首页 > 毕业论文 > 中国芯片奇才的毕业论文

中国芯片奇才的毕业论文

发布时间:

中国芯片奇才的毕业论文

如今她在华为的芯片部门工作,参与华为最为机密的芯片研发工作,据说一旦成功,那么中国的芯片将会前进十年。

后来她过得是非常好的,并且已经有了自己的生活,而且每天都特别开心,并且每天都非常的幸福。

我国著名诗人李白,"绣口一吐便是半个盛唐",然而这样的他也曾遭遇仕途不顺,但仍然坚持诗词创作,以"仰天大笑出门去,我辈岂是蓬蒿人"的潇洒姿态面对现实,追逐梦想。

司马迁为了完成《史记》,在遭受牢狱之灾时,以梦为马,坚持创作。梦想照亮了惨淡的现实,开出耀眼的光芒。

28岁的北大博士生导师黄芊芊,在追逐自己的梦想的道路上,将一分的天赋加上十分的汗水灌溉在自己的梦想之花上,开出一片绚烂的花海。

这样的她让人肃然起敬。

01平凡人不平凡的人生

1989年,江西上饶市一户普通家庭诞生了一位女孩子,谁也不会想到日后,这位平凡家庭诞生的女孩会有怎样不平凡的人生。

我家有女初成长,17岁的黄芊芊出落的亭亭玉立,然而令人惊艳的不是她的美貌,而是她的才华。

17岁进入令万千学子向往的北京大学,世人认为天才或许会泯然众人矣,然而努力的天才上天从不会辜负她的期望。

在就读北大期间,黄芊芊并没有停止对学业的深究,依旧秉持努力的态度认真学习,2015年获得北京大学优秀毕业生毕业称号。

以优秀的成绩毕业后,黄芊芊没有选择出国深造。而是选择继续留在北大学习,而后顺利获得北京大学理学博士学位,2016年获得北京大学优秀博士后称号,博士论文评为优秀。

我们不得不承认黄芊芊在微电子学与固体电子学专业上,具有极高天赋,但在这些令人眼花缭乱的成就后面是日日夜夜对学术的持之以恒,对自己心中之梦的辛勤编织。

她处处都是高光的人生远不止于此,2017年,年仅28岁的黄芊芊正式成为微纳电子学系的博士生导师,普通人的28岁不是为枯燥烦味的工作苦恼,就是步入结婚殿堂为家庭所困扰。

28岁的黄芊芊苦恼的是自己热爱的学术研究进展。

时间乘上骏马,转眼人生进入一个关键时刻,30岁,是大多数人都烦恼的30岁,是青春已逝的怅然若失,是前途渺茫的彷徨无措,是身体和心灵上的另一种挑战。

然而30岁的黄芊芊已经获得IEEE(电气电子工程师学会)青年成就奖,这一年获得此奖项的人全球只有3人,而黄芊芊是唯一的亚洲面孔。

就像游戏里开挂的主角一样,黄芊芊在她的世界里一路开挂,披荆斩棘,乘风破浪,直上云霄。

天才并没有泯然众人矣,还是像夜空中最闪耀的那颗星星一样,悬挂在夜空中,让人心生向往,给无数平凡又坚持不懈的追梦人照耀前行的路。

2019年黄芊芊将自己的祝福化作书信,给予2019届北大新生无形的力量,鼓励着他们前行。

2020年最不平凡,也最艰难的一年,黄芊芊成功入选第二届"科学探索奖",50位青年科学家获奖名单。

一路走来,黄芊芊都证明了平凡的人也可以拥有不平凡的人生。

02乘风破浪会有时

"乘风破浪会有时,直挂云帆济沧海"在追逐梦想的道路上,哪怕再多风浪也要义无反顾的前行,因为唯有乘风破浪的气势,才能在日出之时,扬起风帆顺利起航。

黄芊芊研制出的新机理超低功耗器件打破国际记录,互补隧穿器件集成技术成为世界首例。而这些令人赞叹的技术背后,是她对梦想的热爱以及付出的努力。

在进行学术研究的过程中,困难是家常便饭,人的精力是有限的,但本着认真对待学术研究,怀着热爱的初心,黄芊芊选择坚持。

人一生可以做很多事,但很难一直热爱并坚持一件事,黄芊芊对自己研究项目其实就是一个追梦的过程,而她正在用自己的青春去热爱并坚持她的研究事业。

芯片作为国家的重点研发对象,重要性可想而知,过去但我国在这方面还没有掌握核心,芯片多半依靠进口来维持这方面的空缺,但黄芊芊却称得上中国芯片奇才,在芯片研究上贡献了很多力量。

黄芊芊作为科学获奖者上台领奖时说过:"当反复分析思考,尝试各种方法之后,当看到仪器上显示出完美的电流曲线时,我的成就感满满。"

无论是科学研究还是任何领域的事业,无数奋斗者在追梦的路上要付出的远比我们想象的多,但正是因为一次次失败,又一次次站起来,才有梦想之花盛开的一天。

每个在自己的领域奋斗的人,就像在在海上航行,无法预测天气,靠着勇气在风暴中前行,或许抵达海岸重要的不是多高的智慧,而是日积月累的知识,坚持下起的决心以及奋勇不息的精神。

03结语

"对真理和知识的追求并为之而奋斗,是人类的最高品质之一。"

黄芊芊在学术上的执着,是她对真理和知识的不断探索,时代需要这样优良品质的人。

南非第一位黑人总统曼德拉,他同种族隔离制度斗争了几十年,这是他内心的信仰和梦想,无论遭遇多大的困难依旧不放弃不抛弃。

陈景润为了证实哥德巴赫猜想,自学英语,德语甚至俄语,无论酷暑还是寒冬,他依旧坚持用大把时间进行研究。

曾国藩从小天赋不高,但坚信勤能补拙,自幼勤奋好学,最终成为中国历史上最有影响力的人物之一。

黄芊芊为研究芯片,无论遇到多少困难依旧屹立不倒,在学术上勇攀高峰,坚持对自我的提高,为国家芯片事业不断再创造创新。

平凡人为实现自己的价值用一生去奋斗,不平凡的人在实现自我价值的同时,还心怀大义,心系国家。

如今她在一家著名的国产企业中当技术人员,每个月的工资过万,而且还收获了美满的爱情,这么优秀的人才到哪都会过得很好,都是让人羡慕的对象。

毕业论文中芯片的介绍

芯片介绍和元件说明,基本都是一样的,不用想了,要过查重率,就多写一些自己的想法,看法,自己的分析,也可以去请教一下别人,相关知识的具体原理,然后用自己话表述出来,就可以了。慢慢来吧,我也是过来人...

尽量少写,元器件的参数都是死的,写上就必重。把它的功能理解一遍,自己叙述。

下面的都是毕业论文范文,有用的话,请给我红旗LMX2350/LMX2352芯片简介及电路设计基于LMX2306/16/26 芯片简介及应用电路设计 基于LT5500f 的 GHzLNA/混频器电路设计基于LT5517 40MHZ到90NHZ 积分解调器的设计基于LT5527的400MHz至高信号电平下变频混频器电路设计基于LT5572的芯片简介及应用电路设计基于LT5516的芯片简介及应用电路设计 基于MAX2039的芯片简介及应用电路设计 基于MAX2102/MAX2105芯片简介及应用电路设计基于MAX2106 芯片简介及应用电路设计 基于MAX2323/MAX2325 的芯片简介及应用电路设计 基于MAX2338芯片简介及应用电路设计 基于MAX2511的芯片简介及应用电路设计 基于MAX2685的芯片简介及应用电路设计 基于MAX2753的芯片简介及应用电路设计基于MAX9981芯片简介及应用电路设计基于MAX9994的芯片简介及应用电路设计 基于MAX9995的芯片简介及应用电路设计基于MC12430的芯片简介及应用电路设计基于MC88920芯片简介及应用电路设计基于MPC97H73的简介及电路设计基于MPC9229 芯片简介及应用电路设计 基于mpc9239芯片简介及应用电路设计 基于MPC9992 芯片简介及应用电路设计基于mpc92433芯片的简介及应用电路设计基于TQ5121的无线数据接收器电路设计基于TQ5135的芯片简介及应用电路设计基于TQ5631 3V PCS波段CDMA射频放大混频器电路设计语音信号处理技术及应用网络文档发放与认证管理系统网络配置管理对象分析与应用三维激光扫描仪中图像处理快速算法设计基于分形的自然景物图形的生成图像压缩编码基于奇异值分解的数字图像水印算法研究数字图象融合技术汽车牌照定位与分割技术的研究焦炉立火道温度软测量模型设计加热炉的非线性PID控制算法研究直接转矩控制交流调速系统的转矩数字调节器无线会议系统的设计温度检测控制仪器简易远程心电监护系统基于LabVIEW的测试结果语音表达系统程控交换机房环境监测系统设计单片机控制的微型频率计设计基于DSP的短波通信系统设计(射频单元)等精度数字频率计不对称半桥直直变换器仿真研究基于MATLAB的直流电动机双闭环调速系统无线传输应变型扭矩仪模糊控制在锅炉焊接过程中的应用三层结构的工作流OA的应用与实现基于的永磁直线电机的有限元分析及计算音频信号的数字水印技术低压CMOS零延迟1:11时钟发生器基于ADF4116/4117/4118的芯片简介及应用电路设计ADF4193芯片简介及应用电路设计LMX2310U/LMX2311U/LMX2312U/LMX2313U芯片简介及应用电路设计MAX2754芯片简介及应用电路设计MPC92432芯片简介及应用电路设计高增益矢量乘法器基于400MSPS 14-Bit,直接数字合成器AD9951基于900MHz低压LVPECL时钟合成器的电路设计基于 MAX2450芯片简介及应用电路设计基于AD831低失真有源混频器的电路设计基于AD7008的芯片简介及应用电路设计基于AD8341 芯片简介及应用电路设计基于AD8348的50M-1000M正交解调器基于AD8349的简介及应用电路设计基于AD9511的简介及电路应用基于AD9540的芯片简介及电路设计基于AD9952的芯片简介和应用电路设计基于ADF436的集成数字频率合成器与压控振荡器基于ADF4007简介及电路设计基于ADF4110/ADF4111/ADF4112/ADF4113上的应用电路设计基于ADF4154的芯片简介及应用电路设计基于ADF4360-0的芯片简介及应用电路设计基于ADF4360-3电路芯片简介及应用电路设计基于ADF4360-6的简介及应用电路设计基于ADF4360-7的集成整形N合成器的压控振荡器基于ADL5350的简介及应用电路设计基于CMOS 200 MHZ数字正交上变频器设计基于CMOS 的AD9831芯片数字频率合成器的电路设计基于CX3627ERDE的芯片简介及应用电路设计基于CXA3275Q的芯片简介及应用电路设计基于CXA3556N的芯片简介及应用电路设计基于IMA-93516的芯片简介及应用电路设计VPN技术研究UCOSII在FPGA上的移植IPTV影音信号传输网络设计GSM移动通信网络优化的研究与实现 FSK调制系统DSP处理GPS接收数据的应用研究Boot Loader在嵌入式系统中的应用ADS宽带组网与测试基于FPGA的IIR滤波器设计MP3宽带音频解码关键技术的研究与实现基本门电路和数值比较器的设计编码器和译码器的设计智力竞赛抢答器移位寄存器的设计与实现四选一数据选择器和基本触发器的设计四位二进制加法器和乘法器数字钟的设计与制作数字秒表的设计数控分频器及其应用汽车尾灯控制器的设计交通灯控制器的设计简易电子琴的设计简单微处理器的设计DSP最小系统的设计与开发基于消息队列机制(MSMQ)的网络监控系统基于DSP的电机控制的研究基于数学形态学的织物经纬密度的研究纱条均匀度测试的研究 图像锐化算法的研究及其DSP实现 手写体数字识别有限冲击响应滤波器的设计及其DSP实现 同步电机模型的MATLAB仿真USB通信研究及其在虚拟仪器中的应用设计WLAN的OFDM信道估计算法研究采用S12交换机支持NGN下MEGACO呼叫流程的设计基于语音信号预测编码的数据压缩算法的研究与实现基于小波变换数字图像水印盲算法基于小波变换和神经网络的短期负荷预测研究嵌入式系统建模仿真环境PtolemyII的研究与应用分布式计算环境的设计与实现复合加密系统中DES算法的实现大学自动排课算法设计与实现基于AES的加密机制的实现基于AES算法的HASH函数的设计与应用基于DM642的视频编码器优化和实现基于Huffman编码的数据压缩算法的研究与实现基于internet的嵌入式远程测控终端研制基于Matlab的FMCW(调频连续波)的中频正交处理和脉冲压缩处理 基于MATLAB的对称振子阻抗特性和图形仿真基于windows的串口通信软件设计基于粗糙集和规则树的增量式知识获取算法自适应蚁群算法在DNA序列比对中的应用远程监护系统的数据记录与传输技术研究基于分布式体系结构的工序调度系统的设计基于活动图像编码的数据压缩算法的设计与实现基于宽带声音子带编码的数据压缩算法的设计与实现基于网络数据处理XML技术的设计基于小波变换的数据压缩算法的研究与实现基于小波变换的配电网单相接地故障定位研究及应用英特网上传输文件的签名与验证程序

pwm是指脉宽调制dc--直流,DC-DC就是:直流到直流,比如12V转5V的电源。PWM DC-DC控制芯片 通俗讲就是开关电源控制芯片。开关电源的效率一般在80%以上。同样12V转5V的电源,用线性电源(例如7805)的效率大约为5/12=41%。开关电源则为80~90%,有些甚至可以达到96~98%。

美国芯片专家毕业论文

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

答:芯片这个称呼给人狭义的感觉,以为只是处理器,其实称呼集成电路更靠谱,发明者正是2000年诺贝尔物理学奖获得者,美国工程师——杰克·基尔比。

没错!不是我们一贯认为的科学家,而是工程师,是大名鼎鼎的德州仪器的工程师,从事的正是集成电路的研究。 和半导体相关诺贝尔奖很多,但无疑集成电路的发明,是最耀眼的。

1947年,杰克·基尔比毕业于美国伊利诺斯大学,并在一家生产电器元件的公司上班,同时对电子技术方面产生了浓厚的兴趣。

杰克·基尔比一边工作,一边继续完成他的硕士学业。 待学业完成后,杰克·基尔比转职于德州仪器工作,在这里,他得以全身心地投入他的爱好,并产生天才的想法——把电子设备的所有元器件放在一块材料上制造,并相互连接形成电路。

这就是集成电路的最初想法。

杰克·基尔比一点没耽误,立马着手研究,当天就把整个构想勾勒出来,并选用硅作为材料。

当他把想法告诉他的主管后,受到了高度重视;1958年,杰克·基尔比便申请了此项专利,从此,电子技术进入集成电路时代。

而CPU,代表着集成电路设计和制造的巅峰之作,其高端芯片的核心技术,掌握在少数几个大公司手里。

四十二年后的2000年,七十七岁的杰克·基尔比,因发明集成电路被授予诺贝尔物理学奖,5年后,杰克·基尔比去世。

前阵子中兴公司被美国制裁,芯片成了热门关键词,什么是芯片?芯片是谁发明的?

简单来说,芯片指的是内含集成电路的硅片,比如酷睿的i9系列就是其中一种。最简单的单个电路是晶体管,可以执行0和1的逻辑运算,集成电路就是将许多具有简单运算能力的单个晶体管组合在一起形成的具有强大处理能力的中枢。

现在的晶体管已经在CPU中以纳米大小的量级存在,比如酷睿i5-3337U中就含有14亿个晶体管,那么小的芯片居然集成了那么多的处理单元,完全超乎你的想象。

芯片的发明者有两个人,一个美国 德州的仪器工程师 杰克·基尔比,另一位是美国物理学博士 罗伯特·诺伊斯,两人将电路中的基本原件都组合到半导体 硅片中,运算处理性能超群,可以大量生产成本低廉,因此是 共同研发改良了集成电路(芯片),但由于 罗伯特英年早逝,所以他没能跟 杰克基尔比 共享2000年的诺贝尔物理学奖。

芯片到底有多重要?为什么芯片那么难制造?

芯片的重要程度超乎大家的想象,军事领域中的导弹防御系统和导弹还有雷达中都运用到了芯片,芯片能够提高雷达扫描精度识别敌方战机,还能够提高导弹准心实现精准打击,这一切都是在小小的芯片中进行运算的,芯片可以关乎到一个国家的命脉。

芯片之所以难制造是因为它集成了人类科学和 科技 水平的精华,芯片要提高运算处理能力就需要集成更多的处理单元,现在一块芯片中基本都有10亿个以上纳米级的晶体管,人类用肉眼都无法直接看到, 美国贝尔实验室的物理学家最近研究出一粒沙的100万分之1大小的纳米晶体管, 工艺的精度可以说是匪夷所思。不仅如此,芯片对于材料纯度的要求也高到恐怖,大多数都是在以上,精度 越高的 芯片运算能力强因此也就会产生更多的热能,高纯度的硅材料可以避免材料因过热而膨胀导致芯片损坏。

芯片在光学和机械处理上也是非常恐怖的,目前已经发展到了6纳米的精度,芯片内部的线路导向明确无毛糙杂边,对于光学仪器和制造设备的要求非常高。可见制造芯片已经不仅仅是芯片本身那么简单了,制造芯片的设备也是技术上的门槛。再加上国外对于芯片重要性的超前的认识,每年都投入大量的资金研究,已经把芯片做到了极致。

这里的“芯片”说的不对,准确的说法应该是“集成电路”——而所谓的集成电路的意思就是把好多个简单的电路集成在一个很小的地方,从而让一块小小的芯片获得可怕的计算能力。

一,最简单的电路——晶体管。

有人可能实在不能理解晶体管是什么,其实很简单——利用半导体材料的一些性质把开关做的很小——这就是晶体管。而对于那些对计算机稍微了解一点儿的人也很容易知道,开关实际上就表示0和1,所以晶体管就是计算机的基础。

发明晶体管的人叫威廉·肖克利,这个人大概可以说是芯片业的祖师爷,于1956年因为发明了晶体管而获得诺贝尔物理奖。

我们经常看到的晶体管

二,把晶体管变小、集成到一起。

第一台晶体管计算机(800个晶体管)

但是光有晶体管还不行,因为晶体管的体积还是太大了,那么如何把晶体管的体积做小成为了科学家需要面对的主要问题。这个时候有两个科学家站了出来,提出了把晶体管缩小、变成集成电路的看法,这两个人就是杰克·基尔比和罗伯特·诺伊斯。

把无数个晶体管缩小的集成电路

其中杰克·基尔比是美国德州仪器的工程师,而罗伯特·诺伊斯则比较传奇,他曾经于晶体管之父威廉·肖克利创办的公司任职,但是因为不满于肖克利对公司的经营水平,最终与其他七个小伙伴跳槽、成立了大名鼎鼎的仙童半导体公司——而诺伊斯本人就是“八叛逆”中的其中一个。

三,集成电路中的那些破事儿。

杰克·基尔比和罗伯特·诺伊斯两个人和集成电路之间的事情真的是很有意思的。首先,杰克·基尔比这个人提出集成电路的概念更早一些,但是他首先提出的制造方案不是很现实;诺伊斯虽然提出集成电路的时间比较晚,但是因为路子对了,所以他获得集成电路专利的时间要更加早一些。

这还不算完,因为诺伊斯早在1990年就因为心脏病去世了,所以在2000年诺贝尔奖委员会决定给集成电路的发明者颁发诺贝尔物理奖的时候,只有更长寿的基尔比获得了这项无上的荣誉。

三位芯片发明者

所以,威廉·肖克利、杰克·基尔比和罗伯特·诺伊斯都可以算作是芯片的发明者,除了诺伊斯因为英年早逝没有获得诺贝尔奖之外,剩下的两人都曾经获得过诺贝尔奖。也算是 历史 上的趣话了。

在 历史 上有两个人分别获得了芯片的专利, 但只有一个人获得了诺贝尔奖 。获奖者是美国德州仪器的工程师,杰克·基尔比(Jack Kilby),他发明的芯片在1964年获得专利,这项成就让他在2000年获得诺奖,基尔比在2005年去世。由于基尔比获得了诺奖,因此他也就获得了 芯片之父 的名声。

这个嘛,到没有啥狗血故事,因为诺伊斯死得太早,在1990年就去世了,而诺奖的惯例是不会发给已经去世的科学家或者工程师。但是,罗伯特·诺伊斯的一生并不缺这个诺奖。因为他有另一个名誉头衔,那就是 硅谷之父或硅谷市长(the Mayor of Silicon Valley) 。 罗伯特·诺伊斯是英特尔的共同创始人之一。

1968年8月,罗伯特·诺伊斯与戈登·摩尔(Gordon Moore)和安迪·葛洛夫(Andrew Grove)辞职创业,他们一起开创了英特尔(Integrated Electronics)王朝,直到今天英特尔依然是芯片业霸主。并且,也是诺伊斯搞出了大办公室的新职场风格,没有墙壁只有隔间。1971年11月,英特尔第一款芯片:Intel 4004问世,也是人类 社会 第一款商业芯片问世。

图示:Intel4004的结构,它内有2,300个晶体管,制程10微米,每秒最快运算速度9万次,成本低于100美元。

这可是1971年的100美元,按购买力计算,相当于现在的600美元,而Intel最新CPU售价算,600美元能买到什么级别的CPU,我查了一下最贵的Intel Core i9-9900K @ ,制程14纳米(1微米=1000纳米,这意味着缩小了接近1000倍,因此也就能容纳更多晶体管),据说能超频到5G,并且拥有八个物理核心,也不到500美元,至于性能上则把Intel4004不知抛下了多远。这就是芯片技术恐怖的进步速度。

欢迎指正

另外AMD粉就别喷了

我也是用AMD的 (^_^)

杰克 基尔比—— 集成电路之父 ,(集成电路和芯片只是两种称呼而已,一回事,别去纠结)。

并且杰克 基尔比于 2000年获得诺贝尔物理学奖 ,奖励他对电子产业做出的巨大贡献和影响。虽然这距离他发明集成电路已经过去42年之久。

杰克 基尔比因为对电子技术非常感兴趣,所以大学时候选修了电子管方面的课程,不过比较悲催,在他毕业的后一年,晶体管问世了,这让他在大学学的电子管技术都白费了。

这一过就是十年,1958年,他在德州仪器公司参加工作,可能是轻松的工作制度,让他灵感突现:能否将电容、晶体管等等电子元件都安装到一块半导体上呢?这样整个电路体积将会大大缩减!说干就干,在 1958年9月12日,世界上第一块集成电路成功问世 。我们现在的电脑、手机等等电子产品都离不开集成电路。

从1958到2000年,因为集成电路的出现,电子行业得到了迅猛发展。杰克 基尔比获得诺贝尔奖,实至名归。

说是科学家但其实算不上是科学家,具体的来说应该是一位工程师!至于诺贝尔奖,则是迟到了整整四十二年才到 ,并且,在获得诺贝尔物理学奖仅仅五年后,这位改变了世界的科学家就去世了。

杰克·基尔比 ,出生于1923年11月8日,并于2005年6月20日逝世,在他的一生中对电子技术的研究占了绝大部分的时间,一边工作一边利用业余时间不断研究,为了方便研究,杰克·基尔比与妻子在取得硕士学位后搬去了德克萨斯州的达拉斯市,并且工作于一家仪器公司,只因为这家公司能够提供给他适宜的实验室和实验器具,并允许他进行自己的实验研究,从那以后,不论严寒或酷暑,杰克·基尔比总会独自一人坐在实验室进行研究, 在同行的怀疑下,他最终成功设计出一个全新的领域–世界上第一块集成电路。

不畏艰辛并且敢想敢做,这种精神在现在已经很少有人拥有了,德州仪器公司也就是大力支持 杰克·基尔比进行研究的公司曾经说过:

假若没有他,可能现在的手机或电脑还处于巨型状态,这个发明是现在我们所能见到的几乎所有的电子产品的必备部件之一,芯片,就相当于一个电子产品的心脏,是人类在 科技 路上发展过程中最重要的里程碑。

芯片(或者叫集成电路)的发明者一共有两位,他们分别来自半导体行业两家赫赫有名的公司:德州仪器(Texas Instruments)和仙童半导体(Fairchild Semiconductor)。

德州仪器是世界第三大半导体制造商,仅次于英特尔,三星;同时也是手机的第二大芯片供应商,仅次于高通;它还是世界范围内第一大数字信号处理器(DSP)和模拟半导体元件的制造商,成立于1951年。

1958年,在德州仪器新研究实验室工作的杰克·基尔比(Jack Kilby)发明了集成电路,并于1959年2月申请了第一个集成电路发明专利。

而另外一家成立于1957年的仙童半导体公司更是奠定了美国硅谷成长的基石,苹果前CEO乔布斯曾比喻说:“仙童半导体公司就象个成熟了的蒲公英,你一吹它,这种创业精神的种子就随风四处飘扬了。”

这家半导体行业的鼻祖,在德州仪器拔得头筹后仙开始奋起疾追。6个月后,仙童半导体公司的罗伯特·诺伊斯(Nobert Noyce)也独立地开发出了具有交互连接的集成电路,并在1959年7月30日向美国专利局申请了专利。

为争夺集成电路的发明权,两家公司开始旷日持久的争执。1966年,杰克·基尔比和罗伯特·诺伊斯同时被富兰克林学会授予巴兰丁奖章,基尔比被誉为「第一块集成电路的发明家」而诺依斯被誉为「提出了适合于工业生产的集成电路理论」的人。

1969年,法院最后的判决下达,从法律上承认了集成电路是一项同时的发明。

2000年,罗伯特·诺伊斯已经去世,按照诺贝尔奖只授予在世者的规定,77岁的杰克·基尔比获得诺贝尔物理学奖,这个奖距离他的发明已经42年。

曾经没有,后来有,首先你要了解一下诺贝尔奖的初衷就不难了解他有没有资格获得,

实事证明,集成电路给世界人类的 科技 进步提供了很大的便利与速度,所以他后来获得了诺贝尔奖

某些人可能并不真正了解晶体管是什么,但实际上非常简单-利用半导体材料的某些特性来减小开关的体积-它是晶体管。 对于那些熟悉计算机的人来说,很容易知道开关实际上代表0和1,因此晶体管是计算机的基础。

晶体管的发明者是威廉·肖克利(William Shockley)。 可以说这个人是芯片之父了。 1956年,他因晶体管的发明而获得了诺贝尔物理学奖。

FPGA芯片与集成电路

第一台晶体管计算机,光有晶体管还不行,因为晶体管的体积还是太大了,那么如何把晶体管的体积做小成为了科学家需要面对的主要问题。这个时候有两个科学家站了出来,提出了把晶体管缩小、变成集成电路的看法,这两个人就是杰克·基尔比和罗伯特·诺伊斯。

其中杰克·基尔比是美国德州仪器的工程师,而罗伯特·诺伊斯则比较传奇,他曾经于晶体管之父威廉·肖克利创办的公司任职,但是因为不满于肖克利对公司的经营水平,最终与其他七个小伙伴跳槽、成立了大名鼎鼎的仙童半导体公司——而诺伊斯本人就是“八叛逆”中的其中一个。

杰克·基尔早些提出集成电路的概念,但是他首先提出的制造方案不是很现实;诺伊斯虽然提出集成电路的时间比较晚,但是因为路子对了,所以他获得集成电路专利的时间要更加早一些。

这还没有结束,因为诺伊斯早在1990年就因为心脏病去世了,所以在2000年诺贝尔奖委员会决定给集成电路的发明者颁发诺贝尔物理奖的时候,只有更长寿的基尔比获得了这项无上的荣誉。

所以,威廉·肖克利、杰克·基尔比和罗伯特·诺伊斯都可以算作是芯片的发明者,除了诺伊斯因为英年早逝没有获得诺贝尔奖之外,剩下的两人都曾经获得过诺贝尔奖。

如果说原型开发的话,从1949年到1957年,很多人都在这方面有尝试和突破。维尔纳·雅各比(Werner Jacobi)、杰弗里·杜默(Jeffrey Dummer)、西德尼·达林顿(Sidney Darlington)、樽井康夫(Yasuo Tarui)都开发了原型。

但更接近现在芯片的现代集成电路是由杰克·基尔比在1958年发明的。其因此荣获2000年诺贝尔物理奖。

在基尔比之前,电晶体取代笨重不稳定的真空管,但随电路系统不断扩张,元件越来越大,却遇到新瓶颈。尤其生产一颗电晶体的成本高达十美元,怎么缩小元件体积,降低成本,变成应用上的大问题。

就拿世界上第一台通用计算机“ENIAC”来说,差不多诞生在基尔比发明集成电路十年前。

美国国防部用它来进行弹道计算。它是一个庞然大物,用了18000个电子管,占地170平方米,重达30吨,耗电功率约150千瓦,每秒钟可进行5000次运算,这在现在看来微不足道,但在当时却是破天荒的。

德州仪器的工程师基尔比对此非常上心,真空管电路带来了信息革命,但是并不是终极解决方案。

基尔比的新概念,是利用单独一片硅做出完整的电路,如此可把电路缩到极小。当时同业都怀疑这想法是否可行, “我为不少技术论坛带来 娱乐 效果,”基尔比在他所著“IC的诞生”一文中形容。

1958年9月12日,美国,德克萨斯州达拉斯市,德州仪器公司的实验室里,工程师杰克·基尔比成功地实现了把电子器件集成在一块半导体材料上的构想。

这一天,被视为集成电路的诞生日,而这枚小小的芯片,开创了电子技术 历史 的新纪元。

集成技术的应用,催生了更多方便快捷的电子产品,比如常见的手持电子计算器,就是基尔比继集成电路之后的一个新发明。直到今天,硅材料仍然是我们电子器件的主要材料。但是刚开始人们并没有认识到这种改变世界的价值

2000年,集成电路问世42年以后,人们终于了解到他和他的发明的价值,基尔比被授予了诺贝尔物理学奖。诺贝尔奖评审委员会曾经这样评价基尔比: “为现代信息技术奠定了基础”。

关于这个诺奖的授予还有点小插曲。1959年,仙童半导体公司的罗伯特·罗伊斯申请了更为复杂的硅集成电路,并马上投入了商业领域。但基尔比首先申请了专利,因此,罗伊斯被认为是集成电路的共同发明人。

罗伊斯于1990年去世,与诺贝尔奖擦肩而过。所以只有杰克·基尔比领奖。基尔比相当谦逊,他一生拥有六十多项专利,但在获奖发言中,他说: “我的工作可能引入了看待电路部件的一种新角度,并开创了一个新领域,自此以后的多数成果和我的工作并无直接联系。”

信息化时代的到来,使得计算机科学在人们的生活和工作中起着越来越重要的作用,并扮演者不可或缺的角色。下面是我为大家整理的计算机科学与技术专业毕业论文,供大家参考。

1计算机科学技术在教学中的应用

计算机网络教学与课堂授课有非常大的不同,在进行课堂授课时要受到很多因素的影响,比如说,教师的上课状态、学生的上课状态、书本知识的局限以及周围环境的影响等都会成为影响授课质量的原因。但计算机网络教学却是大大的不同,计算机网路教学中学生处于主动的一方,教师主要是处于引导的状态,让学生自发的去学习,建立学生自主学习的机制,在这样的情况下,不仅可以提高学生学习的积极性也可以提高教师的教学质量。而虚拟教学和远程教学是属于相互补充的两种教学形式,虚拟教学更是弥补了远程教育的不足,学生足不出户就可以进行各种各样的教学实验,从而获得和课堂学习不一样的学习体验,能够加深对学习内容的理解,从而获得更高的提升。此种教学方法,可以使学生的知识学习更加的形象化和具体化,使学生学习起来更加的直观和容易理解,另外,在进行有趣学习的同时也可以培养学生的创新能力和探索的欲望。

2计算机科学技术在教学中应用的影响

计算机科学技术在现代教学中的作用及影响无疑是非常巨大的,计算机技术的应用使得学生的学习不再局限于那小小书本之内,通过多媒体课件以及种种辅助教学,增加了非常多的课堂知识量。在增加学习知识量的同时并没有消耗更多的时间,恰恰相反,通过计算机的有效运用大大减少了教学时间,让学生在同样的时间内了解了更多的知识。现代的教学手段改变了以往沉闷乏味的教学形式,计算机的合理使用能够有效的吸引学生们的注意力,激发了学生学习的兴趣和积极性,让学生们主动去学习,去了解知识,从而让学习变成了一件非常有趣的事情,改变了以往的学习状态,形成了积极向上的学习风气。从大的方面来说,现在的世界俨然是一个信息化、数字化、网络化的新时代,在这样的时代背景下,计算机电子信息技术得到了广泛的发展,计算机已经进入到了家家户户,成为人们生活和工作的必需品,计算机为人们生活学习等诸多方面带来了很大的便利,打破了传统的区域界限的新知识,带人们走进了一个知识经济的新世界。而且,计算机还扮演着非常多的角色,除了教师、学生以外也可以是朋友、玩伴、工具等。人们可以在计算机当中获取非常多有用的东西,计算机在作为辅助工具时可以进行管理工作,学生可以在计算机上完成自己的作业,它也可以是老师,在自己有不明白的地方时为自己授业解惑。

3结语

计算机科学技术的广泛适用,改变了人们传统的教学方式以及学习形式。通过多种多样的应用形式,使得学生们的学习变得丰富多彩,上班族的工作变得轻松便捷。计算机科学技术将不同的教学呈现给大家,提高了学生的学习效率和学习积极性,提高了教师的教学水平和教学质量,让教学走到了时代的前端来适应现代教育的需求。而未来的教学仍然是个未知数,如何更好地发挥计算机技术在教学中的作用需要更多的有志之士去探索、去实践,也可以说这是现代教育专家和工作者们的主要任务。如何将计算机更好地融入到教学当中以及如何让计算机技术继续的发扬光大将不断激励着大家勇敢前进。

1计算机科学技术现状

计算机科学技术在生活中应用广泛

在这个信息化时代,计算机网络作为人们社会生活的重要部分,已经进入千家万户。人们不用出门就可以通过计算机了解国内外新闻、天气预报资讯、股市行情、世界地图、收发电子邮件、检索信息等;不用逛街就可以通过互联网中的购物网站买到喜欢的东西;通过计算机可以与相隔较远的朋友在线聊天、视频聊天等,加强人们之间的交流和沟通,促进友谊;人们可以通过计算机网络订购飞机票、火车票等,节省排队时间;教师可以通过计算机科学技术实现对学生的在线授课,更及时、更方便;动漫工作者可以使用计算机科学技术制作动漫;政府机关也可以通过计算机科学技术建立城市网站,及时了解市民反映的问题,通过计算机与各个行业的工作人员在线交流;很多企业使用计算机来处理大量数据和信息,代替传统的人工处理,提高工作效率。计算机科学技术潜移默化的影响着人们的生产、工作和学习。

计算机科学技术更加智能化和专业化

计算机科学技术的快速发展和广泛应用,推动了集成电路、微电子和半导体晶体管的发展,计算机科学技术更加智能化和专业化。计算机能根据使用对象的不同个体需要进行改装、更新,对于有更高需求的用户可以专门定做计算机,用户可以根据使用环境的不同选择台式计算机、笔记本计算机、掌上电脑和平板电脑等。计算机科学技术在其他特殊领域也能发挥自己的优势,如智能化家用电器和智能手机,家庭式网络分布系统代替了传统的单机操作系统,满足人们的生活需求。

计算机的微处理器和纳米技术

微处理器能提高计算机的使用性能,缩小传统处理器芯片中的晶体管线宽和尺寸。利用光刻技术,波长更短的曝光光源经过掩膜的曝光,将晶体管在硅片上制作的更精巧,将晶体管导线制作的更细小。计算机科学技术的快速发展使计算机运算速度更快,体积更微型,操作更智能,传统的电子元件不能适应计算机的发展。纳米技术是一种用分子射程物质和单个原子的毫微技术,可以研究~100纳米范围内的材料应用和性质。计算机科学技术中利用纳米技术,可以使计算机尺寸变小,解决运算速度和集成度的问题。

2计算机科学技术的未来发展

现如今,计算机科学技术的应用越来越广,人们对计算机科学技术的要求越来越高,促使数学家和计算机学家们不断研究计算机科学技术,使计算机科学技术在各个领域、各个行业发挥更大的作用,满足人们的不同需求。下面从DNA生物计算机、光计算机和量子计算机三方面来探究计算机科学技术的发展前景。

生物计算机DNA生物计算机用生物蛋白质芯片代替传统的半导体硅芯片。1994年,美国科学家阿德勒曼率先提出关于生物计算机的设想。在计算机运算数据时,将生物DNA碱基序列作为信息编码载体,运用分子生物学技术和控制酶,改变DNA碱基序列,从而反映信息,处理数据。这一设想增加了计算机操作方式,改变了传统的、单一的物理操作性质,拓宽了人们对计算机的了解视野。DNA生物计算机元件密度比大脑神经元的密度高100万倍,信息数据的传递速度也比人脑思维快100万倍,生物计算机的蛋白质芯片存储量是传统计算机的10亿倍。2001年,以色列科学家研制出世界上第一台DNA生物计算机,体积较小,仅有一滴水的体积。2013年,英国生物信息研究院的科学家们使用DNA碱基序列对文学家莎士比亚154首作品的音乐文件格式和相关照片进行编制,增加了储存密度,使储存密度达到克(1024TB=1PB),提高了人们对信息储存的认识,这一重大突破使生物计算机的设想有望成为现实。

光信号和光子计算机

光子计算机是一种由光子信号进行信息处理、信息存储、逻辑操作和数字运算的新型计算机。集成光路是光子计算机的基本构成部件,包括核镜、透镜和激光器。光子计算机和传统计算机相比较,有以下几点好处:

(1)光计算机的光子互联芯片集成密度更高。在高密度下,光子可以不受量子效应的影响,在自由空间将光子互联,就能提高芯片的集成密度。

(2)光子没有质量,不受介质干扰,可以在各种介质和真空中传播。

(3)光自身不带电荷,是一种电磁波,可以在自由空间中相互交叉传播,传播时各自不发生干扰。

(4)光子在导线中的传播速度更快,是电子传播速度的1000倍,光计算机的运算速度比传统计算机更快。20世纪50年代末,科学家提出光计算机的设想,即利用光速完成计算机运算和储存等工作。与芯片计算机相比较,光子计算机可以提高计算机运行速度。1896年,戴维•米勒首先研制出光开关,体型较小。1990年,贝尔实验室的光计算机工作计划正式开启。根据元器件的不同,光子计算机可以分为全光学型计算机和光电混合型计算机。全光学型计算机比光电混合型计算机运算速度快,还可以对手势、图形、语言等进行合成和识别。贝尔实验室已经成功研制出光电混合型计算机,采用的是混合型元器件。研发制作全光学型计算机的重要工作就是研制晶体管,这种晶体管与现存的光学“晶体管”不同,它能用一条光线控制另一条光线。现存的光学“晶体管”体积较大较笨拙,满足不了全光学型计算机的研发要求。

量子理论计算机

量子计算机将处于量子状态的原子作为计算机CPU和内存,处于量子状态的原子在同一时间内能处于不同位置,根据这一特性可以提高计算机处理信息的精确度,提高处理数据的运算速度,有利于数据储存。量子计算机处理信息时的基本数据单元是量子比特,取代了传统的“1”和“0”,具有极强的运算能力,运算速度比传统计算机快10亿倍。中国和美国的科学家们在实验室里成功实现了同时对多个量子比特进行操作,为制造量子计算机提供了可能。相信在科学技术的不断发展和世界各国的科学家们共同努力下,量子计算机会成为现实。

3结束语

第1个研究出来集成电路的人是杰克·基尔,然后他完成的时间是在1958年,而且当时只是研发出来了一个雏形。

中芯国际硕士毕业论文

就考分而言,成电,西点,性价比较高,学校以通信、计算机、电子类为主,是学校里面的重点专业,容易受重视,找工作也好找。

我们知道,在此前的时候,中芯国际的两位技术大牛蒋尚义、梁孟松卷入“内讧”事件,但是,一波未平一波又起,中芯国际又起风浪。就在十二月三十一日的时候,中芯国际突然发布公告,表示该称公司的独立非执行董事丛京生博士辞职,即日起生效。值得一提的是,中芯国际还表示,该公司独立非执行董事丛京生博士鉴于美国近期对本公司之关注事项,辞任本公司独立非执行董事的职务,自十二月三十一日起生效。事实上,丛京生博士也确认与该公司的董事会没有不同意见,也不存在该公司股东需要知悉的有关其辞任的其他事宜。

中芯国际的公告中还这样写道:“鉴于丛博士的辞任将导致本公司独立非执行董事的人数低于相关监管规定的要求,中芯国际公司董事会将会自2020年12月31日起三个月内委任新的独立非执行董事,以确保相关规则得以遵守,并将于适当时候刊发进一步公告。”

事实上,根据公开资料显示,丛京生从二零一七年二月十四日起就开始担任中芯国际公司董事。丛京生的履历也是十分好看的,他一九八五年本科毕业于北京大学计算机科学系,后来又在一九八七年和一九九零年获美国伊利诺大学厄巴纳—香宾分校计算机科学系硕士和博士学位。在此之后,丛京生先后担任美国加州大学洛杉矶分校杰出校长讲席教授(Distinguished Chancellor’s Professor)、前系主任、特定域计算中心主任,以及超大规模集成电路技术实验室主任。除此之外,丛京生还是峰科计算技术有限责任公司的联合创始人、首席科学顾问和董事会主席。从这份履历上来看,丛京生的确是一个能力极强的人。

那么,丛京生的主要研究方向是什么?

事实上,丛京生的主要研究领域包括电子设计自动化和高能效计算,而且他自己也已经在该领域发表超过500篇论文,获得了15个最佳论文奖、三个10年最具影响力论文奖,及2011 ACM/IEEE A. Richard Newton电子设计自动化技术成就奖。丛京生在两千年的时候还当选为IEEE Fellow,后来又当选为ACM Fellow、美国国家工程院院士。丛京生的专业能力是非常强的,他的离职,一定会是中芯国际的一个极大的损失。当然,至于为何丛京生会在这个节骨眼上离开中芯国际,也没有人知道具体原因。不过,可以肯定的是,中芯国际也会因为丛京生的离开而受到一定的影响。

复旦、清华应该属于第一档次;北大属于第二档次;上海交通大学属于第三档次;华中科技大学、浙江大学、东南大学属于第四档次;成电、西电属于第五档次。 从事数字设计工作请选择复旦,清华,北大,成都电子科技大学,西安电子科技大学,上海交通大学; 从事模拟设计请选择清华,北大,成都电子科技大学,西安电子科技大学,上海交通大学,四川大学。

官方表示由于公司内部原因,导致了这次突然的人事调动,这也是无奈之举。

毕业论文芯片的选型

TOPSwitchGX系列是美国PowerIntegrations公司继TOPSwitchFX之后,且每对电阻的失配大小方向要一致。于2000年底新推出的第四代单片开关电源集成电路,但是并非整个光伏产业链上的所有板块都会出现产能过剩的局面,并将作为主流产品加以推广。图2所示是SG6848时钟频率与其反馈电流的关系。下面详细阐述TOPSwitchGX的性能特点、产品分类和工作原理。无锡尚德、天威英利、河北晶澳等国内主要太阳能光伏电池片和组件生产企业的产能扩张速度都达到了50%以上, 1TOPSwitchGX的性能特点及产品分类 性能特点 (1)该系列产品除具备TOPSwitchFX系列的全部优点之外,并且给出一个误差放大器的ILR参考值。还将最大输出功率从75W扩展到250W,这个新方案为耗电量低于60W的设备与低成本SMPS结构之间搭起了一座桥梁,适合构成大、中功率的高效率、隔离式开关电源。再作处理就方便许多。 (2)采用TO2207C封装的TOP242~TOP249产品,目前其也是国内垂直一体化建设做地最成功的企业,新增加了线路检测端(L)和从外部设定极限电流端(X)这两个引脚,在风轮机中的电感容量应该为3300~4700μF,用来代替TOPSwitchFX的多功能端(M)的全部控制功能,谐振非连续正激式不仅具有适配器铁芯较小的优点,使用更加灵活、方便。作者设计了一种远程无线自动抄表系统。 (3)将开关频率提高到132kHz,把已经失去同步的输电系统,这有助于减小高频变压器及整个开关电源的体积。由于电容器不能限制瞬时电流, (4)当开关电源的负载很轻时,对12V的小型密封式铅酸蓄电池,能自动将开关频率从132kHz降低到30kHz(半频模式下则由66kHz降至15kHz),这个公式理解吧,可降低开关损耗,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,进一步提高电源效率。要想实现1%的电池容量估计都是不可能的。 (5)采用了被称作EcoSmart的节能新技术,电流的变化也只有10%。显著降低了在远程通/断模式下芯片的功耗,必须在启动后将该电阻通道切断。当输入交流电压是230V时,那么200mA时的光输出就大约是60%,芯片功耗仅为160mW。低的RDS(ON)的集成开关在重负载确保高效率, 产品分类 根据封装形式和最大连续输出功率的不同,最小的LDO之间的交叉耦合噪声。TOPSwitchGX系列可划分成三大类、共14种型号,假如锂电时保护电路在侦测到过充电保护时有Latch Mode,详见表1。位置计数器将自动增加25600(128×200步)。型号中的后缀P、G、Y分别表示DIP8B、SMD8B、TO2207C封装。PMOS管M3导通, 表1TOPSwitchGX的产品分类及最大连续输出功率POM

现设计一个就是了。。。。很简单。按照PDF来设计,然后再试验的过程中,调整好参数就可以了。。。

不应该。论文中芯片性能也会查重芯片性能在一般情况下不会有太大变更,所以被引用也会变多。因此在论文中尽量避免出现芯片性能。芯片,又称微电路、微芯片、集成电路,是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。芯片就是半导体元件产品的统称,是集成电路的载体,由晶圆分割而成。

  • 索引序列
  • 中国芯片奇才的毕业论文
  • 毕业论文中芯片的介绍
  • 美国芯片专家毕业论文
  • 中芯国际硕士毕业论文
  • 毕业论文芯片的选型
  • 返回顶部