灵敏度500拷贝意思是可检测新冠的口罩,灵敏度达500拷贝,2021年6月28日,哈佛大学Wyss生物启发工程研究所和麻省理工学院的研究人员在 《Nature Biotechnology》发表了题为《Wearable materials with embedded synthetic biology sensors forbiomolecule detection》的研究论文。该研究开发了一种基于CRISPR技术的可穿戴的合成生物学生物传感器,用以检测环境中的病原体和毒素,并通过发出荧光警告穿戴者。而且,研究团队还将这一技术集成到了标准口罩中,以检测患者呼吸中,以及空气中是否存在新冠病毒(SARS-CoV-2)。据报道,该方法核酸的检测极限可与定量PCR等现有实验室方法相媲美,灵敏度达500拷贝。该面罩可在室温内佩戴,无创检测SARS-CoV-2,不需要用户干预,只需按下按钮,90分钟后便可知结果。
在高中时期,我曾听老师介绍过曹原,这是典型的“别人家的小孩”。2010年,高考总分为理科669分,考入中国科学技术大学少年班;2012年,他被选为首批交流生赴密歇根大学学习;2014年获得中科大本科生最高荣誉奖--郭沫若奖学金;在2018年,一连发表两篇重磅石墨烯论文以第一作者在《自然》上而且在2018年12月18日,荣登《自然》2018年度影响世界的十大科学人物榜首等等一系列辉煌的成就。这可真是太赞了!
美国麻省理工学院(简称MIT)是美国和世界上著名的学院之一。她以理工科系为主。但心理学的各个分支在这里都得到广泛的重视并进行着广泛的研究。除了心理学系以外,在MIT进行心理学教学和研究的单位有:管理学院,电机和计算机系,航空和宇航系,机械工程系,人工智能实验室,言语通讯实验室,语言学和哲学系,生物学系,营养和食品科学系,健康科学与技术学院,认知科学中心,临床研究中心和教育研究所等。 MIT心理学系的全称是心理学和脑科学系(Department of ps了ehology and Bra一in Seionee)。该系系主任是著名的实验心理学教授Riehard Held。全系共有21名正式教师从事研究和教学工作。系行政工作人员共4人:行政工作办公室主任一人,教学主任一人,秘书一人,收发一人。 (一)研究工作 在MIT工作的教师,除教学外一般都必须从事研究工作。而且都必须从学校以外取得研究经费。每一位教师就靠这些资助建立自己的实验室,否则在MIT将无立足之地。资助经费的一半作为研究经费,包括工资、催用研究助理人员的费用,仪器设备、实验用费,会议用费等等。
美国麻省理工学院的化学工程师使用一种创新的聚合工艺,开发出了一种比钢更坚固、重量却轻如塑料的新材料,并且这种材料易于大批量制造。
这种新型材料是一种二维聚合物,可以自组合成薄片。与其他所有聚合物不同,一般聚合物往往只能聚合形成一维的、像意大利面一样的长链状,截至目前,科学家们一直认为诱导聚合物形成二维片材是不可能的。
麻省理工学院化学工程教授、本项全新研究工作的主要负责人Michael Strano表示,过去人们通常不认为塑料可以用作建筑物结构材料,但使用这种全新的材料,可以创造新事物。这种新材料具有非比寻常、令人兴奋的特性,可以用作 汽车 零件或者手机轻质耐用涂层,此外还可用作桥梁或其他结构的建筑材料。
研究人员已经就生成这种材料的过程申请了两项专利,相关研究成果已经发表在《自然》期刊中的一篇论文。麻省理工学院博士后Yuwen Zeng是该研究的主要作者。
二维材料
包括所有塑料在内的聚合物是由单体组成的结构单元重复聚合成链而成。这些链通过在其末端不断添加新的结构单元形成长链。一旦聚合过程完成,聚合物就可以使用注塑成型的方式,制造三维物体,如水瓶等。
材料科学界长期以来一直存在一种假设:如果可以诱导聚合物生长成二维片材,它们应该会形成极其坚固、轻质的材料。不过在该领域经过数十年研究后,科学家们得出的结论是这种材料不可能实现。其中的重要原因是,在聚合过程中只要有一个单体向上或向下旋转,超出二维平面,材料就会在三个维度上膨胀生长,片状结构将丢失。
然而,在此次进行的新研究中,Strano和他的同事们提出了一种全新聚合工艺,能够生成一种被称为聚芳酰胺的二维片材。其中单体结构单元使用的是一种名为三聚氰胺的化合物,它含有一个碳氮原子环。在适当的条件下,这种单体可以二维生长,形成圆盘状材料。这些圆盘相互堆叠,通过层间的氢键结合在一起,使结构非常稳定和牢固。
Strano表示,全新聚合工艺可以制造出片状分子面,而不是过去形成的制造一个类似意大利面的长分子链,因此能够实现在二维尺度上将分子面自动连接在一起。这种聚合机理可在溶液中自动发生,当材料聚合完成后,可轻松地旋转镀膜形成非常坚固的薄膜。
由于材料在溶液中可自组合,因此可以通过简单地增加起始原料量实现大量制造。研究人员表示,这种材料薄膜可涂覆在其他物体表面上,材料牌号为2DPA-1。
Strano表示,随着这项科研工作取得的进步,人类拥有了二维高分子,这将有助于更容易地制成非常坚固且极薄的新材料。
轻质且高强
研究人员进一步研究显示,新材料的弹性模量——即使材料变形所需的力——比防弹玻璃高4到6倍。此外,尽管这种材料的密度只有钢的六分之一,但它的屈服强度——破坏材料所需的力——是钢的2倍。
芝加哥大学普利兹克分子工程学院院长Matthew Tirrell表示,这项新技术“体现了一种非常有创意的化学方法,可以制造这种相互连结的二维聚合物”。
Tirrell表示,能够形成这种全新聚合物的重要原因是它易于在溶液中生成,由于材料具有很好的比强度,这将促进许多新的应用,例如新的复合材料或液体中防止扩散的膜材料等。
2DPA-1的另一个关键特性是它不透气。其他聚合物材料一般都是由长链盘绕而成,分子间带有间隙,可以让气体渗入。但是这种新材料是由像乐高积木一样拼接在一起的单体制成,气体分子无法从中间穿过。
利用这种性质,人们可以创造出可完全防止水或气体通过的超薄涂层。这种阻隔涂层可用于保护 汽车 和其他装备中使用的金属结构表面。
Strano研究团队正在就这种特殊聚合物能够形成二维片材的机理进行更详细的研究。此外,研究人员正在尝试改变分子构成以创造其他类型的新型材料。
该研究由美国能源部科学办公室所属的增强纳米流体运输中心(CENT)和美国陆军研究实验室资助。(陈济桁)
研究生条件开学时间:每年9月申请截止日:每年12月、1月、4月留学费用:43581.00 美元托福分数要求:104.00大学平均分:3.50。麻省理工学院,Massachusetts Inst.of Technology(MIT)是美国培养高级科技人才和管理人才、从事科学与技术教育与研究的一所私立大学。1865年创建于波士顿,1961年迁到现在所在的坎布里奇。虽然后来增设了人文、社会科学等系科,但该学院仍保持了其纯技术性质的特色,主要培养工程师和技术人员,其办学方向是把理论科学和应用科学的教育与研究结合起来。 MIT创建之初,只有15名学生。经过近140年的发展,现已有学生近万名,并且已被世界公认为与牛津、剑桥、哈佛等老牌大学齐名的、以理工科为主的、综合性的世界一流大学。
随便啊!!我也不太清楚
四项基本原则:成绩+科研能力+英语+综合素质 首先成绩要好,大一都是基础课,还没有专业课,那重点就放在数学物理和英语。 大二开始的专业课一定要好好学,专业课成绩非常重要。 然后大二开始,就去找你们学院的硕导博导,让他们带你做项目,最好是比较有技术含量的科研一类,做项目可以学到很多东西,还能对你以后写毕业论文有帮助。当然,无论是结合项目还是自己研究,最好能发表一篇国际可以检索到的论文,如SCI,EI,ISIP,一定要英语写的(如果实在有难度,至少发表在全国性的有名的自然科学或专业期刊)其它小的论文能发就发,发表的级别越高越好。如果你们学校没有好的项目,你也可以到周围的学校问问,你诚恳的帮老师干活,一般老师不会拒绝,。要是能找到在专业领域比较有名望的教授的项目,将来让他给你写推荐信,也很有分量。 等你大四的时候,手上有几个paper和一两个project经验,申请MIT普林就很有机会了。 英语要坚持学,不仅发论文要用,考GT也要用。 另外,你可以参加美国大学生建模比赛(MCM/ICM),争取拿honourable mention以上的奖,因为是美国自己办的,所以他们还比较认可。 一般直接申博士,最少是半奖,GT高点的话,可以申TA,相当于全奖,如果你的paper真的很牛,导师会非常乐意给你全奖的。 还有一点,你最好focus在你的专业上,以后申请也申请相同或相近的专业,让你的整个academic line和relative experience很完整。(我觉得你的专业还不错,以后想转engineering之类也可以) 关于个人素质,怎么说呢,就是要说明你不是一个书呆子,尽量参加一些公益活动,志愿服务,或者担任一个什么社团的职务,虽然社团浪费时间又没用,尽量找和学习相关的吧,比如科协什么。 对了,又想起一个,你学自动化,应该和IEEE组织比较近,等你大二可以和带项目的导师问一下能不能帮你加入学生member,如果他是member的话,应该可以推荐你的。这个组织很强大。 总结: 成绩方面,你的目标最好是,GPA3.8-4.0+,并且每年都拿一等奖学金。 科研方面,paper越牛越好。project级别越高越好,或者有创新也成,导师的名望越大头衔越多越好。 英语方面,G 1400+, T 100+,英语只是一个辅助吧,还是学术最重要。 素质方面,只要尽力就行了,反正最后个人陈述还是要包装的。 加油^^
什么mit你看过霹雳mit吗你先说清楚(补充问题)我再回答
张志宇麻省毕业去了哈佛大学。哈佛大学是一所位于美国马萨诸塞州剑桥市的世界著名私立研究型大学,也是美国最古老的大学之一,成立于1636年,是美国顶尖的常春藤联盟的六所创始成员之一。哈佛大学以其卓越的教学质量、丰富的学术资源和独特的学术氛围而闻名于世,其学术地位和学术声誉在全球高校中名列前茅。张志宇麻省毕业去哈佛大学,可以深入学习,提高自己的学术水平,为将来的发展打下良好的基础。
背景
如今,我们身边的各种电子产品,例如智能手机、笔记本电脑、可穿戴设备等,几乎都离不开电池供电。然而,电池却存在着使用寿命有限、续航能力有限、需要反复充电、安全隐患等问题。因此,电池也成为了影响现代电子产品性能与用户体验的关键因素之一。
为此,科学家们一直在积极研发让电子产品摆脱电池的新型供电方案。之前,笔者也为大家介绍过许多这方面的案例。接下来,让我们先来看几个经典案例:
(一)美国华盛顿大学发明的全球首款无需电池的手机,能从周围环境中的无线电信号或者光线中获取几微瓦的能量,保证正常手机通话。
(二)美国哈佛大学维斯生物启发工程研究所和约翰·保尔森工程和应用科学学院的科研人员团队创造出一种无需电池的折纸机器人,它能够通过磁场,无线地提供能量和进行控制,展开可重复的复杂运动。
(三)中国科学院、重庆大学、美国佐治亚理工学院、台湾 科技 大学等机构的科研人员组成的团队,在中华传统剪纸艺术启发下,开发出一种轻量的、剪纸式样的摩擦电纳米发电机(TENG),能采集人体运动的能量,为电子产品供电。
(四)美国密歇根州立大学的科研人员开发出由铁电驻极体纳米发电机(FENG)组成的柔性设备,让电子设备直接从人体运动中采集能量。
创新
今天,笔者要为大家介绍一项让电子产品摆脱电池的新科研进展。
近日,美国麻省理工学院联合其他科研机构(马德里理工大学、美国陆军研究实验室、马德里卡洛斯三世大学、波士顿大学、南加利福尼亚大学)开发首个能将WiFi信号的能量转化为电力的完全柔性设备,它可以为电子产品供电。
能将交流变化的电磁波转化为直流电的设备被成为“整流天线”。在《自然(Nature)》期刊上发表的论文中,研究人员们演示了一种新型整流天线。
技术
该整流天线采用了一个柔性射频(RF)天线,以交流变化的波形捕捉电磁波(包括携带WiFi信号的那些)。然后,这个天线被连接至一个由仅为几个原子厚度的“二维半导体”制成的新型器件。这种交流信号传送到半导体中,被半导体转化为直流电压,而直流电压可用于为电子电路供电或者为电池充电。
通过这种方式,无需电池的设备被动地捕捉无处不在的WiFi信号,并将其转化为有用的直流电源。更进一步说,该设备是柔性的,并能通过“卷对卷(roll-to-roll )“工艺制备,从而可以覆盖非常大的面积。
所有的整流天线都依赖一个称为“整流器”的元件,这个元件将交流输入信号转化为直流电源。传统的整流天线将硅或者砷化镓用于整流器。这些材料可以覆盖WiFi频段,可惜它们是刚性的。尽管采用这些材料制造小型器件相对便宜,但用它们覆盖大面积,例如建筑物与墙壁的表面,成本过高。长期以来,研究人员们一直在尝试解决这些问题。但是目前所报告的柔性天线很少工作在低频率下,并且无法捕捉与转化千兆赫频率的信号,然而大多数相关的手机和WiFi信号都处于这个频率。
为了构造他们的整流器,研究人员们采用了一种称为“二硫化钼(MoS2)”的新型二维材料。它只有三个原子的厚度,是全球最薄的半导体之一。MoS2 可用于构造柔性的半导体元器件,例如处理器。
这么做时,团队利用了二硫化钼的一种“奇特”行为:当接触特定的化学物质时,材料的原子会重新排列,表现得如同开关一样,产生一种从半导体到金属材料的相变。这种结构也称为“肖特基二极管”,它是利用金属与半导体接触形成的“半导体-金属结”原理制作的。
论文第一作者、电子工程与计算机博士后 Xu Zhang(不久将成为卡耐基梅隆大学的助理教授)表示:“通过将 MoS2 设计成二维的半导体-金属结,我们构建出了原子薄度、超高速的肖特基二极管,它可以同步减少串联电阻与寄生电容。”
在电子器件中,寄生电容是一种不可避免的情况。这种情况下,特定的材料存储少量的电荷,将使电路速度变慢。因此,寄生电容越低,整流器速度就越快,运行频率也越高。研究人员们设计的肖特基二极管中的寄生电容,比目前最先进的柔性整流器中的寄生电容,要小一个数量级。因此,这种二极管的信号转化速度更快,可采集并转化10GHz的无线信号。
Zhang 表示:“这种设计将带来一种完全柔性的设备,它快到可覆盖我们日常使用的电子器件的大多数射频频段,例如WiFi、蓝牙、蜂窝LTE等。”
研究人员所报告的工作,为将WiFi转化为电力的其他柔性设备提供了蓝图,这些柔性设备具备足够大的输出和效率。根据WiFi输入信号的输入功率,目前设备的最大输出效率约为40%。在典型的WiFi功率等级下,MoS2 整流器的能量效率约为30%。相比而言,目前最佳的硅和砷化镓整流天线(由更加昂贵的刚性材料硅和砷化镓制成)实现了差不多50%到60%的效率。
价值
论文合著者之一、麻省理工学院微系统技术实验室的 MIT/MTL 石墨烯器件与二维系统研究中心主任 Tomás Palacios 表示:“假如我们开发出的电子系统,能够环绕大桥,或者覆盖整个公路,或者覆盖办公室墙壁,并将电子智能带给我们周围的每个物体,那将会如何?你如何为这些电子产品供电?我们提出了一种新办法来为这些未来的电子系统供电,通过一种可简单大面积集成的方式采集WiFi的能量,为我们身边的每个物体带来智能。”
科学家们提出的这种整流天线的早期应用包括为柔性与可穿戴设备、医疗设备、“物联网”传感器供电。例如,对于主要的技术公司来说,柔性智能手机将是一个热门的新市场。在实验中,当研究人员们将器件放置到典型的WiFi信号功率级别(150微瓦左右)的环境中,它可以产生出40微瓦的功率。这个功率足以点亮一个简单的移动显示屏,或者为硅芯片提供电力。
论文合著者之一、马德里理工大学的研究员 Jesús Grajal 表示,另外一个可能的方案就是为植入式医疗设备的数据通信供电。例如,研究人员们正在开始开发能被患者吞服的药丸,并将 健康 数据发回给计算机诊断。
Grajal 表示:“理想情况下,你不会想用电池来为这些系统供电,因为如果电池泄露锂,那么患者可能会死亡。从环境中采集能量,为体内的这些小型实验室以及与外部计算机的数据通信提供电力,具有明显的优势。”
目前,团队正在计划打造更加复杂的系统并提升效率。
参考资料
【1】
【2】Xu Zhang, Jesús Grajal, Jose Luis Vazquez-Roy, Ujwal Radhakrishna, Xiaoxue Wang, Winston Chern, Lin Zhou, Yuxuan Lin, Pin-Chun Shen, Xiang Ji, Xi Ling, Ahmad Zubair, Yuhao Zhang, Han Wang, Madan Dubey, Jing Kong, Mildred Dresselhaus and Tomás Palacios. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting . Nature, 2019 DOI: 10.1038/s41586-019-0892-1
张志宇毕业于美国麻省理工学院(Massachusetts Institute of Technology),简称MIT。麻省理工学院是位于美国马萨诸塞州剑桥市的一所世界知名、私立研究型大学,是美国高等教育领域最重要的研究机构之一,被誉为“世界科学技术领域的殿堂”。麻省理工学院的校友和教授中共获得了多项诺贝尔奖和美国国家科学院院士,赢得了极高的国际声望。麻省理工学院与哈佛大学、耶鲁大学、斯坦福大学、加州大学伯克利分校和斯克里普斯研究所等共同组成了“美国六大名校”,在全球大学排名中名列前茅。
张志宇毕业于麻省理工学院,并在之后加入了斯坦福大学的计算机科学博士课程。在麻省理工学院,张志宇主修计算机科学专业,并在该校获得了计算机科学学士学位和硕士学位。期间,他曾参与过多个计算机科学领域的研究项目,拥有丰富的科研经验和扎实的技术功底。在该校期间,他还担任了多个社团和组织的领导职务。随后,张志宇进入了斯坦福大学计算机科学博士课程学习,他的博士论文题目为“Graph Processing on GPUs”,主要研究方向是图处理算法及其在GPU上的优化实现。在斯坦福大学,他继续深入研究计算机科学领域,并发表了多篇论文,其中包括在顶级国际会议SIGMOD和VLDB上发表的论文。张志宇通过在麻省理工学院和斯坦福大学的学习和研究,不仅积累了丰富的知识和经验,同时也建立了广泛的人脉,为他的未来发展奠定了坚实的基础。
作者 | 张晴丹
你能想象0.2克的“绳子”可以提起5公斤重的物体吗?
没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。
近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。
评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”
1+1 10,凝胶界的“佼佼者”
“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。
此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。
王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。
论文中展示的是用0.2克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。
离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。
可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。
“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”
一步法轻松做成
长期以来,在凝胶材料领域最火的,非水凝胶莫属。
实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。
但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。
在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。
挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。
“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。
研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。
最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。
完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?
“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”
一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。
为实验蓄能,把理论变为现实
王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。
2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。
在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。
但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。
她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。
幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。
“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。
参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。
张志宇毕业于美国麻省理工学院(Massachusetts Institute of Technology),简称MIT。麻省理工学院是位于美国马萨诸塞州剑桥市的一所世界知名、私立研究型大学,是美国高等教育领域最重要的研究机构之一,被誉为“世界科学技术领域的殿堂”。麻省理工学院的校友和教授中共获得了多项诺贝尔奖和美国国家科学院院士,赢得了极高的国际声望。麻省理工学院与哈佛大学、耶鲁大学、斯坦福大学、加州大学伯克利分校和斯克里普斯研究所等共同组成了“美国六大名校”,在全球大学排名中名列前茅。
张志宇毕业于麻省理工学院,并在之后加入了斯坦福大学的计算机科学博士课程。在麻省理工学院,张志宇主修计算机科学专业,并在该校获得了计算机科学学士学位和硕士学位。期间,他曾参与过多个计算机科学领域的研究项目,拥有丰富的科研经验和扎实的技术功底。在该校期间,他还担任了多个社团和组织的领导职务。随后,张志宇进入了斯坦福大学计算机科学博士课程学习,他的博士论文题目为“Graph Processing on GPUs”,主要研究方向是图处理算法及其在GPU上的优化实现。在斯坦福大学,他继续深入研究计算机科学领域,并发表了多篇论文,其中包括在顶级国际会议SIGMOD和VLDB上发表的论文。张志宇通过在麻省理工学院和斯坦福大学的学习和研究,不仅积累了丰富的知识和经验,同时也建立了广泛的人脉,为他的未来发展奠定了坚实的基础。
美国麻省理工学院的化学工程师使用一种创新的聚合工艺,开发出了一种比钢更坚固、重量却轻如塑料的新材料,并且这种材料易于大批量制造。
这种新型材料是一种二维聚合物,可以自组合成薄片。与其他所有聚合物不同,一般聚合物往往只能聚合形成一维的、像意大利面一样的长链状,截至目前,科学家们一直认为诱导聚合物形成二维片材是不可能的。
麻省理工学院化学工程教授、本项全新研究工作的主要负责人Michael Strano表示,过去人们通常不认为塑料可以用作建筑物结构材料,但使用这种全新的材料,可以创造新事物。这种新材料具有非比寻常、令人兴奋的特性,可以用作 汽车 零件或者手机轻质耐用涂层,此外还可用作桥梁或其他结构的建筑材料。
研究人员已经就生成这种材料的过程申请了两项专利,相关研究成果已经发表在《自然》期刊中的一篇论文。麻省理工学院博士后Yuwen Zeng是该研究的主要作者。
二维材料
包括所有塑料在内的聚合物是由单体组成的结构单元重复聚合成链而成。这些链通过在其末端不断添加新的结构单元形成长链。一旦聚合过程完成,聚合物就可以使用注塑成型的方式,制造三维物体,如水瓶等。
材料科学界长期以来一直存在一种假设:如果可以诱导聚合物生长成二维片材,它们应该会形成极其坚固、轻质的材料。不过在该领域经过数十年研究后,科学家们得出的结论是这种材料不可能实现。其中的重要原因是,在聚合过程中只要有一个单体向上或向下旋转,超出二维平面,材料就会在三个维度上膨胀生长,片状结构将丢失。
然而,在此次进行的新研究中,Strano和他的同事们提出了一种全新聚合工艺,能够生成一种被称为聚芳酰胺的二维片材。其中单体结构单元使用的是一种名为三聚氰胺的化合物,它含有一个碳氮原子环。在适当的条件下,这种单体可以二维生长,形成圆盘状材料。这些圆盘相互堆叠,通过层间的氢键结合在一起,使结构非常稳定和牢固。
Strano表示,全新聚合工艺可以制造出片状分子面,而不是过去形成的制造一个类似意大利面的长分子链,因此能够实现在二维尺度上将分子面自动连接在一起。这种聚合机理可在溶液中自动发生,当材料聚合完成后,可轻松地旋转镀膜形成非常坚固的薄膜。
由于材料在溶液中可自组合,因此可以通过简单地增加起始原料量实现大量制造。研究人员表示,这种材料薄膜可涂覆在其他物体表面上,材料牌号为2DPA-1。
Strano表示,随着这项科研工作取得的进步,人类拥有了二维高分子,这将有助于更容易地制成非常坚固且极薄的新材料。
轻质且高强
研究人员进一步研究显示,新材料的弹性模量——即使材料变形所需的力——比防弹玻璃高4到6倍。此外,尽管这种材料的密度只有钢的六分之一,但它的屈服强度——破坏材料所需的力——是钢的2倍。
芝加哥大学普利兹克分子工程学院院长Matthew Tirrell表示,这项新技术“体现了一种非常有创意的化学方法,可以制造这种相互连结的二维聚合物”。
Tirrell表示,能够形成这种全新聚合物的重要原因是它易于在溶液中生成,由于材料具有很好的比强度,这将促进许多新的应用,例如新的复合材料或液体中防止扩散的膜材料等。
2DPA-1的另一个关键特性是它不透气。其他聚合物材料一般都是由长链盘绕而成,分子间带有间隙,可以让气体渗入。但是这种新材料是由像乐高积木一样拼接在一起的单体制成,气体分子无法从中间穿过。
利用这种性质,人们可以创造出可完全防止水或气体通过的超薄涂层。这种阻隔涂层可用于保护 汽车 和其他装备中使用的金属结构表面。
Strano研究团队正在就这种特殊聚合物能够形成二维片材的机理进行更详细的研究。此外,研究人员正在尝试改变分子构成以创造其他类型的新型材料。
该研究由美国能源部科学办公室所属的增强纳米流体运输中心(CENT)和美国陆军研究实验室资助。(陈济桁)
都说“少年强,则国强”这句话说明了正在成长的青少年正是祖国未来的希望。很多少年人从小就被家长寄予厚望,希望能望子成龙,望女成凤,长大后有所成就对祖国做出一点贡献。这样优秀的人往往都是别人家的小孩,但现实中确实就有很多这样优秀的人存在,这两天一直被讨论上了热搜的中国少年曹原就是大人们口中所说的别人家的孩子了。曹原可以说是天才一般开了挂的存在了,虽然年年纪小,但个人所获得的荣誉是很多人一辈子都达不到的高峰。2月1日他再次在《自然》上发表了自己的第五篇论文,引起了很多人的热烈讨论,被大家直呼天才,作为一名中国人非常值得大家骄傲,也印证了那句老话“自古英雄出少年”。对于曹原的成绩很多人可能并不熟悉,那下面就来具体说说他有哪些值得大家为之称赞的地方。
1996年出生的曹原从2007年开始,在三年内完成了小学六年级,初中以及高中的所有课程,并在2010年一高考总分6699的优异成绩考入中国科学技术大学少年班,在大学毕业后又成功考入麻省理工学院,现在是该学校的博士生,这样一路飘红的成绩可以说是只有在小说里才能见到了,这样的中国少年确实值得大家对他竖起大拇指。
英国《自然》杂质是世界上最早的国际性科技期刊,非常的有权威性,不管是不是以第一作者的身份在该杂志上发表论文都是非常优秀的,而曹原在2018年时就以第一作者的身份在该杂志上连续发表了两篇论文,接着在2020年以及2021年2月份又以第一作者的身份在该杂志上先后发表了3篇论文,短短的三年内发表了5篇论文,也是该杂志上最年轻的以第一作者发表论文的中国学者,这样的成就确实优秀了。
在2018年曹原就以22岁的年龄入选了福布斯中国30岁以下的科技领域精英榜单,成为入选年龄最小的一位。并且在同年12月份,曹原也荣登《自然》杂志年度影响世界的十大科学人物榜首,这样的荣誉可以说是对他的学术研究以及个人能力是非常认可的,曹原这个名字在国际上也是非常有影响力的,而这位少年是来自中偶的,也是非常值得中国人骄傲的。
看了曹原的个人成就,对他的赞赏已经不能用言语表达了,只能说开挂的人生确实无需多加解释了,就是牛。
曹原是美国麻省理工学院博士生,获得许多成就:1. 曹原发现让石墨烯实现零电阻导电的方法,能源利用率与能源运输效率大幅提高。2.2020年5月6日,分别以第一作者兼共同通讯作者、共同第一作者的身份在最新一期Nature连发两篇论文。3.2021年2月1日,在《自然》杂志上发表《Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene》论文。
应该说是特别难的吧,因为这上面对于文章的审核是非常严格的,很少有论文能够通过。
他是我们国家的骄傲,能够在如此年纪就做出如此大的成就,值得夸奖。