1.1 投稿及审稿:为缩短稿件刊发周期,提高杂志运行效率,自2010年1月1日起,杂志不再接受纸版投稿和邮寄光盘,只接受网络投稿。杂志收稿、退作者修改、稿件是否采用等信息将通过电子邮件或手机短信等方式及时向作者反馈。专家审稿也将采用网络方式,不再邮寄纸质版稿件。1.2 稿件类型:该刊欢迎原创性的论著、技术交流、个案报道及专家论坛、文献综述和科技信息等栏目的稿件。杂志内容设置包括:放射诊断学(Diagnostic Radiology)、超声医学(Ultrasound Imaging)、核医学(Nuclear Medicine)、介入医学(Interventional Medicine)、光学成像(Optical Imaging)、综合影像(Multi-Modality Imaging)、医学影像工程(Medical Imaging Engineering)和述评与综述(Editorial and Review)。对选题新颖、重点突出、数据可靠、文笔精炼的原创性稿件将优先发表。1.3 稿件构成:稿件主体由①中英文摘要、②文本正文、③图片与图表3部分构成,此部分内容不得透漏作者和单位的相关信息,以1个Word文档或者压缩文件(.zip或者.rar)的格式上传。作者信息、单位介绍信或推荐信的扫描照片另外组成压缩文件上传。同时完成网络投稿的栏目填写。作者可以参照网站的样稿组织信息和排版。1.4 地址:北京市复兴路28号,解放军总医院健宾楼1206室,邮政编码:100853。
高等。光学一区是中科院下发的研究性文章,其采集的信息量大,且出现的问题存在变化性,其后期处理的复杂度大,发表一篇该文章需要消耗很长的时间。
1.1 获得基金资助的文章应在首页左下方以“[基金项目]”作为标识注明基金项目名称,并在圆括号内注明其项目编号。例:[基金项目]国家自然科学基金资助项目(5937050)。1.2 来稿应一式两份,均用打印稿,可打印在20×20方格稿纸中。要求字迹清楚,英文摘要及文献应隔行打印。特殊文种、上下角标符号、需排斜体等应予注明。凡字迹潦草、涂改不清的稿件,一律退回。1.3 来稿须附单位推荐信。推荐信应注明对稿件的审评意见以及无一稿两投、不涉及保密、署名无争议等项。 1.4 经审核初步拟定刊用的稿件按退修意见修改整理后,为缩短刊出周期和减少错误,请将修改稿以纯文本格式存入软盘,与修改稿打印件一并寄回该刊编辑部,同时注明联系电话、传真号码备用。1.5 该刊欢迎使用电子邮件(Email)投稿,请在E-mail的Subject项中注明“投稿”或“co
这应该是物理的研究范围吧,物理类的刊物是不是也可以呢,我排不了序哦,这还是要结合你的文章质量来的,物理刊物我倒是可以说一说,现代物理,应用物理都是
2、光学学报 3、发光学报 4、光子学报 5、低温物理学报6、中国激光 7、原子与分子物理学报
如果想发光电子领域的文章,可以考虑光学期刊《光电子》,是一本国际中文期刊,ISSN号为2164-5469。
光学工程 (Optical Engineering ) ,回溯至 1990 年。生物光学期刊 (Journal of Biomedical Optics) ,回溯至 1996 年。电子成像期刊 (Journal of Electronic Imaging) ,回溯至 1992 年。微印刷、微制造和微系统期刊 (Journal of Microlithography, Microfabrication, & Microsystems) , 2002 年创刊。应用遥感期刊 (Journal of Applied Remote Sensing) , 2007 年创刊。纳米光子学期刊 (Journal of Nanophotonics) , 2007 年创刊。
如果想发光电子领域的文章,可以考虑光学期刊《光电子》,是一本国际中文期刊,ISSN号为2164-5469。
激光与电子学进展一般都是三个人审稿,因为他这个本来就是属于一个审稿的人数不会太多,因为他这些稿件也不是特别的多,所以他这个激光与电子学进展的话,一般都是三个审稿人。
高等。光学一区是中科院下发的研究性文章,其采集的信息量大,且出现的问题存在变化性,其后期处理的复杂度大,发表一篇该文章需要消耗很长的时间。
一篇学术论文的审稿人数量是根据不同领域和期刊的要求而有所不同。通常,审稿人被选定的标准包括其在该领域中的研究专长和资历、研究成果和贡献、以及可能对本文的可靠性、科学价值和原创性的评估能力。因此,具体的审稿人人数需要参考文章投稿到的期刊的要求以及审稿流程。
近年来,激光与光电子学领域的研究取得了许多重要进展。以下是几位审稿人的观点:1. 张教授认为,激光技术在医疗领域的应用越来越广泛,如激光手术、激光治疗等。同时,光电子学在通信、能源等领域也有了很多新的应用。2. 王博士认为,激光技术在制造业中的应用也越来越重要,如激光切割、激光打印等。此外,光电子学在传感器、探测器等领域也有了很多新的进展。3. 李教授指出,激光技术在科学研究中的应用也越来越广泛,如激光光谱学、激光干涉仪等。同时,光电子学在材料科学、生物医学等领域也有了很多新的应用。总的来说,激光与光电子学的研究在不断深入,应用领域也越来越广泛。未来,我们可以期待更多的创新和突破。
可以学习ZEMAX、CODEV、TracePro、LightTools等,可以去光行天下光学专版:,学习交流一下!
光学工程 (Optical Engineering ) ,回溯至 1990 年。生物光学期刊 (Journal of Biomedical Optics) ,回溯至 1996 年。电子成像期刊 (Journal of Electronic Imaging) ,回溯至 1992 年。微印刷、微制造和微系统期刊 (Journal of Microlithography, Microfabrication, & Microsystems) , 2002 年创刊。应用遥感期刊 (Journal of Applied Remote Sensing) , 2007 年创刊。纳米光子学期刊 (Journal of Nanophotonics) , 2007 年创刊。
生物通报道:每一种新型成像技术都像是有着神奇的光环,突然一下就能看到之前不能看到的事实,近期来自华盛顿大学的研究人员发表了题为“Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs”的综述文章,介绍的一种近年来迅速发展的成像技术:光声成像(photoacoustic tomography)更是如此。这一相关文章公布在Science杂志上。文章的通讯作者是华盛顿大学著名生物医学光学专家汪立宏(Lihong V. Wang)教授,汪教授现任国际生物医学光学协会主席,华中科技大学“长江学者”讲座教授。汪教授在生物医学光学成像技术方面获得了多项成果,已经出版了两本专著,在Nature Biotechnology, Physical Review Letters, Physical Review, Optics Letters, 和IEEE Transactions上发表上百篇论文。 汪教授与来自华盛顿大学医学院的医师们共同将四种光声成像技术应用到了临床,其中一种能观察到前哨淋巴结活检术(Sentinel Lymph Node),这对于乳腺癌发生阶段具有重要意义。还有一种成像技术能监控机体对化疗的早期应答,第三种技术则能成像黑色素瘤,最后一种能观察消化道。 其中最令人激动的是光声成像能揭示组织氧利用的情况,因为过量的氧燃烧(称为高代谢,hypermetabolism)是癌症的一个重要标志。汪教授说,因为癌症早期阶段,癌症还没有扩散,因此早期预警诊断无需造影剂,这将改变癌症诊断。(光声成像最令人激动的用途是检测氧代谢,氧代谢是癌症的一大标志,这将带给我们更早更有效的诊断方法。) 光声成像的原理 虽然我们已经接受了X射线成像所获得的灰色照片,但这只是我们机体内部“照片”的一个稀疏替代品。然而由于光子只能穿透约为一毫米的软体组织,之后就会散射出去,无法解析其途径,获得图形,因此我们只能接受这样的图片。 但是散射并没有破坏光子,这些基本粒子能直达7厘米的深处(大约3英寸)。光声成像的方法就在于将深处的吸收光转变成了声波,后者比光散射情况低一千倍。这可以通过某光波长纳秒脉冲激光照射成像组织来实现。 也就是说,当宽束短脉冲激光辐照生物组织时,位于组织体内的吸收体 (如肿瘤 )吸收脉冲光能量,导致升温膨胀,产生超声波。这时位于组织体表面的超声探测器件可以接收到这些外传的超声波,并依据探测到的光声信号来重建组织内光能量吸收分布的图像。 由此可见光声成像技术检测的是超声信号,反映的是光能量吸收的差异,所以这一技术能很好地结合光学和超声这两种成像技术各自的优点。而且由于探测的是超声信号,所以这一技术能克服了纯光学成像技术在成像深度与分辨率上不可兼得的不足。而且由于光声技术的图像差异来源于组织体光学吸收的不同,这就能够有效地补充纯超声成像技术在对比度和功能性方面的缺陷。 除此之外,光不同于X射线,不会产生任何健康威胁,而且光声成像也比X射线成像对比度更高,还能由“内源性”造影剂,获得彩色分子图像,这包括血红蛋白——随着获得和失去氧气,而改变颜色,还有黑色素,以及DNA——处于细胞核中的DNA比细胞质中的DNA更“暗”。 通过“外源性(引入)”造影剂的帮助,比如有机染料,或者能表达彩色分子的基因,光声成像也能对组织成像,比如淋巴结,这一结构易于周围环境混淆。汪教授还利用报告基因编码了彩色物质进行实验,这获得了良好的结果。 总体来说,光声成像这种基于生物组织内部光学吸收差异、以超声作媒介的无损生物光子成像方法,结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性的优点,以超声探测器探测光声波代替光学成像中的光子检测,从原理上避开了光学散射的影响,可以提供高对比度和高分辨率的组织影像,为研究生物组织的结构形态、生理特征、代谢功能、病理特征等提供了重要手段,在生物医学临床诊断以及在体组织结构和功能成像领域具有广泛的应用前景。