的《高等代数》习题变得容易。 1.利用分块矩阵证明秩的不等式 首先给出几个基本事实: 参考文献: [1]北京大学数学系.高等代数.高等教育出版社. [2]复旦大学数学系.高等代数.上海科学技术出版社. [3]廖家藩.高等代数.电子科技大学出版社. [4]张禾瑞,郝炳新.高等代数.高等教育出版社. [5]杨子胥.高等代数习题集.山东科学技术出版社. [6]王品超.高等代数新方法.中国矿业大学出版社. [7]王萼芳.高等代数教程习题集.清华大学出版社. 注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。” 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
1、在电脑上打开word应用程序,在界面的右上角找到公式选项,并点击打开。2、在跳转的公式编辑器界面中插入矩阵外边的括号。3、插入里面的行和列,点击,会出来一个矩阵对话框,我们在里面输入行数和列数。4、在跳转的矩阵界面中,输入矩阵的相关参数。5、之后在矩阵图中输入数字即可。
一般来讲大多数矩阵定义在交换环上,定义在域上的好处是容易实现求逆等需要除法的运算,至于为什么要用数域而不是一般的域,那主要是为了让初学者快速入门,毕竟char(F)=0会带来很多便利。如果上面的解释看不懂,那就更说明了对初学者而言要局限在数域上讨论矩阵的重要性,复数比较简单和具体。
发过去了,刚好我有这个
数学中最重要的基本概念之一,是代数学的一个主要研究对象,也是数学研究及应用的一个重要工具。由mn个数排成的m行n列的矩形表称为m×n矩阵,记作A或,也可记作(αij)或。数称为矩阵的第i行第j列的元素。当矩阵的元素都是某一数域F中的数时,就称它为数域F上的矩阵,简称F上的矩阵。当m=n时,矩阵A称为n阶矩阵或n阶方阵,此时α11,α22,…,αnn称为n阶矩阵的对角线元素,当所有的非对角线元素αij(i≠j)均为零时,A就称为n阶对角矩阵,简称对角矩阵。当对角线下面(或上面)的所有元素均为0时,A就称为上(或下)三角矩阵。在m×n矩阵A中取k个行和k个列,k≤m,n;由这些行与列相交处的元素按原来的位置构成的k阶行列式,称为矩阵A的k阶子式。一个n阶矩阵A只有一个n阶子式,它称为矩阵A的行列式,记作│A│或detA。