首页 > 期刊投稿知识库 > 数学素养论文范文

数学素养论文范文

发布时间:

数学素养论文范文

在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用了“数学素养”一词,成为全国中学数学教师的热门话题之一。数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发展,就没有现代社会的物质文明和精神文明。数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操作、可测量、可评价。数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运用数学素养。4.唯物辩证素养。数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并发性。4.有用性。我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人所公认。根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括全部金牌,我们还拥有一批数学尖子。提高学生的数学素养,需从以下几方面努力:(一)面向全体学生。(二)突出基本的数学思想和数学方法。(三)抓住培养思维能力这一数学教学的核心。(四)注重运用数学。

渗透数学文化 提升数学素养是我为大家带来的论文范文,欢迎阅读。

【摘要】在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致灵性泯灭,创造性退化。

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

本文阐述分析了在数学课堂教学中如何进行数学文化的渗透,提升学生数学素养。

提出开设“数学文化”课,是提高大学生的数学素养的有效途径,并进一步具体阐述了“数学文化”课的特点、切入点。

【关键词】数学文化;数学素养;“数学文化”课

在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致创造性退化,灵性泯灭。

随着课程改革的深入人心,我也愈来愈清楚地看到这种狭隘、片面、简单的数学观给数学教育带来极大的负面影响。

首先,它遮蔽了数学的本来面目,扭曲了数学的本真形象,导致了数学教师不能全面、客观、深入地理解数学。

其次,狭隘的数学观导致偏激的数学教育观、课程观、教学观和评价观。

更有甚者它将导致学生形成扭曲、变形的数学信念。

经常听到学生在问老师离开学校后哪些数学知识能派上用场?经常感受到这样的情形:有些学生在努力学习数学的同时,却厌倦、厌烦着数学,而且随着数学知识的丰厚,厌倦程度也在加剧;一旦数学解题的任务完成后,数学教育的功能也就消失了。

这样的学习经历也给学生留下了太多的阴影,而且这一阴影将会一直伴随着他们的成长,甚至影响他们的人生态度。

认为数学就是演绎、计算,无法体验数学的历史性,无法领悟数学的人文性、文化性,无法领略数学的思想内涵和精神气质,更无法感受数学内在的美与和谐。

二十一世纪初,数学文化课程进入了课堂,让数学走进生活,让学生走进数学。

数学文化课程具有文理交融特色,是渗入人文教育与科学教育的一门课程,在改革中积累了很多成功的经验。

我们所需要的数学知识,相对来说是不多的,而数学的数学素养即研究精神、思想方法、思维训练,对每个人是绝对必要的。

因此不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法,研究方法,推理方法和着眼点等,却随时地发生作用,终身受益。

提高学生的数学素养,即提高了学生适应社会、参加生产和进一步学习所必须的数学基础知识和基本技能,这是时代的需要,也是学生实现自身价值的需要。

那么我们如何提高大学生的数学素养呢?本文将从“数学文化”这一角度切入进行讨论。

一、数学文化

“数学文化”一词,是20年前出现的。

它的专业说法是主动探寻并善于抓住数学问题的背景和本质的素养;熟练地用准确、简明、规范的数学语言表达自己数学思想的素养:具有良好的科学态度和创新精神,合理地提出新思想、新概念、新方法的素养:对各种问题以“数学方式”的理性思维,从多角度探讨解决问题的方法的素养:善于对现实的现象和过程进行合理的简化和景化,建立数学模型的素养。

数学与人类文明,与人类文化有着密切的关系。

所以,许多人为着某种需要更愿意从文化这一角度来关注数学,更愿意强调数学的文化价值。

事实上,数学是人类社会进步的产物,也是推动社会发展的动力之一。

目前关于“数学文化”一词,有狭义和广义的两种解释。

狭义的解释,是指数学的思想、精神、方法、观点、语言,以及它们的形成和发展;广义的`解释,则是除这些以外,还包含数学史、数学美、数学教育、数学与人文的交叉、数学与各种文化的关系。

数学的内容、思想、方法和语言是现代文明的重要组成部分。

数学在本质上是一种文化,是人类智慧的结晶。

其价值已渗透到人类社会的每一个角落。

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化。

数学文化具有其重要特征。

(1)数学文化是传播人类思想的一种重要方式。

数学作为一种文化植根于人类丰富思想的沃土之中,是人类智慧和创造的结晶。

古代数学在不同历史时期内的发展,同民族之间的数学交流都在很大程度上受到了文化传播的影响。

从古到今,数学对哲学、对艺术、对文学等学科的影响深远,中国历代数学家以及他们在数学上做出的丰功伟绩给文化传播带来重大影响。

殷代时,我国就使用十进位制和位值制;儒家经书《周易》中的八卦中包含有二进制的萌芽;天干、地支构成了中国的六十进位制;宋朝时杨辉著有《续古摘奇算法上卷》(1275年)内载有四阶、五阶、六阶、七阶等的当时称纵横图;举世闻名的杨辉三角;《周髀算经》和《九章》记载的勾股定理,比毕达哥拉斯要早500年;祖冲之计算的圆周率(称密率)比西方人要早千年。

刘徽的割圆术,为圆周率的计算打下理论基础;负数的应用以我国最早,东汉时期就已用赤筹表示正数、用黑筹表示负数;元代朱世杰的《算学启蒙》给出了正负数的乘除法则,还解释二次方程;《九章算术》中用“盈不足”的方法解二元一次联立方程;1600年前的《孙子算经》中还介绍了不定方程的求解方法,称之为“大衍求一术”;到了宋朝,周宓的书中称它为“鬼谷算”。

北宋的沈括、元朝的朱世杰、郭守敬以及后来清朝的李善兰等对“堆垛”(即高阶等差数列)都有建树。

中国现代数学家在哥德巴赫猜想的研究中作出了重要贡献。

潘承洞证明了(1+5),王元和潘承洞合作证明了(1+4),尤其是陈景润证明了(1+2),距离猜想的圆满解决仅一步之遥(当然,行百里者半九十,这最后一步必定是最为艰难的);华罗庚为了把数学用于生产实践,研究了优选法、0.618法等大众喜爱的应用数学,他对极值问题也有相当研究。

(2)数学语言的高度统一性。

语言是一个社会中最重要的符号体系,它在明确和传递主观意义上的能力比任何其他符号体系都要强。

数学语言源于人类自然语言,但随着数学抽象性和严密性的发展,逐步演变成相对独立的语言系统,数学语言符号化,精确化程度高,它能区别日常用语中引起的混乱与歧义。

同时数学语言又是简洁的,解析几何的创立者笛卡儿认为,代数使数学机械化了,因而使思考和运算步骤变得简单了。

数学文化中使用的数学语言具有绘画与音乐那种全球性,甚至有人猜测它可能具有超越地球文化的广度,由于数学语言系统在其发展过程中呈现出统一相一致的趋势,数学逐步成为一种世界语言。

这一特性能使数学文化超越某些文化的局限性,达到广泛和直接传播的效果。

(3)数学对象的逻辑建构性。

数学对象是抽象思维的产物,它并非物质世界中的真实存在。

因此,从这个意义上说,数学就是一种文化。

但数学对象相对于认识主体来说,它又具有明显的客观独立性。

这种独立性来自于数学抽象。

在严格的数学研究中,只能依据相应的定义进行演绎,而不能求助于直观。

因此,相对于可能的现实原型而言,数学对象是借助于明确的定义“逻辑有”得到建构的。

(4)数学文化具有相对稳定性和独立性。

数学是一种活动,数学活动是一个多元活动的复合体,它既包括数学知识,也包括数学传统。

作为数学文化,在现代社会中,数学家显然构成了一个特殊的群体,并具有相对稳定的数学传统。

数学在历史发展过程中,存在着数学传统的巨大变革,在对象层次上则表现出了明显的连续性,先前理论常常在新的形式下得到保存。

因此数学传统的不断变革与数学知识的连续性辩证统一。

由于数学文化是一种延续的积极的不断进步的整体。

因而其基本成分在某一特定时期内具有相对不变的意义。

数学有其特殊的价值标准和发展规律,相对于整个文化环境而言,数学文化的发展具有一定的独立性。

(5)数学文化具有高度的渗透性和无限的发展可能性。

数学文化的渗透性其内在方式表现在数学的理性精神对人类思维的深刻渗透力。

数学中每一次重大的发现都给予人类思想丰富的启迪。

如非欧几何改变了长期以来人们关于欧氏几何来

自于人类先验综合判断的固有观念。

其外显方式表现为数学应用范围的日益扩大。

特别是计算机和信息科学给数学的概念和方法注入了新的活力以来,开辟了许多新的研究和应用领域。

数学文化发展的无限性体现在尽管有些数学家不时地宣称他们的课题已经近乎“彻底解决了”,所有的基本结果都已得到,但事实正好相反,数学问题的解决只具有相对的意义。

由于上述特征,可知数学文化是一个开放的系统。

数学最初是作为人类文化的一部分而发展的。

随着数学本身和整个人类文明的进步,数学又表现出了相对独立性,具有自己的特殊发展规律,它的发展在很大程度上是由其内部因素所决定的。

因此,我们可以把数学看成是一个相对独立的文化系统。

二、数学文化在大学数学教育中的重要性

数学在当今社会的影响和作用比任何时期都大,因此数学教育在大学教育中的地位也越来越重要了。

已不再只是理工科学生的专利了,所有的学生也需要学习数学。

虽然不同专业学生需掌握的数学知识不尽相同,但大学数学教育的根本目的都是提高学生的数学素养,以数学知识为载体,展示数学的思想、方法,培养学生的理性思维、理性精神。

数学文化将数学置于人类的文化系统中,使大学生认识到数学的形成和发展不是单纯的数学知识、技巧的堆砌和逻辑的推导,数学的每一个重大的发现,往往伴随科学认识的突破。

同时也使大学生了解到数学对社会发展的作用、对人类进步的影响,了解到数学在科学思想体系中的地位、数学与其它学科的关系。

认识到数学是一个有机关联的、生动鲜活的、具有探索性知识特征的科学与文化形象,而不是一个固定不变的、僵化教条的、彼此分割的知识条块和记忆库。

这有利于学生了解知识的源和流,使他们对数学有一个横向和纵向的穿透,从而认识数学的本质,促进大学数学的学与教。

因此,通过开设数学文化课对提高学生的数学素养有及其重要的实际意义。

数学家对真、善、美的追求与献身精神,不畏艰难、勇于探索的精神,使学生不仅看到严谨丰富的数学,也看到活生生的数学家,数学活动中质疑、批判与创新的精神,求真、务实与合作的精神,都饱含着丰富的人文精神。

数学研究中理性的思维方式、处理问题时全面系统的方法、理论与实践相结合的科学精神,都与人文精神相辅相成。

这种科学精神与人文精神的融合,在对学生人格养成、精神教化上是不可或缺的。

在提高学生数学素养的同时,也提高了学生的文化素养和思想素养。

因此,数学文化是大学数学教育的非常重要组成部分。

三、开设“数学文化”课,有效提高大学生的数学素养

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

数学课堂应从多侧面多视角展现数学文化的魅力,用数学的精神思想提升学生的文化素养,从科学的数学走向文化的数学。

(一)探索数学问题,感悟数学文化

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

是人文教育和科学教育的相互渗透。

我们有责任让数学教育充满文化和生活气息。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化,感悟数学文化。

从数学问题的角度切入,比如:1、兔子问题与黄金分割;2、芝诺悖论与无限;3、海岸线的长度与分开和混纯;4、投票选举的合理性与代表的名额分配问题;5、五次方程根式解与近世代数;6、费马大定理与“会下金蛋的母鸡”,7、希尔伯特23个问题;8、新千年克雷问题等等。

在教学中通过问题的探讨,展现数学自身发展规律和和谐之美。

学生注重实质、注重理解,追求“悟”的境界。

(二)搜集数学故事,感受数学家的科学精神

在教学中注重体现数学文化的价值,渗透数学文化历史,让学生体验数学知识的产生、发展,以生动有趣、易于阅读的形式,向学生介绍一些有关数学家的故事、数学发现、数学史的知识等等。

这样既可以发展学生对数学学习的整体认知,又能激发学生的学习兴趣,还可以让学生领会数学与人类生活经验和实际需要的联系,领会数学发展的历史和伟大成就,体验数学文化的底蕴。

从数学典故的角度切入,比如:1、历史上的三次数学危机;2、《周髀算经》与勾股定理;3、蒲丰投针的故事;4、从日心说到地心说,再到开普勒三定律;5、一百多年来的国际数学大会,1900年希尔伯特关于23个问题的演讲,七十多年来的菲尔兹奖;6、韩信点兵的故事与中国剩余定理;7、非欧几何的由来和发展;8、关于“数学基础”的逻辑主义、直觉主义、形式主义三大流派。

比如介绍数学家的名言和故事,让祖冲之、陈景润、华罗庚、高斯、笛卡儿等数学大师成为同学们经常讨论和崇拜的人物,从而让学生们能对数学有更深的领悟。

学生们了解到数学家解决数学问题的艰辛历程后,对他们那种废寝忘食、孜孜不倦的态度;屡遭失败、永不放弃的精神受到极大地鼓舞。

通过这些数学家故事的学习,拉近了学生与成功人士之间的情感距离,给学生树立了学习榜样,确立了奋斗目标。

总之,数学文化离不开数学史,但是不能仅限于数学史。

通过数学的历史,学科结构、趣味问题等来探讨学习数学的意义。

当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

(三)欣赏数学名题,培养数学思想方法

观看数学电影,比如“黑梦帝国“、盗梦空间”等,欣赏数学名题,培养数学思想方法,运用数学化处理方法解决现实问题能力。

数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。

从数学方法的角度切入,化归的方法;变换的方法;类比的方法;归纳的方法;合情推理的方法;反证法;数形结合方法;抽样调查;分类方法;观察法等等。

从数学观点的角度切入:近似观点;抽象观点;一一对应观点;对称观点;多样性和统一性观点;“变中有不变”的观点;偶然性与必然性的观点;运算与结构;博弈的观点;关系、等价关系、序关系、相关关系、比例关系、函数关系等等。

从数学思想的角度切入,比如:符号与变元表示的思想;集合思想;对应思想;公理化与结构思想;数形结合思想;化归思想;函数与方程的思想;整体思想;极限思想;抽样统计思想;命题需要证明;证明依靠逻辑;量化思想;数学建模思想;最优化思想;数学机械化;数据处理与数学统计;数学审美思想;分解思想;归纳思想;演绎思想等。

数学中渗透着数学思想,它们是基础知识的灵魂,如果能使它们落实到我们学习和应用数学中去,那么我们得到的是很多的。

(四)联系实际,体现数学价值

数学文化的意义不仅在于知识本身和它的内涵,还在于它的应用价值。

因此,在教学中应该加强数学与实际生活的联系,增强数学的应用性,让学生体验到数学文化的价值就在于生活的各个领域中都要用到数学。

数学对于学生来说,往往是他们生活经验中对数学现象的一种“解读”。

如果在教学中能够密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。

在这样的数学课堂中,学生体会到了数学文化是一种生命延续的文化。

一般地说,数学教育提供了一种有力的工具---实用价值;提供了一种思维的方式和方法---形式训练的价值;提供了一种价值观---文化价值;倡导一种精神---集中地表现为数学观念在人的观念以及社会的观念的形成和发展中的作用。

数学发展到今天,我们要让学生认识到数学的博大精深、数学的价值文化、数学的巨大作用以及数学的内在魅力,这样才能使学生真正体会到数学的有趣、促思,认识到数学的广阔、博大和数学的底蕴、价值,去真正的热爱它,让我们的学生对数学产生深深的眷恋之情。

伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。

参考文献:

[1]顾沛.数学文化[M].南开大学出版社,2011.

[2]邓东皋、孙小礼等.数学与文化[M].北京大学出版社,1990.

[3]齐民友.数学与文化[M].大连理工大学出版社,2008.

[4]方延明.数学文化导论[M].南京大学出版社,1999.

[5]张楚廷.数学文化[M].高等教育出版社,2000.

[6]张顺燕.数学的源与流[M].高等教育出版社,2004.

[7]郑毓信.数学文化学[M].四川教育出版社,2000.

[8]黄秦安.数学哲学与数学文化[M].陕西师范大学出版社,1999.

[9]王宪昌.数学与人类文明[M].延边大学出版社,1990.

[10]王元明.数学是什么[M].东南大学出版社,2003.

数学素养教育论文范文

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德(R.wilder)的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

渗透数学文化 提升数学素养是我为大家带来的论文范文,欢迎阅读。

【摘要】在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致灵性泯灭,创造性退化。

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

本文阐述分析了在数学课堂教学中如何进行数学文化的渗透,提升学生数学素养。

提出开设“数学文化”课,是提高大学生的数学素养的有效途径,并进一步具体阐述了“数学文化”课的特点、切入点。

【关键词】数学文化;数学素养;“数学文化”课

在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致创造性退化,灵性泯灭。

随着课程改革的深入人心,我也愈来愈清楚地看到这种狭隘、片面、简单的数学观给数学教育带来极大的负面影响。

首先,它遮蔽了数学的本来面目,扭曲了数学的本真形象,导致了数学教师不能全面、客观、深入地理解数学。

其次,狭隘的数学观导致偏激的数学教育观、课程观、教学观和评价观。

更有甚者它将导致学生形成扭曲、变形的数学信念。

经常听到学生在问老师离开学校后哪些数学知识能派上用场?经常感受到这样的情形:有些学生在努力学习数学的同时,却厌倦、厌烦着数学,而且随着数学知识的丰厚,厌倦程度也在加剧;一旦数学解题的任务完成后,数学教育的功能也就消失了。

这样的学习经历也给学生留下了太多的阴影,而且这一阴影将会一直伴随着他们的成长,甚至影响他们的人生态度。

认为数学就是演绎、计算,无法体验数学的历史性,无法领悟数学的人文性、文化性,无法领略数学的思想内涵和精神气质,更无法感受数学内在的美与和谐。

二十一世纪初,数学文化课程进入了课堂,让数学走进生活,让学生走进数学。

数学文化课程具有文理交融特色,是渗入人文教育与科学教育的一门课程,在改革中积累了很多成功的经验。

我们所需要的数学知识,相对来说是不多的,而数学的数学素养即研究精神、思想方法、思维训练,对每个人是绝对必要的。

因此不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法,研究方法,推理方法和着眼点等,却随时地发生作用,终身受益。

提高学生的数学素养,即提高了学生适应社会、参加生产和进一步学习所必须的数学基础知识和基本技能,这是时代的需要,也是学生实现自身价值的需要。

那么我们如何提高大学生的数学素养呢?本文将从“数学文化”这一角度切入进行讨论。

一、数学文化

“数学文化”一词,是20年前出现的。

它的专业说法是主动探寻并善于抓住数学问题的背景和本质的素养;熟练地用准确、简明、规范的数学语言表达自己数学思想的素养:具有良好的科学态度和创新精神,合理地提出新思想、新概念、新方法的素养:对各种问题以“数学方式”的理性思维,从多角度探讨解决问题的方法的素养:善于对现实的现象和过程进行合理的简化和景化,建立数学模型的素养。

数学与人类文明,与人类文化有着密切的关系。

所以,许多人为着某种需要更愿意从文化这一角度来关注数学,更愿意强调数学的文化价值。

事实上,数学是人类社会进步的产物,也是推动社会发展的动力之一。

目前关于“数学文化”一词,有狭义和广义的两种解释。

狭义的解释,是指数学的思想、精神、方法、观点、语言,以及它们的形成和发展;广义的`解释,则是除这些以外,还包含数学史、数学美、数学教育、数学与人文的交叉、数学与各种文化的关系。

数学的内容、思想、方法和语言是现代文明的重要组成部分。

数学在本质上是一种文化,是人类智慧的结晶。

其价值已渗透到人类社会的每一个角落。

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化。

数学文化具有其重要特征。

(1)数学文化是传播人类思想的一种重要方式。

数学作为一种文化植根于人类丰富思想的沃土之中,是人类智慧和创造的结晶。

古代数学在不同历史时期内的发展,同民族之间的数学交流都在很大程度上受到了文化传播的影响。

从古到今,数学对哲学、对艺术、对文学等学科的影响深远,中国历代数学家以及他们在数学上做出的丰功伟绩给文化传播带来重大影响。

殷代时,我国就使用十进位制和位值制;儒家经书《周易》中的八卦中包含有二进制的萌芽;天干、地支构成了中国的六十进位制;宋朝时杨辉著有《续古摘奇算法上卷》(1275年)内载有四阶、五阶、六阶、七阶等的当时称纵横图;举世闻名的杨辉三角;《周髀算经》和《九章》记载的勾股定理,比毕达哥拉斯要早500年;祖冲之计算的圆周率(称密率)比西方人要早千年。

刘徽的割圆术,为圆周率的计算打下理论基础;负数的应用以我国最早,东汉时期就已用赤筹表示正数、用黑筹表示负数;元代朱世杰的《算学启蒙》给出了正负数的乘除法则,还解释二次方程;《九章算术》中用“盈不足”的方法解二元一次联立方程;1600年前的《孙子算经》中还介绍了不定方程的求解方法,称之为“大衍求一术”;到了宋朝,周宓的书中称它为“鬼谷算”。

北宋的沈括、元朝的朱世杰、郭守敬以及后来清朝的李善兰等对“堆垛”(即高阶等差数列)都有建树。

中国现代数学家在哥德巴赫猜想的研究中作出了重要贡献。

潘承洞证明了(1+5),王元和潘承洞合作证明了(1+4),尤其是陈景润证明了(1+2),距离猜想的圆满解决仅一步之遥(当然,行百里者半九十,这最后一步必定是最为艰难的);华罗庚为了把数学用于生产实践,研究了优选法、0.618法等大众喜爱的应用数学,他对极值问题也有相当研究。

(2)数学语言的高度统一性。

语言是一个社会中最重要的符号体系,它在明确和传递主观意义上的能力比任何其他符号体系都要强。

数学语言源于人类自然语言,但随着数学抽象性和严密性的发展,逐步演变成相对独立的语言系统,数学语言符号化,精确化程度高,它能区别日常用语中引起的混乱与歧义。

同时数学语言又是简洁的,解析几何的创立者笛卡儿认为,代数使数学机械化了,因而使思考和运算步骤变得简单了。

数学文化中使用的数学语言具有绘画与音乐那种全球性,甚至有人猜测它可能具有超越地球文化的广度,由于数学语言系统在其发展过程中呈现出统一相一致的趋势,数学逐步成为一种世界语言。

这一特性能使数学文化超越某些文化的局限性,达到广泛和直接传播的效果。

(3)数学对象的逻辑建构性。

数学对象是抽象思维的产物,它并非物质世界中的真实存在。

因此,从这个意义上说,数学就是一种文化。

但数学对象相对于认识主体来说,它又具有明显的客观独立性。

这种独立性来自于数学抽象。

在严格的数学研究中,只能依据相应的定义进行演绎,而不能求助于直观。

因此,相对于可能的现实原型而言,数学对象是借助于明确的定义“逻辑有”得到建构的。

(4)数学文化具有相对稳定性和独立性。

数学是一种活动,数学活动是一个多元活动的复合体,它既包括数学知识,也包括数学传统。

作为数学文化,在现代社会中,数学家显然构成了一个特殊的群体,并具有相对稳定的数学传统。

数学在历史发展过程中,存在着数学传统的巨大变革,在对象层次上则表现出了明显的连续性,先前理论常常在新的形式下得到保存。

因此数学传统的不断变革与数学知识的连续性辩证统一。

由于数学文化是一种延续的积极的不断进步的整体。

因而其基本成分在某一特定时期内具有相对不变的意义。

数学有其特殊的价值标准和发展规律,相对于整个文化环境而言,数学文化的发展具有一定的独立性。

(5)数学文化具有高度的渗透性和无限的发展可能性。

数学文化的渗透性其内在方式表现在数学的理性精神对人类思维的深刻渗透力。

数学中每一次重大的发现都给予人类思想丰富的启迪。

如非欧几何改变了长期以来人们关于欧氏几何来

自于人类先验综合判断的固有观念。

其外显方式表现为数学应用范围的日益扩大。

特别是计算机和信息科学给数学的概念和方法注入了新的活力以来,开辟了许多新的研究和应用领域。

数学文化发展的无限性体现在尽管有些数学家不时地宣称他们的课题已经近乎“彻底解决了”,所有的基本结果都已得到,但事实正好相反,数学问题的解决只具有相对的意义。

由于上述特征,可知数学文化是一个开放的系统。

数学最初是作为人类文化的一部分而发展的。

随着数学本身和整个人类文明的进步,数学又表现出了相对独立性,具有自己的特殊发展规律,它的发展在很大程度上是由其内部因素所决定的。

因此,我们可以把数学看成是一个相对独立的文化系统。

二、数学文化在大学数学教育中的重要性

数学在当今社会的影响和作用比任何时期都大,因此数学教育在大学教育中的地位也越来越重要了。

已不再只是理工科学生的专利了,所有的学生也需要学习数学。

虽然不同专业学生需掌握的数学知识不尽相同,但大学数学教育的根本目的都是提高学生的数学素养,以数学知识为载体,展示数学的思想、方法,培养学生的理性思维、理性精神。

数学文化将数学置于人类的文化系统中,使大学生认识到数学的形成和发展不是单纯的数学知识、技巧的堆砌和逻辑的推导,数学的每一个重大的发现,往往伴随科学认识的突破。

同时也使大学生了解到数学对社会发展的作用、对人类进步的影响,了解到数学在科学思想体系中的地位、数学与其它学科的关系。

认识到数学是一个有机关联的、生动鲜活的、具有探索性知识特征的科学与文化形象,而不是一个固定不变的、僵化教条的、彼此分割的知识条块和记忆库。

这有利于学生了解知识的源和流,使他们对数学有一个横向和纵向的穿透,从而认识数学的本质,促进大学数学的学与教。

因此,通过开设数学文化课对提高学生的数学素养有及其重要的实际意义。

数学家对真、善、美的追求与献身精神,不畏艰难、勇于探索的精神,使学生不仅看到严谨丰富的数学,也看到活生生的数学家,数学活动中质疑、批判与创新的精神,求真、务实与合作的精神,都饱含着丰富的人文精神。

数学研究中理性的思维方式、处理问题时全面系统的方法、理论与实践相结合的科学精神,都与人文精神相辅相成。

这种科学精神与人文精神的融合,在对学生人格养成、精神教化上是不可或缺的。

在提高学生数学素养的同时,也提高了学生的文化素养和思想素养。

因此,数学文化是大学数学教育的非常重要组成部分。

三、开设“数学文化”课,有效提高大学生的数学素养

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

数学课堂应从多侧面多视角展现数学文化的魅力,用数学的精神思想提升学生的文化素养,从科学的数学走向文化的数学。

(一)探索数学问题,感悟数学文化

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

是人文教育和科学教育的相互渗透。

我们有责任让数学教育充满文化和生活气息。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化,感悟数学文化。

从数学问题的角度切入,比如:1、兔子问题与黄金分割;2、芝诺悖论与无限;3、海岸线的长度与分开和混纯;4、投票选举的合理性与代表的名额分配问题;5、五次方程根式解与近世代数;6、费马大定理与“会下金蛋的母鸡”,7、希尔伯特23个问题;8、新千年克雷问题等等。

在教学中通过问题的探讨,展现数学自身发展规律和和谐之美。

学生注重实质、注重理解,追求“悟”的境界。

(二)搜集数学故事,感受数学家的科学精神

在教学中注重体现数学文化的价值,渗透数学文化历史,让学生体验数学知识的产生、发展,以生动有趣、易于阅读的形式,向学生介绍一些有关数学家的故事、数学发现、数学史的知识等等。

这样既可以发展学生对数学学习的整体认知,又能激发学生的学习兴趣,还可以让学生领会数学与人类生活经验和实际需要的联系,领会数学发展的历史和伟大成就,体验数学文化的底蕴。

从数学典故的角度切入,比如:1、历史上的三次数学危机;2、《周髀算经》与勾股定理;3、蒲丰投针的故事;4、从日心说到地心说,再到开普勒三定律;5、一百多年来的国际数学大会,1900年希尔伯特关于23个问题的演讲,七十多年来的菲尔兹奖;6、韩信点兵的故事与中国剩余定理;7、非欧几何的由来和发展;8、关于“数学基础”的逻辑主义、直觉主义、形式主义三大流派。

比如介绍数学家的名言和故事,让祖冲之、陈景润、华罗庚、高斯、笛卡儿等数学大师成为同学们经常讨论和崇拜的人物,从而让学生们能对数学有更深的领悟。

学生们了解到数学家解决数学问题的艰辛历程后,对他们那种废寝忘食、孜孜不倦的态度;屡遭失败、永不放弃的精神受到极大地鼓舞。

通过这些数学家故事的学习,拉近了学生与成功人士之间的情感距离,给学生树立了学习榜样,确立了奋斗目标。

总之,数学文化离不开数学史,但是不能仅限于数学史。

通过数学的历史,学科结构、趣味问题等来探讨学习数学的意义。

当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

(三)欣赏数学名题,培养数学思想方法

观看数学电影,比如“黑梦帝国“、盗梦空间”等,欣赏数学名题,培养数学思想方法,运用数学化处理方法解决现实问题能力。

数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。

从数学方法的角度切入,化归的方法;变换的方法;类比的方法;归纳的方法;合情推理的方法;反证法;数形结合方法;抽样调查;分类方法;观察法等等。

从数学观点的角度切入:近似观点;抽象观点;一一对应观点;对称观点;多样性和统一性观点;“变中有不变”的观点;偶然性与必然性的观点;运算与结构;博弈的观点;关系、等价关系、序关系、相关关系、比例关系、函数关系等等。

从数学思想的角度切入,比如:符号与变元表示的思想;集合思想;对应思想;公理化与结构思想;数形结合思想;化归思想;函数与方程的思想;整体思想;极限思想;抽样统计思想;命题需要证明;证明依靠逻辑;量化思想;数学建模思想;最优化思想;数学机械化;数据处理与数学统计;数学审美思想;分解思想;归纳思想;演绎思想等。

数学中渗透着数学思想,它们是基础知识的灵魂,如果能使它们落实到我们学习和应用数学中去,那么我们得到的是很多的。

(四)联系实际,体现数学价值

数学文化的意义不仅在于知识本身和它的内涵,还在于它的应用价值。

因此,在教学中应该加强数学与实际生活的联系,增强数学的应用性,让学生体验到数学文化的价值就在于生活的各个领域中都要用到数学。

数学对于学生来说,往往是他们生活经验中对数学现象的一种“解读”。

如果在教学中能够密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。

在这样的数学课堂中,学生体会到了数学文化是一种生命延续的文化。

一般地说,数学教育提供了一种有力的工具---实用价值;提供了一种思维的方式和方法---形式训练的价值;提供了一种价值观---文化价值;倡导一种精神---集中地表现为数学观念在人的观念以及社会的观念的形成和发展中的作用。

数学发展到今天,我们要让学生认识到数学的博大精深、数学的价值文化、数学的巨大作用以及数学的内在魅力,这样才能使学生真正体会到数学的有趣、促思,认识到数学的广阔、博大和数学的底蕴、价值,去真正的热爱它,让我们的学生对数学产生深深的眷恋之情。

伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。

参考文献:

[1]顾沛.数学文化[M].南开大学出版社,2011.

[2]邓东皋、孙小礼等.数学与文化[M].北京大学出版社,1990.

[3]齐民友.数学与文化[M].大连理工大学出版社,2008.

[4]方延明.数学文化导论[M].南京大学出版社,1999.

[5]张楚廷.数学文化[M].高等教育出版社,2000.

[6]张顺燕.数学的源与流[M].高等教育出版社,2004.

[7]郑毓信.数学文化学[M].四川教育出版社,2000.

[8]黄秦安.数学哲学与数学文化[M].陕西师范大学出版社,1999.

[9]王宪昌.数学与人类文明[M].延边大学出版社,1990.

[10]王元明.数学是什么[M].东南大学出版社,2003.

数学核心素养的养成论文题目

一、主动发现问题,抓住问题本质,渗透核心素养“不会提问题的学生不是一个好学生。”学生能够独立思考,也有提出问题的能力。无论学生提什么样的问题,不管学生提的问题是否有价值,只要是学生自己真实的想法,教师都应该给予充分的肯定,然后对问题采取有效的方法进行引导和解决。对于有创新意识的问题和见解,不仅要给予鼓励,而且要表扬学生能够善于发现问题并提出问题进而引导大家一起去深层次地思考交流。例如:教学《加法交换律》,这节课主要是探究和发现规律,在探索新知的环节,采用竞赛的形式进行教学。在讲清竞赛的内容和规则后出示题目:25+48、48+25、68+27、27+68…..两小组轮流答题,答到第4题时,先答题的小组的同学马上提出了问题:“老师,其他组的同学做的是我们小组做过的题目,不公平!”这时老师问:“为什么不公平,你来说说。”接着学生就顺其自然地说到问题的本质:“虽然加数的位置相反,但是加数是相同的,所以结果也是相同的。”通过让学生主动发现问题,提出问题抓住本质,进一步让学生明确加法交换律的内涵。又如:“生活中的比”,导入时提出问题:你在生活中有遇到哪些比?从学生的回答中可以将“糖水中的糖和水的比”与“篮球比赛中的比“提出来,并问“这两个比相同吗?如果不同,不同之处在哪里?”学生通过交流和讨论给出了不同的想法:比赛中的比主要是要比大小比输赢,而糖水中糖和水的比虽然也有可能发生变化但是更注重糖和水之间的关系。从而抓住问题的本质,突破难点。二、具有创新精神,合理提出猜想,渗透核心素养杜威曾说:“科学的每一项巨大成就,都是以大胆的幻想为出发点的。”对数学问题的猜想,实际是一种数学想象,是一种创新精神的体现。在数学教学中,要鼓励学生大胆提出猜想,创新地学习数学。让学生经历观察、实验、猜想、证明等数学活动,分享自己的想法,锻炼自己的数学思维。例如:《圆的周长》,在探究圆的周长和什么有关的环节中,先引导学生提出猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?接着结合学生的回答,演示三个大小不同的圆,滚动一周。并让学生指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?最后总结:圆的直径的长短,决定了圆周长的长短。又如:在教学“3的倍数特征”时,大部分学生受前面学习的2和5的倍数的特征的影响,会有个位是3的倍数的数的猜想。这时,教师出示一些数据引导学生进行观察和验证。第1列中“73、86、193、199、163、419、763、176、599”中 9个数的个位都是3的倍数,它们能否被3整除?通过验证,学生发现先前的猜想是错误的,于是就会产生疑惑,并有了探求新知的欲望。这时教师利用错误,引导学生观察第2列数“9、21、105、237、27、78、42、591、843、534”。第二列的数能否被3整除?再观察观察,你想到什么?接着指出:看来一个数能否被3整除不能只看个位,也与数的排列顺序无关,那么,究竟与什么有关,具有什么特征呢?在教师的启发下,学生又能重新作出如下猜想:1、可能与各位数的乘积有关2、可能与各位数的差有关3、可能与各位数的和有关等等这些猜想,这时教师放手让学生自探主究验证,将大错化小错,小错化了。三、进行合理提炼, 建立数学模型,渗透核心素养数学模型是数学学习中不可或缺的,不仅可以为数学的语言表达和交流提供桥梁,而且是解决现实问题的重要工具。在数学学习中可以帮助学生理解数学学习的意义并解决问题。例如:在教学“平行四边形的面积”时,在构建面积公式这个数学模型时,首先应用数格子的方法来探究图形面积的一种简单方,学生能够轻松地理解。在这个过程中学生对这长方形和平行四边形相对应的量进行分析,并初步得出:当长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高时,这两个的图形的面积相等。于是猜想平行四边形的面积可能等于底乘高。接着提出如果要去测量现实生活中一块很大的平行四边形的田地,你认为数格子的方法合适吗?从而引导学生把平行四边形转化成长方形进行计算。又如:教学“加法交换律”时,当学生已经初步感知规律后,教师提问:你能用自己喜欢的方式表示加法交换律吗?学生纷纷用自己喜欢的符号来表示,并重点提出a+b=b+a这种形式,引导学生讨论a和b可以是哪些数,这样不仅关注学生了运算定律的形式化表达,还培养了学生的抽象能力和模型思想。四、运用数学知识,解决实际问题,渗透核心素养学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,数学问题就产生在生活中。所以课堂教学中应加强数学知识与生活-实践的联系。例如:“估算”,估算在日常生活中是一种常见的计算方法,许多问题有的只需要得到大致的结果,有的很难算出准确的数据,这就需要用估算的方法来帮我们解决问题。因此增强学生的估算意识,掌握一些简单的估算方法,对于学生去解决日常生活中实际的问题,以及培养他们的数感及数学应用意识都有着积极意义。比如估算到超市买东西大概需要带多少钱?估算一个房间的面积大约有多少?估计一个操场大约可以容纳多少人?……学生估算意识和能力的形成需要需要教师平时课堂教学中坚持不懈的潜移默化,这样学生才能将估算内化,学生的估算能力也才能真正的提高。又如:“欣赏与设计”这一课,从学生的已有的知识基础出发,让学生感受到对称图案的美,并体验到复杂美丽的图案其实可以用一个简单图形经过平移、旋转或对称得到。在欣赏了各种漂亮图案的基础上让学生自己设计,学生创造出的图形丰富多彩,让学生感受到我们的现实生活和数学离不开,数学给我们带来了美的感受。

学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究

作者:唐家三公主链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

关于数学核心素养论文范文资料

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用了“数学素养”一词,成为全国中学数学教师的热门话题之一。数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发展,就没有现代社会的物质文明和精神文明。数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操作、可测量、可评价。数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运用数学素养。4.唯物辩证素养。数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并发性。4.有用性。我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人所公认。根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括全部金牌,我们还拥有一批数学尖子。提高学生的数学素养,需从以下几方面努力:(一)面向全体学生。(二)突出基本的数学思想和数学方法。(三)抓住培养思维能力这一数学教学的核心。(四)注重运用数学。

高中数学论文核心素养

数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。

第一,数学学科教学活动是数学学科素养培养的主要途径。数学核心素养的六个方面在小学、初中、高中、本专科、研究生教育等五个阶段的内涵、学科价值和教育价值、表现等方面的要求各不相同,要仔细推敲,准确把握,切实贯穿到学科教学活动中去。

第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。由于研究性学习属于综合课程,所以必然包含数学学科的相关知识内容,又由于其实践活动课程的特点,对数学建模、数学抽象、数学推理等方面都有较高的要求。

第三,青少年科技创新活动是数学学科素养培养的很好途径。全国青少年科技创新大赛是一项具有20多年历史的全国性青少年科技创新成果和科学探究项目的综合性科技竞赛,是面向在校中小学生开展的具有示范性和导向性的科技教育活动之一,是目前我国中小学各类科技活动优秀成果集中展示的一种形式。

扩展资料:

数学素养就是指学生在学习了一定的知识、掌握了充分的方法和解决问题的能力,并且能够加以熟练的运用,在实际生活中如果遇到了需要解决的问题,学生能够以数学的角度来思考转化问题,然后通过数学方法分析解决问题,培养这种积极处理问题的习惯和品质。

数学素养的定位始终由数学在成人社会中的表现所决定,包括我国数学素养中“适应个人终身发展”的提法,其唯一的指向是公民,是成人。

参考资料来源:学科网-普通高中数学学科核心素养

参考资料来源:百度百科-数学素养

根据《普通高中数学课程标准(2017年版)》,四基、四能、三会、六素养包含的内容如下:四基:基础知识,基本技能,基本思想,基本活动经验四能:发现问题的能力、提出问题的能力、分析问题的能力、解决问题的能力 三会:会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界六素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析

前几篇评论的都是抄袭原文,无聊至极

各学科核心素养的内容和要求既相互区别又相互联系,不能截然分开。就数学学科而言,研究表明,数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。第一,数学学科教学活动是数学学科素养培养的主要途径。数学核心素养的六个方面在小学、初中、高中、本专科、研究生教育等五个阶段的内涵、学科价值和教育价值、表现等方面的要求各不相同,要仔细推敲,准确把握,切实贯穿到学科教学活动中去。第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。由于研究性学习属于综合课程,所以必然包含数学学科的相关知识内容,又由于其实践活动课程的特点,对数学建模、数学抽象、数学推理等方面都有较高的要求。第三,青少年科技创新活动是数学学科素养培养的很好途径。全国青少年科技创新大赛是一项具有20多年历史的全国性青少年科技创新成果和科学探究项目的综合性科技竞赛,是面向在校中小学生开展的具有示范性和导向性的科技教育活动之一,是目前我国中小学各类科技活动优秀成果集中展示的一种形式。大赛竞赛项目分为数学、物理学、化学、微生物学等13个研究领域,具有科学性、先进性、实用性的特点。在活动中培养和提高相关的数学学科素养,可以起到单纯的学科教学难以起到的作用。第四,通用技术课程也是数学学科素养培养的有效途径。通用技术课程立足实践,注重创造,高度综合,融科学与人文于一体,课程学习与实践中,必然涉及相关的数学核心素养,与其它素养相辅相成,使学生的身心素质得到全面健康的发展。

  • 索引序列
  • 数学素养论文范文
  • 数学素养教育论文范文
  • 数学核心素养的养成论文题目
  • 关于数学核心素养论文范文资料
  • 高中数学论文核心素养
  • 返回顶部