首页 > 论文发表知识库 > 初二数学问题小论文

初二数学问题小论文

发布时间:

初二数学问题小论文

晕,我们老师也让写,我写完了但怎么看都像作文!

如何学写数学小论文“ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。(1) 写什么写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如:一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如:分式“家族”中的亲缘探究如:纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如:“没有条件”的推理如:小议“黄金分割”如:奇妙的正五角星(2) 怎样写① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。例子:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

同学们,你们想不想很快地判断出一个数能否被4、7、9、11、13等数整除?在学习了被2、3、5整除的数的特征后,我和同学们在课余时间摸索出了能被其他一些数整除的数的特征,总结如下,希望对同学们的学习有所帮助。 1、能被9整除的数的特征。一个数各个数位上的数字之和能被9整除,这个数就能被9整除。如29736,因为2+9+7+3+6=27,27能被9整除,所以29736也能被9整除,即: 29736÷9=3304。 2、能被4、25整除的数的特征。一个数的末两位的数能被4或25整除,这个数就能被4或25整除。例如:13120,末两位的数是20,20能被4整除,13120也能被4整除,即 13120÷4=3280。又如,4775,末两位的数是75,75能被25整除,4775也能被25整除,即 4775÷25=191。 3、能被8、125整除的数的特征。一个数的末三位的数能被8或125整除,这个数就能被8或125整除。如26720,末三位的数是720,720能被8整除,26720也能被8整除,即 26720÷8=3340。请你用这种方法判断一下58375能否被125整除。 4、 被7、11、13整除的数的特征。一个数的末三位数与末三位以前的数字所表示的数的差(大数减小数)能被7、11或13整除,这个数就能被7、11或13整除。如;57001,末三位数字表示的数是1,末三位以前的数是57,57—1=56,56能被7整除,所以57001也能被7整除,56不能被11、13整除,所以57001不能被11或13整除。又如:77168,因为168—77=91,91能同时被7和13整除,所以77168也能同时被7和13整除,即77168÷7=11024,77168÷13=5936。 另外,能被11整除的数还具有这样的特征:奇数位(指个位、百位、万位……)上的数字之和与偶数位(指十位、千位、十万位……)上的数字之和的差能被11整除,这个数就能被11整除。例如58234,奇数位上的数字之和是4+2+5=11,偶数位上的数字之和是3+8=11,11—11=0,0能被11整除,58234也能被11整除,58234÷11=5294。

初二数学教师小论文

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

同学们,你们想不想很快地判断出一个数能否被4、7、9、11、13等数整除?在学习了被2、3、5整除的数的特征后,我和同学们在课余时间摸索出了能被其他一些数整除的数的特征,总结如下,希望对同学们的学习有所帮助。 1、能被9整除的数的特征。一个数各个数位上的数字之和能被9整除,这个数就能被9整除。如29736,因为2+9+7+3+6=27,27能被9整除,所以29736也能被9整除,即: 29736÷9=3304。 2、能被4、25整除的数的特征。一个数的末两位的数能被4或25整除,这个数就能被4或25整除。例如:13120,末两位的数是20,20能被4整除,13120也能被4整除,即 13120÷4=3280。又如,4775,末两位的数是75,75能被25整除,4775也能被25整除,即 4775÷25=191。 3、能被8、125整除的数的特征。一个数的末三位的数能被8或125整除,这个数就能被8或125整除。如26720,末三位的数是720,720能被8整除,26720也能被8整除,即 26720÷8=3340。请你用这种方法判断一下58375能否被125整除。 4、 被7、11、13整除的数的特征。一个数的末三位数与末三位以前的数字所表示的数的差(大数减小数)能被7、11或13整除,这个数就能被7、11或13整除。如;57001,末三位数字表示的数是1,末三位以前的数是57,57—1=56,56能被7整除,所以57001也能被7整除,56不能被11、13整除,所以57001不能被11或13整除。又如:77168,因为168—77=91,91能同时被7和13整除,所以77168也能同时被7和13整除,即77168÷7=11024,77168÷13=5936。 另外,能被11整除的数还具有这样的特征:奇数位(指个位、百位、万位……)上的数字之和与偶数位(指十位、千位、十万位……)上的数字之和的差能被11整除,这个数就能被11整除。例如58234,奇数位上的数字之和是4+2+5=11,偶数位上的数字之和是3+8=11,11—11=0,0能被11整除,58234也能被11整除,58234÷11=5294。

黄金分割 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以来近似,通过简单的计算就可以发现: 1/ ()/ 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取 ,就像圆周率在应用时取一样。 黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的帕撒神农庙就是一个很好的例子,他的<维特鲁威人>符合黄金矩形.<蒙娜丽莎>的脸也符合黄金矩形,<最后的晚餐>同样也应用了该比例布局.发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:的倒数是,而与1:是一样的。 确切值为(√5-1)/2 黄金分割数是无理数,前面的1024位为: 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...生活应用有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的…处。艺术家们认为弦乐器的琴马放在琴弦的…处,能使琴声更加柔和甜美。 数字…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的处,那么实验的次数将大大减少。这种取区间的处作为试验点的方法就是一维的优选法,也称法。实践证明,对于一个因素的问题,用“法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把…称为黄金数。与战争:拿破仑大帝败于黄金分割线? ,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比的比例。 也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量? 与武器装备 在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。 当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合的比例。 实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。 在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。 与战术布阵 在我国历史上很早发生的一些战争中,就无不遵循着的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。 把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。 马其顿与波斯的阿贝拉之战,是欧洲人将用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见, 在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。 两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了,也就是说,他多多少少托了黄金分割律的福。 此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。 与战略战役 不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。 一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。我们常常听说有“黄金分割”这个词,“黄金分割”当然不是指的怎样分割黄金,这是一个比喻的说法,就是说分割的比例像黄金一样珍贵。那么这个比例是多少呢?是。人们把这个比例的分割点,叫做黄金分割点,把叫做黄金数。并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=证明方法:设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为bAC/AB=BC/ACb^2=a*(a-b)b^2=a^2-aba^-ab+(1/4)b^2=(5/4)*b^2(a-b/2)^2=(5/4)b^2a-b/2=(根号5/2)*ba-b/2=(根号5)b/2a=b/2+(根号5)b/2a=b(根号5+1)/2a/b=(根号5+1)/2

黄金分割点在现实生活中的应用论文 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。 “科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=≈。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 现代科学研究表明,在养生中也起重要作用。注意了这些黄金分割点,对养生健体大有好处。“",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。现在发现此比值和医学保健、健康长寿有着千丝万缕的联系,亦可称为健康的黄金分割律。在人体结构上,更是无处不在。脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与的乘积恰好是℃-℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个比例关系,大致四分动六分静才是较佳养生之法。饮食:医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病;摄入的饮食以六分粗粮、四分精食为适宜。从黄金分割律看,结婚的最佳季节是一年12个月的处,约在7月底至8月底。医学研究已表明,秋季是人的免疫力最佳的黄金季节。因为7月至8月时人体血液中淋巴细胞最多,能生成大量的抵抗各种微生物的淋巴因子,此时人的免疫力强.较少小户型以其"低总价、低首付、低月供",把众多刚刚踏入社会的年轻人吸引为有房一族。虽然市场上对小户型的需求很热烈,但也同样具有投资风险。如何进行小户型投资?市场时兴一套有趣的"黄金分割论".时间分割因为工作时间与居家时间之比正好构成一个黄金分割,即比,所以专家认为,最有价值的地段可能是工作与社区之间的黄金分割点.尺度分割小户型因其小,面积更要精打细算.在小户型越来越热的过程中,市场有一个趋势,即户型越小越好。但绝对的小既不符合居住者的正常生活需求,也绝对不会是潮流。新消费或投资趋势表明,小户型在面积大小上也存在黄金分割率.在30至80平方米之间,有一个黄金分割数,正好是50余平方米。所以,市场上50余平方米的小户型热卖度超过了其他规格.空间主要是卧室与起居,30平方米根本无法细分任何功能区,难以满足高品质居家生活。而50多平方米是功能上黄金分割区的最小面积,即可分出30平方米的主体空间和20平方米的配套空间,解决独立厨卫、阳台、储藏等各个功能.因此,根据"黄金分割论"选择的小户型应该是既节省户型面积,减少投资总额,同时又能满足空间上的审美和功能需求,保证居住者的生活品质与居家情趣。 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。 黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。120相机近似3:5,6X6虽然是方框,但在后期制作用,仍多数裁剪为长方形近似黄金分割的比例。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。这可能是受传统的影响,也养成了人们的审美习惯。另外,也确实因为它具有悦目的性质,所以有时人们在时间中并非注意到这个比例,而特意去运用它,但往往就不自觉中,进入了这个法则之中。这也说明了,黄金分割的本身就存在有美的性质。在摄影实践中,运用黄金分割法则,主要表象在黄金分割点、线、面的运用中。黄金分割点,在全景构图中,多是主要表现对象,或是视觉中心所处的位置,在中、近景构图中,多是景物主要部位所处的位。在人像构图中常常是将人的眼睛处理在近于黄金分割点的位置。黄金分割线,多用作地平线、水平线、天际线所处的位置。 《梦幻曲》是一首带再现三段曲式,由A、B和A′三段构成。每段又由等长的两个4小节乐句构成。全曲共分6句,24小节。理论计算黄金分割点应在第14小节(),与全曲高潮正好吻合。有些乐曲从整体至每一个局部都合乎黄金比例,本曲的六个乐句在各自的第2小节进行负相分割(前短后长);本曲的三个部分A、B、Aˊ在各自的第二乐句第2小节正相分割(前长后短),这样形成了乐曲从整体到每一个局部多层复合分割的生动局面,使乐曲的内容与形式更加完美。大、中型曲式中的奏鸣曲式、复三段曲式是一种三部性结构,其他如变奏曲、回旋曲及某些自由曲式都存在不同程度的三部性因素。黄金比例的原则在这些大、中型乐曲中也得到不同程度的体现。一般来说,曲式规模越大,黄金分割点的位置在中部或发展部越*后,甚至推迟到再现部的开端,这样可获得更强烈的艺术效果。莫扎特《D大调奏鸣曲》第一乐章全长160小节,再现部位于第99小节,不偏不依恰恰落在黄金分割点上()。据美国数学家乔巴兹统计,莫扎特的所有钢琴奏鸣曲中有94%符合黄金分割比例,这个结果令人惊叹。我们未必就能弄清,莫扎特是有意识地使自己的乐曲符合黄金分割呢,抑或只是一种纯直觉的巧合现象。然而美国的另一位音乐家认为。"我们应当知道,创作这些不朽作品的莫扎特,也是一位喜欢数字游戏的天才。莫扎特是懂得黄金分割,并有意识地运用它的。"贝多芬《悲怆奏鸣曲》第二乐章是如歌的慢板,回旋曲式,全曲共73小节。理论计算黄金分割点应在45小节,在43小节处形成全曲激越的高潮,并伴随着调式、调性的转换,高潮与黄金分割区基本吻合。肖邦的《降D大调夜曲》是三部性曲式。全曲不计前奏共76小节,理论计算黄金分割点应在46小节,再现部恰恰位于46小节,是全曲力度最强的高潮所在,真是巧夺天工。我们再举一首大型交响音乐的范例,俄国伟大作曲家里姆斯-柯萨科夫在他的《天方夜谭》交响组曲的第四乐章中,写至辛巴达的航船在汹涌滔天的狂涛恶浪里,无可挽回地猛撞在有青铜骑士像的峭壁上的一刹那,在整个乐队震耳欲聋的音浪中,乐队敲出一记强有力的锣声,锣声延长了六小节,随着它的音响逐渐消失,整个乐队力度迅速下降,象征着那艘支离破碎的航船沉入到海底深渊。在全曲最高潮也就是"黄金点"上,大锣致命的一击所造成的悲剧性效果慑人心魂。 黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数的美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。 ""还始终与军事发展有不解之缘,而且常常与战争不期而遇。无论是古希腊帕特农神庙的美轮,还是中国古代的兵马俑,它们的垂直线与水平线之间的关系竟然完全符合1∶的比例。成吉思汗的蒙古骑兵横扫欧亚大陆令人惊叹。经过研究发现,蒙古骑兵的战 斗队形与西方传统的方阵大不相同,在他的五排制阵型中,重骑兵和轻骑兵为2∶3,人盔马甲的重骑兵为2,快捷灵活的轻骑兵为3,两者在编配上恰巧符合黄金分割律。欧洲人是最早有意识地把黄金分割律运用于宗教和艺术方面的,而在军事上的应用是从黑火药时期开始的。那时滑膛枪呈现出取代长矛之势,率先将滑膛枪 兵和长矛兵对半混编的荷兰将军摩利士未能突破传统阵型的羁绊,瑞典国王古斯 塔夫对这种正面强翼侧弱的阵型进行调整后,使瑞典军队变成了当时欧洲战斗力最强的军队。他的做法是,在摩利士将军原来的216名长矛兵与198名滑膛枪兵混 合编组的基础上,再增加96名滑膛枪兵,这一改变,顺应了科技发展和武器装备 进步对战术发展的影响规律,突出了火器在战斗中的作用,使之跨越了冷热兵器时代的分水岭。198+96名滑膛枪兵与216名长矛兵之比,让我们又一次看到了黄金 分割律的神奇作用。1812年6月,拿破仑进攻俄国;9月,他在博罗金诺战役后进入莫斯科,这时的拿破仑并未意识到天才和运气正从他身上一点一点地消失,他一生事业的顶峰 和转折点正同时到来。一个月后,法军便在大雪纷飞中撤离莫斯科,三个月的胜 利进军加上两个月的盛极而衰,从时间轴线上看,拿破仑脚下正好踩在了黄金分割线上。 130年后的另一个6月,纳粹德国启动了针对苏联的"巴巴罗萨"计划,在长 达两年多的时间里,德军一直保持进攻势头,直到1943年8月,"城堡"行动结束,德军从此转攻为守,再也没有能对苏军发起一次战役规模的进攻行动。被所有 战史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的 第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点.海湾战争中,美军一再延长空袭时间,持续38天,直到摧毁了伊拉克在战区内4280辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,也就是将伊 拉克军事力量削弱到黄金分割点上后,才抽出"沙漠军刀"砍向萨达姆,地面作战只用100个小时就达成了战争目的。 透过战争中的一些零散战例,依稀可见""的影子在晃动、在徘徊。如 果孤立地看待它们,好似偶然巧合,但是如果太多的偶然遵循着同一个轨迹,那 就成为规律,就特别值得人们深入研究了。 一次无意中和同学在操场上打球,顺手测量了雕相牛顿的鼻子,其鼻孔间的距离和到鼻梁的比刚好接近于。之后又测量了几个人的鼻子,结果符合黄金分割点。接下来的生活中对变得很敏感,经过同学的推想与实践,我们发现了多弥乐古牌的长宽之比,蝴蝶的身体部位之比,漂亮花瓣的长宽之比也都符合这一规律。查询了很多的相关资料例如埃及金字塔便是这一规律的最好应用。 想象一下如何让一根很普通的细橡皮筋发出“哆来咪”的声音?把它拉紧,固定住,拨动一下,就是“1”,然后量出其长,作一道初三几何题——把这条“线段”进行黄金分割, 可以测出“分割”得到的两条线段中较长的一段,约是原线段长度的倍。捏住这个点,拨动较长的那段“弦”,就发出“2”;再把这段较长线进行黄金分割,就找到了“3”, 以此类推“4、5、6、7”同样可以找到。 你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。 气势雄伟的建筑物少不了“”,艺术上更是如此。舞台上,演员既不是站在正中间, 也 不会站在台边上,而是站在舞台全长的倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——,因而作品达到了美的奇境。 达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是,组成了人体的美。 我国一位二胡演奏家在漫长的演奏生涯中发现 ,如果把二胡的“千斤”放在琴弦某处,音色会无与伦比的美妙。经过数学家验证,这一点恰恰是琴弦的黄金分割点!黄金比值,在创造着奇迹!� 偶然吗?不,在人们身边,到处都有的“杰作”:人们总是把桌面、门窗等做成长方形、宽与长比值为。在数学上,更是大显神通。,美的比值、美的色彩、美的旋律,广泛地体现在人们的日常生活中,与人们关系甚密。,奇妙的数字!它创造了无数的美,统一着人们的审美观。 爱开玩笑的,又制造了大量的“巧合”。在整个世界中,无处不闪耀着那黄金一样熠熠的光辉!人们时时刻刻在有意无意创造着一个个的黄金分割。只要稍微留心一下便可发现它离我们的生活有多近!数学离我们很近,无时不刻地在应用着它! 我们要首先感受并体会到数学学习中的美。数学美不同于其它的美,这种美是独特的、内在的。这种美,正如英国著名哲学家、数理逻辑学家罗素所说:“数学,如果正确地看它,不但拥有真理,而且也具有至高无上的美,正象雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能显示的那种完满的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐地领略到数学美的真正含义,这种感觉是奇异的、微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力……在生活中只要我们善于观察,善于思考,将所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。

初二上册数学小论文

初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

数学小论文 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学.”特别是二十一世纪的今天,数学的应用更是无所不在.那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿.那么,数学活动课就是让我们充分体现自主学习的一种教学方式.活动课上,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识.这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增.例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形.同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”.由此,大家终于自己找到了平行四边形面积公式为:S=ah.再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识.我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快.可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对.今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析.这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333*3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变.使题目转化为求9999999999*1111111111=(10000000000-1)*1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字.这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数.即3*3=9→积中有1个奇数数字.33*33=1089→积中有2个奇数数字.333*333=110889→积中有3个奇数数字.3333*3333=11108889→积中有4个奇数数字.…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面.积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字.做了这道题,我知道做数奥不能求快,要求懂它的方法.总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的.在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法.学习中,我们充分体验套了做学习的主人的快乐和自豪.希望老师们能多用活动课的方式来上数学课.这样,我们将会学的更扎实、更轻松、更灵活、更优秀。

今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

本学期,我们学习了许许多多的数学知识.从“几何”到“代数”再到“数形结合”.太多太多了.8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”.一开始接触“函数”这个概念时还是非常陌生的.因为转眼望去,前面的单元基本是“小学”和“初一”接触过得.而对于“函数”来说确是几乎“一无所知”.只知道初一老师说过“可能性”和“函数”有着密切的关系.翻开这个单元时,真的有点“丈二和尚摸不着头脑”.上面说了种种对“函数”概念的无知.所以自然在一开始学习的过程中会遇到“困难”.这单元的第一章从生活实际出发讲了“函数”的定义等等.这是一个比较“浮浅”的类容(从我现在的角度来说).从这里我真正接触到了“函数”,但也许是学习没有完全进入.当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他.”第二章类容可以说就是对第一章的一个“浓缩”.好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去.学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多.真正的困难出现在第三章,谈到了“一次函数的图象”.可以老实说这章听得差不多是我本学期听的最累的一节课.老师发下来讲义,我那节课觉得您讲的奇快.我还没反应过来你就讲完了.我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的.于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变.觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了.以上就是我学习“一次函数”的经历.下面我们在来分析一下“一次函数”.从类别上讲,“一次函数”是一个“数形结合”的“典范”.它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”.使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了.其次“一次函数”我认为是一个有趣,神奇的类容.它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律.不能不觉得“一次函数”充满了“魔力”.此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”.我想2章的联合编排更是教会我们“复习整理”的学习方法.所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”.“一次函数”也使我对这本教材有了全新的认识和看法.“一次函数”不仅有趣而且更是“历届”中考的“重中之重”.所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容.参考资料:

数学小论文初二怎么写题目

初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

首先是格式 请您耐心点论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数少可几十字,多不超过三百字为宜.4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索. 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方.主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头. 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍,紧扣主题.(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论.主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤; d.结论.6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行.中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证.(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息.如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题. 2,在不了解和了解不详的领域中寻找课题.3,要善于独辟蹊径,选择富有新意的课题.4,选择能够找得到足够参考资料的课题.5,征询导师和专家的意见.6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件. 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法.文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定.综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长.科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢.参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 Fig. 1, Fig. 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)1.选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择.2.创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)3.提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展.三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 words.内容要求与中文大体相同,主要讲目的,过程,方法和结果.内容要精练,不要将结论译成英文作摘要.文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的.先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points).如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了). 高的效率从结论开始,浏览图示和表,看看他的引用. 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分. 跳过你已经知道的部分(比如背景和动机). 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西.写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证.阶段性的复习可以发现这些思想是不是开始走在一起(fit together).即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结.(You may find yourself spending over half of your time reading, especially at the beginning. This is normal.) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设.这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力. 保存读过的文章,建立在线的参考书目.增加关键字的的域,文章的位置和感兴趣的文章的总结.这对以后写文章以及给其他的研究生很有用. 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要.选择一两篇仔细阅读并且批判. 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读. 参加一个研讨会或者讨论组,批判性的听取. 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了.另外一方面,也不要让别人的想法限制了你的创造力. 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育".不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读.一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始. 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的.学习它们的内容和表达,注意它们里面的-进一步工作.(future work) 仔细的记笔记.记下每一个新的结果,即使没有重要的和有帮助的东西. 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处. 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写.直接写主要想法big idea,记录怎样和其他部分组织在一起.一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了.开始写作(四)无休止的修改格式而不是内容也是常犯的错误.要避免这种情况 清楚自己想说什么.这是写清楚要的最难最重要的因素.如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么.确信你的文章真的有思想(ideas).要说清楚为什么,不仅仅是怎么样. 从每一段到整个文章都应该把最引人入胜的东西放在前面.让读者容易看到你写的东西(Make it easy for the reader to find out what you've done).注意处理摘要(carefully craft the abstract).确定(be sure)说出了你的好思想是什么.确定你自己知道这个思想是什么,然后想想怎么用几句话写出来.开始写作(五)不要大肆夸耀你自己做的事情. 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论.知道别人对论文的意见很重要.你给别人帮助,别人会在你需要的时候帮助你.而且,自己也能提高.为文章写有用的评论是一门艺术.你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达. 如何减少写论文的痛苦写下自己的想法是完善它的好方法.你可能发现自己的想法在纸上会变成一团糟. 慢慢 地你也发觉它清晰起来.记住你写得草稿很可能要全部推翻.着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程.当你发现所写的不是你开始想写的,写下粗稿,以后再修补.写粗稿可以理出自己的思想,渐渐进入状态.如果写不出全部内容,就写纲要,在容易写具体的内容时再补充.如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾.当你写出足够的内容,再编辑它们,转化成有意义的东西.另一个原因是想把所有的东西都有序的写出来(in order).次序是不一定的.你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介.写作是很痛苦的事情,有时候一天只能写上一页.追求完美也可能导致对已经完美的文章无休止的修改润饰.这不过是浪费时间罢了.把写作当作和人说话就行了. 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写.一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次.记住:你完成的每一步工作都使你接近完成.六,论文写作辅助工具论文模板绘图工具的使用公式编辑器实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点.以终为始,以始为终.学士论文常见问题1.论文格式不合要求或字数不够 2.第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节.概述最好写到4页以上.,概述写清背景,动机以及本文的工作安排.也可以把本文的贡献放上去, 3.对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果.4.有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码.并对代码给出分析. 5.论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 6.你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~然后是范文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

1、题目要新颖。一个新颖的题目可以给人耳目一新的感觉,而且容易给读者和评审人员留下深刻的印象,比较容易通过和发表,因此在题目的选择和设定上要多花些心思。 2、范围要小。既然是小论文,那么选题范围就不要太大了,太大太宽泛的论文一个是容易落入俗套,另外就是如果没有深入研究的话,不容易阐述的清晰透彻,给人言之无物的感觉,不如选个小一点的课题深入的说明,这样效果会更好。 3、见解独特。对于你所选择的课题你要有自己独特的见解,与众不同的见解是你论文的核心和亮点,如果没有这些那么这篇论文的质量无疑是值得质疑的,很难引起读者的注意和评审的好感。 4、系统性强。因为数学是一门以逻辑推理为主的学科,因此你的论述要有很好的系统性,从前到后一步步进行推理,这样的论文即使在文采方面并不出众,也是容易因其逻辑性和系统性而成为一篇好的论文的。 5、图文并茂,排版合理。数学论文中对于自己要阐述的问题会有插图,这时候要求排版合理,如果内容清晰明了,同时排版漂亮合理的话,那么你的论文将成为一篇很不错的论文的。 6、格式正确。写论文和我们平时写随笔不一样的,有其固定的格式,比如题目,内容要求几号字,什么字体,参考文献如何标注,内容摘要需要多少字等,都有规定和说明的,这些硬性的东西必须要符合要求,否则的话可能直接通过不了的。 7、参考文献。在论文最后腰表明参考文献,这是论文写作的要求,参考文献的表明除了要按照规定的格式之外,还要注意其严谨性,不要出现错误,报刊杂志等参考文献要详细到哪一期,甚至要求标注哪一页,这些都要实事求是的标注,这是做学问起码的要求和素质。 8、作者信息。在论文中要表明作者的一些基本信息,比如通讯地址,联系方式,电子邮箱等,有的还要求写一段作者简介,这些都要按照规定认真详实的准备,以便出版社和作者取得联系。

可以加我QQ358275232

数学小论文怎么写初二

初二数学论文篇二 初二数学两极分化的成因和对策 【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。 【关键词】初中数学 两极分化 原因 对策 从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。 一、初中数学出现两极分化的原因 初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。 二、避免初二数学两极分化的办法 1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯 良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。 2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧 千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。 3.以良好的心态对待各种数学考试。 数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。 三、对待初中数学两极分化中的学生应采取的措施 虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。 初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。 【参考文献】 1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,. 2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,. (作者单位:546100广西来宾市第三中学) 看了“初二数学论文怎么写”的人还看: 1. 2000字的初中数学论文怎么写 2. 初中数学小论文范文 3. 初中数学论文范文 4. 有关初中数学小论文范文 5. 数学小论文的范文

初中数学论文写法如下:

1、论文撰写之前需要先确定选题,但是由于初中数学论文的主要针对的是十几岁的孩子,受年龄和所接受的教育的限制,绝大多数学生对数学领域的专业知识并并不是很了解,因此在选择初中数学论文选题时,可以结合实际生活,选择比较贴近生活的题目,例如勾股定理在生活中应用、生活中的数学现象等等,不建议选择过于抽象的题目。

2、确定后选题后就可以根据主题撰写论文正文,注意在文章写作过程中一定要紧扣主题,尽量做到精炼准确,见解要真实、独特,要用自己的语言表述自己想想要表达的内容,必要时可以使用公式、演算过程等内容进行说明,体现出数学这门学科独有的严谨性和科学性。

一般情况下的论文结构应包括:论文题目、目录、摘要、关键词、引言、论文正文、结论,参考文献以及附录等,不过由于初中数学论文的篇幅较短,一般不需要列出目录,引言、附录等内容其中论文正文中应包括论点的说明。

论据的铺列和论证的展开一个部分,参考文献必须是已经公开发表的文献,在列参考文献的时候并不是越多越好,必须精心筛选,看重文献质量而非数量。

同学们,你们想不想很快地判断出一个数能否被4、7、9、11、13等数整除?在学习了被2、3、5整除的数的特征后,我和同学们在课余时间摸索出了能被其他一些数整除的数的特征,总结如下,希望对同学们的学习有所帮助。 1、能被9整除的数的特征。一个数各个数位上的数字之和能被9整除,这个数就能被9整除。如29736,因为2+9+7+3+6=27,27能被9整除,所以29736也能被9整除,即: 29736÷9=3304。 2、能被4、25整除的数的特征。一个数的末两位的数能被4或25整除,这个数就能被4或25整除。例如:13120,末两位的数是20,20能被4整除,13120也能被4整除,即 13120÷4=3280。又如,4775,末两位的数是75,75能被25整除,4775也能被25整除,即 4775÷25=191。 3、能被8、125整除的数的特征。一个数的末三位的数能被8或125整除,这个数就能被8或125整除。如26720,末三位的数是720,720能被8整除,26720也能被8整除,即 26720÷8=3340。请你用这种方法判断一下58375能否被125整除。 4、 被7、11、13整除的数的特征。一个数的末三位数与末三位以前的数字所表示的数的差(大数减小数)能被7、11或13整除,这个数就能被7、11或13整除。如;57001,末三位数字表示的数是1,末三位以前的数是57,57—1=56,56能被7整除,所以57001也能被7整除,56不能被11、13整除,所以57001不能被11或13整除。又如:77168,因为168—77=91,91能同时被7和13整除,所以77168也能同时被7和13整除,即77168÷7=11024,77168÷13=5936。 另外,能被11整除的数还具有这样的特征:奇数位(指个位、百位、万位……)上的数字之和与偶数位(指十位、千位、十万位……)上的数字之和的差能被11整除,这个数就能被11整除。例如58234,奇数位上的数字之和是4+2+5=11,偶数位上的数字之和是3+8=11,11—11=0,0能被11整除,58234也能被11整除,58234÷11=5294。

,论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数少可几十字,多不超过三百字为宜.4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索. 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方.主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头. 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍,紧扣主题.(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论.主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤; d.结论.6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行.中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证.(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息.如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题. 2,在不了解和了解不详的领域中寻找课题.3,要善于独辟蹊径,选择富有新意的课题.4,选择能够找得到足够参考资料的课题.5,征询导师和专家的意见.6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件. 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法.文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定.综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长.科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢.参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 Fig. 1, Fig. 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)1.选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择.2.创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)3.提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展.三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 words.内容要求与中文大体相同,主要讲目的,过程,方法和结果.内容要精练,不要将结论译成英文作摘要.文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的.先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points).如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了). 高的效率从结论开始,浏览图示和表,看看他的引用. 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分. 跳过你已经知道的部分(比如背景和动机). 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西.写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证.阶段性的复习可以发现这些思想是不是开始走在一起(fit together).即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结.(You may find yourself spending over half of your time reading, especially at the beginning. This is normal.) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设.这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力. 保存读过的文章,建立在线的参考书目.增加关键字的的域,文章的位置和感兴趣的文章的总结.这对以后写文章以及给其他的研究生很有用. 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要.选择一两篇仔细阅读并且批判. 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读. 参加一个研讨会或者讨论组,批判性的听取. 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了.另外一方面,也不要让别人的想法限制了你的创造力. 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育".不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读.一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始. 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的.学习它们的内容和表达,注意它们里面的-进一步工作.(future work) 仔细的记笔记.记下每一个新的结果,即使没有重要的和有帮助的东西. 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处. 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写.直接写主要想法big idea,记录怎样和其他部分组织在一起.一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了.开始写作(四)无休止的修改格式而不是内容也是常犯的错误.要避免这种情况 清楚自己想说什么.这是写清楚要的最难最重要的因素.如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么.确信你的文章真的有思想(ideas).要说清楚为什么,不仅仅是怎么样. 从每一段到整个文章都应该把最引人入胜的东西放在前面.让读者容易看到你写的东西(Make it easy for the reader to find out what you've done).注意处理摘要(carefully craft the abstract).确定(be sure)说出了你的好思想是什么.确定你自己知道这个思想是什么,然后想想怎么用几句话写出来.开始写作(五)不要大肆夸耀你自己做的事情. 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论.知道别人对论文的意见很重要.你给别人帮助,别人会在你需要的时候帮助你.而且,自己也能提高.为文章写有用的评论是一门艺术.你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达. 如何减少写论文的痛苦写下自己的想法是完善它的好方法.你可能发现自己的想法在纸上会变成一团糟. 慢慢 地你也发觉它清晰起来.记住你写得草稿很可能要全部推翻.着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程.当你发现所写的不是你开始想写的,写下粗稿,以后再修补.写粗稿可以理出自己的思想,渐渐进入状态.如果写不出全部内容,就写纲要,在容易写具体的内容时再补充.如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾.当你写出足够的内容,再编辑它们,转化成有意义的东西.另一个原因是想把所有的东西都有序的写出来(in order).次序是不一定的.你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介.写作是很痛苦的事情,有时候一天只能写上一页.追求完美也可能导致对已经完美的文章无休止的修改润饰.这不过是浪费时间罢了.把写作当作和人说话就行了. 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写.一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次.记住:你完成的每一步工作都使你接近完成.六,论文写作辅助工具论文模板绘图工具的使用公式编辑器实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点.以终为始,以始为终.学士论文常见问题1.论文格式不合要求或字数不够 2.第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节.概述最好写到4页以上.,概述写清背景,动机以及本文的工作安排.也可以把本文的贡献放上去, 3.对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果.4.有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码.并对代码给出分析. 5.论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 6.你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)o...

  • 索引序列
  • 初二数学问题小论文
  • 初二数学教师小论文
  • 初二上册数学小论文
  • 数学小论文初二怎么写题目
  • 数学小论文怎么写初二
  • 返回顶部