小编准备了数学微积分论文选题-12月2日给2013毕业生这篇文章,希望会帮到2013年数学专业毕业生和各位老师们!例说微积分知识在数学解题中的应用微积分课堂教学与数学建模思想微积分课程教学中培养学生数学审美能力的探讨微积分MATLAB数学实验"微积分"教学中融入数学文化的教学设计微积分教学中渗透数学建模思想探讨《经济数学基础(微积分)》精品课程建设的实践与探索浅谈微积分与数学软件相结合的教学微积分MATLAB数学实验数学建模思想融入微积分课程教学初探微积分教学中渗入数学文化的实践与思考高中数学新课程微积分的课程设计分析2009年浙江省高等数学(微积分)文专组竞赛试题评析数学思想方法及其在微积分教学中的运用研究高中数学教科书中微积分内容的整体比较微积分中数学语言的时序性微积分方法在初等数学中的应用研究微积分方法在初等数学教学中的应用高等数学中微积分证明不等式的探讨转变教育教学观念培养学生的数学素质——浅议高职中《微积分》的教学逾越形式化极限概念的微积分课程--《普通高中数学课程标准(实验)》实证研究浅谈高等数学中微积分的经济应用英国A水平数学考试中的微积分简析高等数学教学中如何合理使用教材——从"微积分基本公式"一节的教材使用谈起大学数学教学中开展研究性学习的探索与实践——以《微积分》教学为例对高中数学微积分的理解及教学建议例谈微积分方法在初等数学教学中的应用关于中学数学中微积分教学的思考2008年浙江省高等数学(微积分)文专组竞赛试题评析将数学建模融入微积分教学的探索(责任编辑:论文题目网)
我们老师说《初等数学研究》这本杂志不错
感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
在网上找一下与数学相关的杂志,按照他们的要求就可以投稿了,不过你也很强,中学生就在搞差分方程了,网页输入壹品优,或许能帮你
哈哈,很简单的啦
第一段:发现问题,提出问题第二段:解决问题的思路或过程第三段:活动感悟
没什么格式,就像写作文一样。如题目:数学数学,数理人生 数学是这样一种东西:她提醒你有无形的灵魂,她赋予她发现的真理以生命;她唤起心神、澄清智慧;她给我们的内心思想增添光辉;她涤尽我们有生以来的蒙昧和无知。 数学方法的万能性与广泛性使它能够处理种类众多的问题,如空间的和运动的,机会的和概率的,统计的和社会科学的,艺术的和文学的,逻辑的和哲学的,音乐的和建筑的,政治的和战争的,食品的和医药的,遗传的和变异的,人类思维的和电脑的。 数学文化是是人类文明中的精华部分。数学提供了理性思维的范式,它可以使人的思维条理化和敏捷化。数学提供了完善的方法论,可以使人严密化、客观化,排除感情和偏见的介入,从而做出正确的判断。1.数学与对知识的探求。 我们首先问,有独立于人的物理世界存在吗?答案历来有两种。唯物主义认为,存在;而唯心主义认为,不存在。我们是唯物主义者,认为存在一个独立于人的客观世界。这正是我们研究的起点和探索的对象。 其次,自然要问,我们如何获取关于外部世界的知识呢?为了获取关于外部世界的知识,每一个人都不得不依靠自己的感官知觉。人类共有几种知觉?五种:视觉、听觉、触觉、味觉和嗅觉。亚里士多德认为,知识是感觉的结果。他说:“如果我们不能感觉任何事情,我们将不能学会或弄懂任何事情;无论我们何时何地思考什么事情,我们的头脑必然是在同一时间使用着那件事情的概念。”他还说:“感觉和感官经验是科学知识的基础。”那么,通过感官获取的知识正确吗?精确吗?要回答这两个问题,就要对我们日常的经验做些认真的考察了。因为我们日常的生活都是在经验的指导下进行的,也并没有出多少错。但是,当我们依着较高原则的标准,来推论,来思考,来反省事物的本性时,我们就会发现问题了。把一根棒的一部分放在水里,我们看到什么?我们将看到一根弯曲的棒。如果把一根直棒放在水里,也把一根弯棒放在水里,恐怕你很难辨别哪一个是直的吧?这说明,感官具有粗糙性,有时还具有欺性。更令人遗憾的是,许多重大的物理现象根本不是感官所能知觉到的: 有谁感到地球在自转,而且还绕太阳公转? 有谁感到行星受到太阳的引力,而绕太阳公转? 有谁感到电磁波的存在? 既然重大的物理现象不是感官所能知觉到的,那么人类是如何发现这些现象的呢?答案是借助数学这一强大的工具。在探索宇宙的奥秘中,数学是一个本质的、关键的、具有穿透力的工具。事实上,数学方法的运用是科学和前科学的分水岭。例如,静电吸引的现象,虽然古人早就知道,但是直到库仑定律发表的时候,电学才进入科学的行列。2. 数学的精神。正如克莱因所指出的:“数学是一种精神,一种理性精神。正是这种精神激发、促进、鼓舞并驱使人类的思维运转到最完善的程度,也正是这种精神试图决定性地影响人类的物质、道德和社会生活;试图回答人类自身提出的问题:努力去理解和控制自然;尽力去探求和确立已经获得的知识的最深刻和最完美的内涵”。因此,充分认识数学精神及其价值,实现数学与人文的结合是当前素质教育的首要目标。现在,我们对数学本身作些考察。因为,如果对数学本身的认识不本质、不全面、不系统,我们不可能学好和教好数学。3.五个质不同的时期。 数学史大致可以分为五个质不同的时期。精确地区分这些阶段是不可能的,因为每一个阶段的本质特征都是在前一阶段中酝酿形成的。 第一个时期——数学形成时期.这是人类建立最基本的数学概念的时期.人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最简单的几何形式,逐步地形成了理论与证明之间的逻辑关系的“纯粹”数学.算术与几何还没有分开,彼此紧密地交织着.� 第二个时期称为初等数学,即常量数学的时期.这个时期的最基本的、最简单的成果构成现在中学数学的主要内容.它从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,逐渐形成了初等数学的主要分支: 算术、几何、代数、三角. 这时的几何学以现实世界中的形的关系为主要研究对象。它的主要成果就是欧几里得的《几何原本》及其延续。《几何原本》把几何学的研究推到了高度系统化和理论化的境界,使得人们对于空间的认识和理解在深度上和广度上都大大前进了一步,这是整个人类文明发展史上最辉煌的一页。代数学则研究数的运算。这里的数指自然数、有理数、无理数,并开始包含虚数。解方程的学问在这个时期的代数学中居中心地位。 第三个时期是变量数学的时期.从17世纪开始的数学的新时期——变量数学时期,可以定义为数学分析出现与发展的时期.变量数学建立的第一个决定性步骤出现在1637年笛卡儿的著作《几何学》.这本书奠定了解析几何的基础,它一出现,变量就进入了数学,从而运动进入了数学.恩格斯指出:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了……”在这个转折以前,数学中占统治地位的是常量,而在这之后,数学转向研究变量了.变量数学发展的第二个决定性步骤是牛顿和莱布尼茨在17世纪后半叶建立了微积分. 第四个时期为公理化数学时期.19世纪初,数学发生了质的变化,开始了从变量的数学向公理化数学的过渡。主要体现在下面几个方面:数学的研究对象发生了质的变化。在19世纪之前,数学本质上只涉及两个常识性的概念:数和形。此后数学的研究范围大大地扩展了,数学不必把自己限制于数和形,数学可以有效地研究任何事物,例如,向量、矩阵、变换、运动等,而这些事物常常以某种方式与数和形发生关联。数学与现实世界的关系也发生了质的变化。这之前,经验是公理的唯一来源,实际上,当时只有一套公理体系——欧氏几何学的公理体系;这之后,数学开始有意识地背离经验。这之前,数学研究经验世界,那时只存在一种几何学—欧氏几何学;这之后,数学研究可能世界,出现了多种几何学:欧氏几何学、双曲几何学;椭圆几何学、拓扑学等。人类的思维可以自由创造新的公理体系。数学的抽象程度进入更高的阶段。数学常常被看作逻辑过程,并不与哪个特别的事物相关。这就引出了20世纪初罗素的数学定义:数学可以定义为这样一门学科:我们不知道在其中我们说的是什么,也不知道我们说的是否正确。数学家不知道自己所说的是什么,因为纯数学与实际意义无关;数学家不知道自己所说的是否正确,因为作为一个数学家,他不去证实一个定理是否与物质世界相符,他只问推理是否正确。 第五个时期为信息时代的数学。计算机的诞生和广泛使用使数学进入了一个新的时代。几乎同时,信息论和控制论也诞生了,数学迎来了一个新高潮。信息时代,就是以计算机来代替原来由人来从事的信息加工的时代。由于计算机的应用,需要数学更加自觉,更加广泛地深入到人类活动的一切领域。“数学工作”的含义已经发生深刻的变化。信息加工时代的数学工作包括 数学研究工作,数学工程工作和数学生产工作。 数学研究工作有了新的含义。它研究的领域大大扩大了。数学模型具有更大的意义。 数学工程是指需要有数学知识、数学训练的人来从事的信息工程。计算机的软件工程就是一类数学工程,但不限于此,机器证明也属于数学工程。数学生产是实现数学工程,形成产品的工作,就是软件生产。由于数学工程和数学生产的发展,建立数学模型的工作有了更为广泛的需要。并且,离散数学处于更加重要的地位。4.四个高峰期。从前面的论述可以看出,在整个数学史上出现了四个高蜂期。1) 欧几里得《几何原本》的诞生。数学从经验的积累变成了一门理论科学,数学科学形成了。2) 解析几何与微积分的诞生。这使人们在认识和利用自然规律方面大大地前进一步,使力学、物理学有了强有力的工具。引起了整个科学的繁荣。3) 公理化的数学诞生于19世纪末与20世纪初,数学进入成熟期:巩固了自身的基础,并发现了自身的局限性。4) 与计算机结合的当代数学进入更加广阔的领域,并影响到人类文明的一切领域,数学进入新的黄金时代。5.六次飞跃。数学不只是算法和证明,它分出了层次。数学思想的发展,数学领域的扩大呈现了六次大的飞跃。从数字运算到符号运算的飞跃,这就是从算术到代数学的发展。发生在16到17世纪。数学符号的诞生到今天不到400年,但是它大大地促进了数学的发展。从常量数学到变量数学的飞跃,这就是微积分的诞生。出现在17世纪。微积分的诞生对科学技术的发展带来了根本性的影响。可以说是现代世界和古代世界的分水岭。最突出的是航天时代的到来和信息时代的到来。从研究运算到研究结构的飞跃。这主要体现在抽象代数学的诞生。发生在19世纪。这使得数学的研究对象超越了数和形的藩篱,从而研究更加广泛的对象。从必然性数学到或然性数学的飞跃。这就是概率论和统计学的诞生。虽然这两门学科诞生得相当早,但它们的成熟发展却是在20世纪。这个学科促使人们的思考方式发生了新的飞跃。使传统的一一对应的因果关系转变为以统计学作基础。这深刻地影响了理论与经验资料相互联系的方式。从线性到非线性的飞跃。非线性科学的诞生和发展是在20世纪。混沌学的诞生是一个重要标志。混沌是指,由定律支配的无定律状态。数学家梅在1976年说:“不仅学术界,而且在日常的政治学界和经济学界里,要是更多的人认识到,简单的系统不一定具有简单的动力学性质,我们的状况会更好些。“从明晰数学到模糊数学的飞跃。出现在20世纪。当我们综观数学思想这些飞跃发展的时候,我们会有沧海桑田之感。正象一个修仙人,若干年后回到自己的家乡,发现一切都变了:惟有门前鉴池水,春风不改旧时波。我们会感到,旧的课本合上了。我们在学校所学的知识,已经随着新的发明和发现而变得陈旧了。“科学所带来的最大变化是变化的激烈程度。科学所带来最新奇的事是它的新奇程度。”所以,我们面临的现实是,请君莫奏前朝曲,听唱新翻杨柳枝。6.数学的特点。数学区分于其它学科的明显特点有三个:第一是它的抽象性,第二是它的精确性,第三是它的应用的极端广泛性。抽象性。抽象不是数学独有的特性,任何一门科学都具有这一特性。因此,单是数学概念的抽象性还不足以说尽数学抽象的特点。数学抽象的特点在于:第一,在数学的抽象中只保留量的关系和空间形式而舍弃了其它一切;第二,数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其它学科中的一般抽象;第三,数学本身几乎完全周旋于抽象概念和它们的相互关系的圈子之中。如果自然科学家为了证明自己的论断常常求助于实验,那么数学家证明定理只需用推理和计算。这就是说,不仅数学的概念是抽象的、思辨的,而且数学的方法也是抽象的、思辨的。数学的抽象性帮助我们抓住事物的共性和本质。维钠说:“ 数学让人们抓住本质而忽略非本质的东西。数学也容许人们在不同的领域提出相同的问题,而不必囿于某一特定专业领域。对那些视野开阔、敏感严谨的数学家而言,数学无疑是发现和发明的工具。”关于抽象的作用,数学家辛富(J.Singh) 说:数学之所以能够以令人吃惊的程度深入到科学和技术的每一个分支中去,其原因在于数学的思想是纯粹抽象的,而抽象化正是科学和技术的主要动力。数学越是远离现实(即走向抽象),它就越靠近现实。因为不管它显得多么抽象,它归根到底还是从某些现实范围中抽象出来的,一定的本质特征的具体表现。数学的抽象性帮助我们抓住事物的共性和本质。正是数学的抽象性使得数学能够处理种类众多的问题,如空间的和运动的,机会的和概率的,艺术的和文学的,音乐的和建筑的,战争的和政治的,食物的和医药的,遗传的和继承的,人类思维的和电脑的等。数学的抽象性显示了思维的广阔性:越抽象的东西,应用的领域就越广。抽象的另一个作用是不断地对日益扩大的数学知识总体进行简化和统一化。数学的精确性表现在数学定义的准确性、推理和计算的逻辑严格性和数学结论的确定无疑与无可争辩性。当然,数学的严格性不是绝对的、一成不变的,而是相对的、发展着的,这正体现了人类认识逐渐深化的过程。数学中的严谨推理和一丝不苟的计算,使得每一个数学结论都是牢固的、不可动摇的。这种思想方法不仅培养了科学家,而且它也有助于提高人的科学文化素质,它是全人类共同的精神财富。爱因斯坦说:“为什么数学比其它一切科学受到特殊的尊重?一个理由是,它的命题是绝对可靠的和无可争辩的,而其它一切科学的命题在某种程度上都是可争辩的,并且经常处于被新发现的事物推翻的危险之中。…数学之所以有高声誉,还有一个理由,那就是数学给精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。”数学的精确性是思维严谨性的典范。数学应用的极其广泛性也是它的特点之一。正像已故著名数学家华罗庚教授曾指出的,宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在,凡是出现“量”的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。数学之为用贯穿到一切科学部门的深处,而成为它们的得力助手与工具,缺少了它就不能准确地刻画出客观事物的变化,更不能由已知数据推出其它数据,因而就减少了科学预见的。N.布特勒说:“现代数学,这个最令人惊叹的智力创造,已经使人类心灵的目光穿过无限的时间,使人类心灵的手延伸到了无边无际的空间。”数学应用的广泛性是思维广阔性的具体体现。7.数学的教育价值。首先,数学的抽象性使得数学问题的解决伴随着困难。在解决数学问题的过程中,使学生体验到挫折和失败,而这正是砥砺意志和打磨心理品质的绝好时机。愈挫愈奋,百折不挠的良好心理素质不会在温室中形成。如果学生在学校里没有尝尽为求解问题而奋斗的喜怒哀乐,那么数学教育就在一个重要的地方失败了。记住马克思的话:“在科学上是没有平坦大道可走的,只有在崎岖的攀登上不畏劳苦的人,才有希望达到光辉的顶点。”其次,数学的严密性和精确性可以使学生在将来的工作中减少随意性。英国律师至今要在大学中学习许多数学知识,并不是律师工作要多少数学,而是出于这样一种考虑:经过严格的数学训练可以使人养成一种独立思考而又客观公正的办事风格和严谨的学术品格。数学教育是培养学生诚信观念的重要渠道之一。在数学课上形成的诚信观是持久的,根深蒂固的。前苏联的数学家辛钦说:“数学教学一定会慢慢地培养青年人树立起一系列具有道德色彩的特性,这种特性中包括正直和诚实。”再次,数学是思想的体操。进行数学推导和演算是锻炼思维的智力操。这种锻炼能够增强思维本领,提高抽象能力、逻辑推理能力和辨证思维能力,培养思维的灵活性和批判性。思维的灵活性表现在不受思维定式的束缚,能迅速地调整思维方向,并善于从旧的或传统的思维轨道上跳出来,另辟蹊径。数学中的一题多解是培养思维灵活性的有效途径。思维的批判性指,对论证和解答提出自己的看法。数学中常用的反证法和构造反例是思维批判性的具体表现。数学不仅仅是一种工具,它更是一个人必备的素养。它会影响一个人的言行、思维方式等各个方面。一个人,如果他不是以数学为终生职业,那么他的数学素养并只不表现在他能解多难的题,解题有多快,数学能考多少分,关键在于他是否真正领会了数学的思想,数学的精神,是否将这些思想融会到他的日常生活和言行中去。日本的米山国藏说:“我搞了多年的数学教育,发现学生们在初中、高中接受的数学知识因毕业了进入社会后,几乎没有什么机会应用这些作为知识的数学,所以通常是出校门不到一、两年就很快忘掉了。然而,不管他们从事什么业务工作,惟有深深铭刻于头脑中的数学精神,数学的思维方法,研究方法和着眼点等,都随时随地发生作用,使他们受益终生。”数学还有另外的作用。数学家狄尔曼说:“数学能集中、强化人们的注意力,能够给人以发明创造的精细和谨慎的谦虚精神,能够激发人们追求真理的勇气和信心,…数学更能锻炼和发挥人们独立工作精神。”数学已成为现代人的基本素养。这是一篇标准的数学论文,你可以参造其中的论述方式。你可以像文稿中一样分条陈述,可以引用一些名句或例子来充实文章。至于叫我写,怕不如你意,慢慢来总会写好的。
数学是教育当中三大学科之一,数学教师发表数学论文在晋升职称时是必备得的条件之一,发表数学教育论文普刊针对数学教育得的期刊有60多种,教育综合类期刊也可以是数学教师参考得的方向之一。 教学数学论文发表刊物:《初中数学教与学》本刊物由扬州大学主办得的教学研究刊物,它以“初等数学教与学得的研究”为特色,最大限度地贴近中学数学教学实际,反映广大师生在初等数学教与学过程中总结得的新观点、新体会和新经验,文风朴实,介绍“用得上得的教育理论,学得会得的解题技巧”,服务教学。 教学数学论文发表刊物:《大学数学》本刊物是经科技部批准,由教育部主管,教育部数学与统计学教学指导委员会、高等教育出版社、合肥工业大学主办得的全国性以教学为主得的数学sci期刊。读者对象是各类大专院校师生,数学工作者。 教学数学论文发表刊物:《高等数学研究》本刊物配合大学教学教育,研究和阐发高等数学得的理论、方法及应用,以促进教学改革,提高教学水平,增强大学生数学素养为宗旨,为培养高质量得的科技人才服务。主要读者对象为大学生,大学和中等学校数学教师,其他科技人员和数学爱好者。设置众多栏目,具有学术与科普兼顾,数学研究与教育研究相结合,最为贴近广大师生得的特色。 教学数学论文发表刊物:《小学数学教育》本刊物创办以来,密切配合基础教育得的中心工作和中国教育学会小学数学专业委员会得的研究课题,交流小学数学教学改革得的经验,对提高我国小学数学教学质量起到了积极得的推动作用,受到广大小学数学教师、教研员得的欢迎。为了在实施数学新课程中帮助广大小学数学教师更好地理解《数学课程标准》,了解新得的课程标准教材,刊登关于《数学课程标准》解读、学习体会及数学课程标准教材介绍、使用过程中得的经验体会、优秀案例评析等方面得的文章,以使广大小学数学教师更地理解数学新课程,实施数学新课程。 教学数学sci论文发表刊物:《数学研究》本刊物为综合性数学刊物,其宗旨是推进数学科学研究,及时报道数学理论成果与应用数学成果,主要刊载有关数学得的创造性论文,研究简报等。读者对象为数学工作者,大专院校数学教师,理工科研究生,数学科学各专业高年级学生,有关科技工作者以及数学爱好者。
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
这个流程要根据具体是什么要求来,像省级国家级的话,因为比较简单,流程相对简单。如果是核心的话,因为刊物难度大,流程会相对复杂一些。但是你第一次弄的话,估计是初级或者中级职称。具体就看你讠仑文方向。
我们老师说《初等数学研究》这本杂志不错
在网上找一下与数学相关的杂志,按照他们的要求就可以投稿了,不过你也很强,中学生就在搞差分方程了,网页输入壹品优,或许能帮你
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
2000.10《中学实施创新教育应解决的几个问题》二等奖 聊城市东昌府区教育委员会2004.10《教师评价指标的关联分析》(04016) 聊城市教育科研成果三等奖 聊城市教育局2004.12《新课程标准下教师综合评价指标的关联分析》聊城市新课程改革教学研究会一等奖 聊城市初中教研室2005.6《AMOn-3的进一步商榷》山东省数学论文评选一等奖 山东数学会2005.10《对一道例题设置的商榷》中学数学教研论文评选二等奖 中学数学教学参考编辑部2006.1《与先哲对话之后的审视》东昌府区2005年度书香校园教师读书论文评选特等奖 东昌府区教育科学研究所2006.2“学用杯”竞赛命题一等奖(6、7、9、10题) “学用杯”全国数学知识应用竞赛评委会2006.8.10《关于 极值的讨论》全国第六届初等数学研究学术交流会论文评选二等奖 全国第六届初等数学研究学术交流会2006.8 《关于 极值的讨论》山东省数学优秀论文评选一等奖山东数学会 山东数学会初等数学研究专业委员会2006.9《关于一道竞赛题解法的商榷》(60455-180)2006年中学数学教研论文评选 二等奖 中学数学教学参考编辑部2006.9《关于 极值的讨论》(60454-400) 2006年中学数学教研论文评选 一等奖 中学数学教学参考编辑部2006.9 《AMO33-5的进一步的推广》(60456-250) 2006年中学数学教研论文评选 一等奖 中学数学教学参考编辑部2006.10 《冷静、理性、执着----再谈数学研究性学习》教育科研论文评选一等奖 东昌府区教育科学研究所2006.10 《新课程标准下的数学课堂教学重建》教育科研论文评选一等奖 东昌府区教育科学研究所2006.12《充分利用教材资源开展“信息技术与数学课程整合”的研究》 2006年中国教育系统(基础教育)年度论文评选一等奖 中国教育教学研究会2006.12《研究性学习中教师综合评价指标的关联分析》 2006年中国教育系统(基础教育)年度论文评选一等奖 中国教育教学研究会2007.01《冷静、理性、执着----再谈数学研究性学习》“全国第三届教育创新与实践论坛”征文一等奖 中国修辞学会读写研究会、中国教育学会中育研究室2007.01《充分利用教材资源,开展“信息技术与数学课程整合”的研究》“全国第三届教育创新与实践论坛”征文一等奖 中国修辞学会读写研究会、中国教育学会中育研究室2007年6月 《新课程背景下的校本科研的实施方法与途径的研究》山东省2007年度中小学教育科研优秀成果二等奖
自己去百度找
向数学杂志社投稿(可发电子邮件),在博客上发表,在百度文库上发表,……仅供参考。
一、选刊.选定一种期刊杂志作为自己的投稿对象.怎么选呢,先看自己学校或者单位评职称需要投什么级别的刊物.现在很多都要求必须是核心期刊,这个可以上网搜一下具体都有哪些.然后打开这个期刊的网址,看下期刊的具体分的板块,是不是跟自己文章相符,找到一个适合自己的.特别要注意,刊物本身有没有学术要求,比如:什么第一作者要求博士及以上学历,优先考虑副教授及以上职称,要求有基金项目,国家级优先考虑.二、写作.如果你的论文已经写好了,论文格式就根据投稿要求进行修改,不同的杂志社对论文的格式要求不一样.一定要严格按照这个要求操作的哦,包括查重的时候也是一样的.如果你的文章还没有写好,可以先了解下刊物的格式、要求、审稿喜好,然后再去写稿子,这样做,录用率很高的.三、投稿.最普遍的就是邮箱投稿了,但是现在假网站,假邮箱很多,一不小心就上当.这里给大家推荐一个很靠谱的方法:在知网的版权页上列有期刊的投稿邮箱或者官网地址.点击"原版目录页浏览"还可以查看封皮、扉页以及版权页等信息.保真,是不是比买书、浏览器盲搜方便多了.四、反馈通知.投稿结束并不是什么事情都没有了,恰恰相反,这才是刚开始.作者的文章可能立意选题都比较好,结构框架也十分明了,但是出现漏洞的机率还是有的,所以一般都会需要修改.论文一般需要三审,修改意见会发送至作者邮箱或者在投稿系统中显示,作者一定要随时关注邮件/系统动态,避免出现信息不及时的情况.按照修改意见修改文章后再发给编辑,审核无误就可以等候发表了.(终于可以放下心来~)另外,修改审核都是需要一定时间的,一般来说这个周期会在2-3个月.如果作者对时间有要求,一定要提前发表,确保万无一失.五、缴纳版面费.现在的刊物一般都要收取一定的版面费,按文章的字数占几个版面还有刊物的等级来收取一定的版面费.只有少数的不收取版面费.六、签收样刊.出样刊的时候,杂志社一般会预留样刊寄给作者,以便作者需要时用.但是有一点,杂志社可能不会存多余的样刊,作者拿到样刊后一定要保存好,以免丢失.(学术堂提供更多论文知识)
论文发表流程有哪些?我看到:通知:部分论文取消、条件放宽。查阅各省最新政策可搜:全国论文办郑州郑密路20号办(简称、统称,搜索可查各省全部政策,在百度、360、搜狗58-68页,17年前是郑州郑密路18号全国论文办)、全国职称办郑州郑密路20号办、高级职称全国办郑州郑密路20号办。搜:高级经济师全国办郑州郑密路20号办、高级会计师全国办郑州郑密路20号办、高级农经师全国办郑州郑密路20号办、高级审计师全国办郑州郑密路20号办、高级统计师全国办郑州郑密路20号办、高级政工师全国办郑州郑密路20号办、高级工程师全国办郑州郑密路20号办、高级教师全国办郑州郑密路20号办、高级人力资源管理师全国办郑州郑密路20号办。在百度、360、搜狗58-68页。查阅最新政策、论文(选题、题目、范文、辅导)、报考条件、评审条件、考试科目、大纲,搜:高级经济师最新政策郑州郑密路20号办、高级经济师论文郑州郑密路20号办、高级经济师论文选题郑州郑密路20号办、高级经济师论文题目郑州郑密路20号办、高级经济师论文范文郑州郑密路20号办、高级经济师论文辅导郑州郑密路20号办、高级经济师报考条件郑州郑密路20号办、高级经济师评审条件郑州郑密路20号办、高级经济师考试科目郑州郑密路20号办、高级经济师考试大纲郑州郑密路20号办。后面把“高级经济师”依次换成“高级会计师、高级农经师、高级审计师、高级统计师、高级政工师、高级工程师、高级教师、高级人力资源管理师等”再搜索。在百度、360、搜狗58-68页。
有很多小伙伴们就会很奇怪了,当我们把毕业论文完成之后,要如何发表呢?那小编我今天就针对“发表论文流程”这一情况,为大家解答疑惑吧!
一般来说呢,发表论文流程分为以下六步:
一、投稿
投稿是指论文发表人员选择好投稿期刊之后,我们再通过邮箱、在线投稿窗口、QQ或者微信等方式将自己的论文稿件发送给编辑就好了。
二、审核(也俗称为审稿)
投稿之后,编辑会按照投稿的先后顺序对论文进行一个审稿过程,有的期刊杂志是会收取审稿费的,如果我们发表论文需要加急发表的话,是需要在投稿时标注清楚的,这个可能会产生加急费用。审稿环节是整个论文发表过程中耗时最长的,它可以说影响了论文发表周期的长短,只因为论文审稿可能会反复进行。
三、审稿结果
审稿结果主要介绍通过审稿并被录用了的论文。通过杂志社论文三审的论文,杂志社会下发录用通知书,并注明好预安排在某年某期发表此篇论文,之所以是预安排,是因为还需要交纳版面费。
四、交费
交费就主要指的是版面费了,在我们交纳费用之后,论文才会正式进入安排刊期出版的流程。
五、安排发表
费用到位之后,便可以安排刊期了,并按照日期出版见刊。而少部分论文的发表可能会被延期,这样的现象也属于正常情况,原因就比如有人安排加急类似之类的问题。
六、寄送样刊
论文见刊之后,杂志社会给作者寄送一本样刊的,是作为用途上交的材料。到此整个的论文发表流程就基本结束了。
那么以上呢就是“发表论文流程”的六大步骤啦!那最后小编要提醒大家一点,在我们进行论文写作时一定要保证是自己原创的,这样的话在进行论文查重检测的时候也不会存在那么多需要修改的地方,同时大家要记得去进行自查,保证论文更高程度的通过哦!