首页 > 职称论文知识库 > 发表的初中数学论文多少字

发表的初中数学论文多少字

发布时间:

发表的初中数学论文多少字

看你写的论文是做什么用的吧,一般毕业论文,字数会要求过万吧,但是如果是像发表到学术期刊上的论文,就我所了解的汉斯出版社的期刊,他们要求的字数就是不少于3000,建议字数是5000-8000,具体字数得看你自己的个人情况哈

黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

First, start with the life experience, create the situation to mobilize the classroom atmosphere。

几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

初中毕业论文发表多少字

毕业论文的规格,也就是毕业论文的标准。这里讲毕业论文的规格或标准,主要是就毕业论文的质量方面而言的。至于一篇毕业论文究竟要多少字数,不同的学校有不同的规定。一般说来,一篇毕业论文需要有五千字以上。 有比较才有鉴别。为了更好地理解大学生毕业论文的规格,我们把与大学生毕业论文相近的几种论文作一番比较。大学生(主要是指本科生)在校期间一般要写两次论文,一次是大学三年级写的学年论文,另一次是大学临近毕业时写的毕业论文。此外,大学毕业后继续攻读硕士学位的研究生要写硕士学位论文,攻读博士学位的研究生要写博士学位论文。下面,我们把这四种论文的联系和区别作些分析说明。 学年论文、毕业论文、硕士学位论文和博士学位论文这四种论文是一种由浅入深的关系,它在学术水平上有区别,因而有不同的规格或标准。 1.学年论文。它是大学生在大学读了三年基础课,具备了一些基本知识之后,初次锻炼运用已有知识去分析和解决一个学术问题的能力。论文的题目不宜太大,篇幅不宜太长,涉及问题的面不宜过宽,论述的问题也不求过深。初学论文写作,主要是取得撰写论文的经验,初步掌握撰写论文的方法,为今后撰写毕业论文和学位论文奠定基础。在大学的前两年,基本上是听讲、看书、接受前人已有知识;而写论文,就不是听讲、看书、作笔记和汇总前人的知识了,而是要求自己运用前人的知识去解决一些前人没有解决的问题了。由于写学年论文是大学生初次学做的一件新工作,所以,撰写学年论文是在有经验的教师指导下进行的。 2.毕业论文。它是大学生在大学的最后一个学期,运用所学的基础课和专业课知识,独立地探讨或解决本学科某一问题的论文,它是在撰写学年论文取得初步经验后写作的,它的题目应该比学年论文大一点、深一点。其基本标准应该是:通过毕业论文,可以大致反映作者能否运用大学三四年间所学得的基础知识来分析和解决本学科内某一基本问题的学术水平和能力。当然,它的选题一般也不宜过大,内容不太复杂,要求有一定的创见性,能够较好地分析和解决学科领域中不太复杂的问题。大专毕业论文篇幅一般在五千字左右,本科毕业论文篇幅一般在六干字以上。大学本科毕业生的毕业论文,如果写得好,可以作为学士学位的论文。 3.硕士论文。这是攻读硕士学位研究生的学位论文,其学术水平比学士论文要高。它必须能够反映出作者所掌握知识的深度,有作者自己的较新见解。国家学位条例第五条规定,高等院校和科学研究机构的研究生,或具有研究生毕业同等学历的人员,只有在本学科上掌握坚实的基础理论和比较系统的专门知识,具有从事科研工作和专门技术工作的独立能力者,才可通过论文答辩,取得硕士学位。这就是说,硕士论文强调作者在学术问题上应有自己的较新见解和独创性,其篇幅一般要长一些,撰写前应阅读较多的有关重要文献。 4.博士论文。它是非常重要的科研成果。它要求作者必须在某一学科领域中具有坚实而深广的知识基础,必须有独创性的成果;它应有较高的学术水平和学术价值,能够对别人进行同类性质问题的研究和其他问题的探讨有明显的启发性、引导性,在某一学科领域中起先导、开拓的作用。

每个学校字数限定要求不一样,要问学校老师大致是这样的本科5000-15000字之间 硕士20000-50000字之间 博士50000-150000字之间含博士后希望回答可以帮到你毕业论文写作技巧 第一条,先要围绕着论题去占有和选择材料。 也就是说,当你的论题已经确定以后,第一,围绕着立论去占有材料,多多益善的去看。有的论题是来自老师已经拟订好的题目。有相当一部分学生是自己确立论题的,先积累材料,再有论点。一旦立论确立了以后,再回过头来去占有材料。在占有材料方面跟我《基础写作》里讲的有相通的地方。第一要占有材料,占有研究对象的真实的材料。比如你要研究某个作家,某个阶段的几部作品,就将这几部作品拿来进行深入细致的研读,进一步来确定自己的论点。如果你的论文是报告类的,不是纯理论性的,用实验报告、调查报告、总结的形式来写论文的,那么你的调查材料、实验材料也要占有。 第二,要对研究对象的外延材料占有。 比如你要研究的是作家作品的话,那么你就要对作家写作的背景材料,包括政治经济背景、文艺思潮背景等。还有作家谈自己创作的材料,还有他人已经研究过的材料等。有了这些材料,你就可以做到知人论世,可以使自己在研究当中尽量公允,不带偏见。所以,充分占有材料,也就使你的论据更充分。这样你将来的论证就会更加深广。 第三,在有材料的基础上要选择材料。 决不能只要有材料就统统拉进来。这是你们写论文常出现的问题。比如让你写一万字,你可能写到五六万字。象刚才那个学生一样,写出六万字,太丰富了。把握不住自己的时候,可以让老师来帮助你,告诉你哪些能用,哪些不能用。多占有材料总比没有材料写不出来要好,因为删总是好删的。在材料多的情况下,你就选更好的材料。 2 、选择论文的类型。 第二项准备工作就是选择论文的类型。毕业论文的类型一是学术性论文,二是报告性论文。应用性比较少的科目来说比较容易做成学术型论文,比如对作家、作品的研究,对诗派的研究。应用性比较强的学科,比如教学领域、新闻领域、治疗科学和实验等,论文一般写成调查性的或总结性的,我将它概括为报告型论文。 杂志上发表的3000来字的论文,一般就是报告型的论文。报告型的论文主要是总结经验。不管是总结也好,报告也好,总之,最后是要总结出规律性的东西来。比如说,《新教材综合性学习的教学体会》有这样几条规律:综合性学习能够激发学生积极参与和主动学习;综合性学习能够激发学生的创造意识,培养学生的创造能力;综合性学习以课外学习为主,能加强课内外的结合,强化能力的培养;综合性学习能强化学生对语文学习的体验和认识,使学生的情感态度和价值取向朝着健康的方向发展。他的这几个体会是努力地从理论上探讨,说明它的意义。 大多数学生的论文都是学术型的,学术型的论文主要是对某一个专业领域的问题,经过充分的研究以后,用文字符号进行表达。这一类论文的基本要求是论者以自己所学的知识,对本专业的理论问题或实际问题进行探讨和研究。学术型的论文还可以细分为两种,一是论述性的论文,一是综述性的论文。所谓论述性的论文,最大的特点是以议论为主,有极强的理论色彩。它又可以分为立论型和驳论型。立论型就是正面树立自己的观点,驳论型就是批驳别人的观点。综述性的论文,在我们的大型报纸上和一些杂志很多。比如,2003年已经过了半年了,我们就可以对过去的半年时间里的小说进行综述。 如果是综述文学创作,就要对各种文体进行综述,如果进行小说综述,就要对半年来杂志报纸上发表的小说进行描述。这是一种综述型的,往往采用一种夹叙夹议的方式。两者比较而言,综述型的论文只要你的资料可以找到而且你有一定的概括能力,这种论文的撰写要比论述型的论文容易些。因为论述型的论文完全是议论型的,要求逻辑思维要好一些。另外,论证的深度还是有一定的讲究的。这还是本科生,那么研究生就更不用说了。论文类型的选择,主要是看论文的对象怎么样。如果是宏观的,我们就用综述性的面上的描述;如果是微观的,涉及到某一个具体的作家作品或某一个问题,我们就选择论述性的。如果我们自己学的专业应用性很强,比如说教学、新闻、农业、林业,建议大家写成报告型的论文,写成调查报告也行,写成总结性的报告也行,都可以。这一类文章,可以看看报刊杂志。如果是应用性比较强的学科,建议大家写成报告性论文,包括调查报告、总结和实验报告。有些实验报告就可以成为论文。这是第二条。 3 、要拟订 论文的写作提纲。 准备工作的第三条是一定要拟订论文的写作提纲。如果没有完整的写作提纲的话,逻辑思维就会出现偏差。这不同于散文创作。散文创作只是一个百字文或千字文,打个腹稿差不多就可以了。三千字的学年论文都要求打提纲,更不用说上万字的毕业论文了。把一个个提纲罗列出来,罗列出来以后看一下,总论点是什么,分论点是什么,围绕着总论点有几个分论点,分论点列出来了以后,一定要注意以纲带目,以目服纲这样的一个关系。把这个关系弄清楚了以后,它们之间是并列的关系还是主从关系、递进关系、因果关系,逻辑关系一定要搞清楚。这样你才能从提纲中感受到你的研究能力到底是怎么样。导师在辅导的时候,并不是要求你赶快把一篇稿子拿出来,而首先要求的是你跟老师交谈一下论题。当老师确定你的论题的大小和难易都比较合适的时候,就同意你去写提纲。所以第二次跟老师交换意见的时候,是跟老师交换一下对提纲的意见。当老师发现你的提纲根本不清楚,他就要负责把你的思路理清楚;最后确定下来你可以去写了,你就可以动手去写了。写的过程中,有可能你觉得要推翻原来的提纲重新写,如果出现这样的情况,一定要跟老师沟通一下,让老师给你看是否需要重新写提纲。不要做很多无用功,等到你的论文写完了以后再跟老师沟通,老师把你的论文枪毙,就等于你做了无用功。一定要把提纲拟好跟老师交流。 你的论文提纲的总论点和分论点之间的关系一定要清楚。你的每一个分论点需要采用哪些论据,都要在提纲里告诉老师。每一个分论点后要注明你的论证方法,或是比喻的方法,或是摆事实的方法,或是其他的什么方法。在《阅读鉴赏评论》中为了在论文提纲方面给大家以借鉴,我举出了王魁今先生的一篇关于对外汉语教学的论文的提纲。他的写作提纲,不妨你们借鉴一下。我引用了其中的一段,讲提纲的怎么拟制,在书的232 页。你们可以看一下他的提纲是怎么拟制的。通过这个提纲的拟制,你们写论文的时候就可以借鉴……少走一点弯路,你的提纲、材料等出来以后,就可以进行论文写作了。 4 、开始写论文的时候,要注意标题拟制。 第五个大问题的第三个小问题就是开始写论文的时候,要注意标题拟制。论文的标题拟制,一般是两个标题,如果是一个标题不太容易驾驭。一个标题往往是比较宏观一些。当然也可以用正标题来表示论题的观点,副标题表示研究的对象。但有的时候,一个标题就把你的论题就拉出来了。比如说《论司法活动的群众监督》,就把范围限制了。所以说,如果是一个标题一般就比较宏观。再比如说,《经济增长的差异与农业产品优势比较》,这是一个标题。还有一种是完整式标题。完整式标题是一个主标题,配一个副标题。一般来说,正标题是揭示论文的中心论点,副标题是表明你论述的范围和对象。比如说,《经济振兴的宣言书——论改革者》,中心论点和研究对象的范围就交代出来了。又比如,《向往光明,追求真善美——丰子恺哲学散文浅论》,论文的中心论点和研究对象也交代清楚,是完整标题。还有《叙事在模式与效果之间——论《老残游记》的叙事艺术》,观点摆到提纲里去出现。拟制标题要注意这么几点,一要贴切,二要醒目,三要简洁,四要新颖,这是论文题目的几个要求。 题目拟制好了以后,论文还要注意要写摘要,把整个论文的主要内容说一下。在论文的扉页上,先是题目,题目下面是摘要(也叫论文提要)。论文提要要写哪些内容呢?主要交代清楚选题的背景、理由,论文的观点和价值,简明扼要的揭示出来,便于读者(主要是导师、评委、编辑等)即使不阅读全文就可以获得最重要的信息。一般字数不超过全文的5%. 在摘要下面要有关键词。关键词把论文的主要观点用3 到5 个词提取出来。比如《经济增长差异与农业产品优势比较》的关键词就是经济增长、农产品比较优势、相关的分析、连动机制。第四个小问题要讲一下引言。引言把论文研究的理由、背景、价值等阐释出来。最后就写正文。写完论文后再修改,修改后请导师看。导师认可了以后论文就可以定稿了。一般的学生写两稿就差不多了,差的学生写上四五稿的也有。 (这是清华论文写作的讲座,看完后有用请赞,收集整理有手打不容易,谢谢!)

5000—8000字。不同的学校对于毕业论文的字数要求不同,一些重点院校规定论文字数10000字左右或者以上。中文论文题目字数在20字以内。确切概括论文中心内容,让读者可以通过题目了解这个论文的主要内容。第二摘要,摘要是论文的精华,大概100~200字左右。第三前言,论文引言的主要任务是向读者勾勒出全文的基本内容和轮廓。字数一般掌握在200~250字为宜。前言的篇幅不要太长,会导致读者感到乏味,也不宜过短,太短可能就交代不清楚内容。

毕业论文任务书中的论文基本要求如下:1.毕业论文的撰写是一项创造性劳动,每位毕业班学生必须严肃认真对待毕业论文的写作。学生在撰写论文的全过程中,应充分发挥主观能动性,并遵从教师的指导,在规定的时间范围内独立完成出反映本人最高水平的论文。不允许抄袭他人的研究成果,更不允许由别人代作。若有类似情节,论文不予通过,不能毕业。2.论文应坚持四项基本原则,观点正确,中心突出,层次分明,论述清楚,论点明确,论据充分,结构严谨,语言准确、简练,文字流畅。对所论述的问题有归纳总结,有分析批评,力求有个人观点和见解。3.毕业论文字数以8000--10000字为宜。4.毕业论文要求递交打印稿。毕业论文是根据本科专业培养目标要求和人才培养方案的总体安排,为培养学生综合运用能力而设置的实践教学环节。撰写毕业论文是高等教育教学计划中必不可少的一个重要环节。

初中数学论文发表规定字数

第一页写作者信息(包括作品名称,作者姓名等),第二页先写标题,再写摘要,关键词,然后是正文,结尾注明参考文献。

数学论文格式范文【时间:2010-10-06 10:52 来源:未知】 题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。页面设置要求:页边距上、下、右都为2.5厘米,左边距为3厘米。装订线位置为左。中学数学与高等数学的和谐接轨(小二黑体,不加粗)摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨(小四楷体,不多于5个)一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。(正文,小四宋体,字数不少于3000字)参考文献:(小三黑体,不加粗)( 收集整理原创论文)[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.(小四宋体,参考文献不少于4个)论文内容必须是有关数学方面的,专业或教学方面的。西藏大学(初号隶书加黑居中)本科生毕业论文(设计)(小初楷体加黑居中)题目:(字号二号,宋体,加黑,居中,下划线)----副标题:(字号三号,宋体,加黑,居中,下划线)院(部) 专业年级 姓 名 学 号 指导教师 职 称

刊大师:为作者投发学术期刊提供智能化解决方案。职称论文及所有要投稿的论文都应该知道的十大注意事项之字数控制篇!快点进来看看吧!(侵、私、删)

每个学校都有他规定的格式的,你最好问下你们学校的领导吧。来源:金鼎论文

论文发表初稿多少字

论文的不同字数也会不同。 1、首先是摘要,不论是普刊论文还是核心期刊论文,摘要字数控制在200到300字之间,摘要的写作需要简明扼要,中心突出,摘要是编辑审稿首先关注的部分,体现了文章的整体思路,其次是关键词,关键词要利于检索、关键词的选择可以是标题、摘要、正文等地方选择可以表达论文思路概念的词汇或短语,一般要求在3到5个词汇之间; 2、如果发表普刊,文章字数控制在3000-5000字左右,发表核心刊物字数在6000-8000左右; 3、如果发表核心刊物,字数不能太少,但也不能太多,因为刊物版面会有限,然后字数过多会带来高额费用,对于作者来说经济负担会加重。

论文有各种各样的类型,但是都要经过资料采集,整理,撰写,成稿,定稿,审核,通过审核等过程。论文初稿是还没有正式被认可的文献作品。在没有最终通过之前都可以大量修改,完善。有可能论文本已经完成了,但是还没通过相关审核的,也可以叫初稿。那论文初稿一般要多少字呢?论文初稿一般要多少字不同的学校对论文字数应该有不同的规定,一般情况下,研究生一万五到两万左右,博士生十万左右。写论文重要的是内容,不是字数。初稿的字数有可能不够,以后看到其他的文章或书了,又有了新想法,可以添内容,当然也有写得太多,要做出取舍,删除不太重要的内容。论文初稿怎么写把相关文献都读一遍,因为参考文献至少是30篇,所以建议阅读60篇,其中有10篇左右英文的(如果摘要想自己写的话,必须如此)。阅读前,必须对自己的实验或者研究内容烂熟于心,要从文献中摘出想要的语句,标注好出处。将文献中摘出的语句按论文的一般顺序排列,最后将过渡处用自己的语言连接好。加入数据和感想,修正标点。估计现在没几个这么写的了,都是2次引用文献。更多关于论文初稿一般要多少字,进入:查看更多内容

本科论文初稿一般是8千到1万字。

一般来说,本科论文初稿需要8千字左右。但如果工科毕业论文涉及毕业设计,如计算机程序、电路图CA或CADD制图,论文初稿一般在1万字以上,各个学校对字数的要求会有所不同。一般本科论文开题报告在3千字左右,开题报告学校没有明确规定。

在你开始写作之前,你应该从学校老师那里了解写作标准。开题报告一般不少于1500字,大致内容包括选题背景及意义、国内外研究现状、研究方法、参考文献等。结论是正文的最后一章,是对整篇论文的总结,也是论文的研究成果。

法学专业本科毕业论文:

《中央关于全面推进依法治国若干重大问题的决定》明确指出“宪法是党和人民意志的集中体现,是通过科学民主程序形成的根本法”在这里,共同性与合理性实际上被视为宪法秩序的本质。

唯其如此,宪法方可具有包容性,成为国家的整体框架;唯其如此,宪法方可具有正当性,成为社会的最大公约数;唯其如此,宪法方可具有操作性,成为全民的行动纲领。而要夯实宪法作为基本共识和根本规范的实质内容,就不得不进一步开展价值观讨论,达成基本共识,从而形成新的法律意识形态。

初写论文发表多少字

论文有各种各样的类型,但是都要经过资料采集,整理,撰写,成稿,定稿,审核,通过审核等过程。论文初稿是还没有正式被认可的文献作品。在没有最终通过之前都可以大量修改,完善。有可能论文本已经完成了,但是还没通过相关审核的,也可以叫初稿。那论文初稿一般要多少字呢?论文初稿一般要多少字不同的学校对论文字数应该有不同的规定,一般情况下,研究生一万五到两万左右,博士生十万左右。写论文重要的是内容,不是字数。初稿的字数有可能不够,以后看到其他的文章或书了,又有了新想法,可以添内容,当然也有写得太多,要做出取舍,删除不太重要的内容。论文初稿怎么写把相关文献都读一遍,因为参考文献至少是30篇,所以建议阅读60篇,其中有10篇左右英文的(如果摘要想自己写的话,必须如此)。阅读前,必须对自己的实验或者研究内容烂熟于心,要从文献中摘出想要的语句,标注好出处。将文献中摘出的语句按论文的一般顺序排列,最后将过渡处用自己的语言连接好。加入数据和感想,修正标点。估计现在没几个这么写的了,都是2次引用文献。更多关于论文初稿一般要多少字,进入:查看更多内容

刊大师:为作者投发学术期刊提供智能化解决方案。职称论文及所有要投稿的论文都应该知道的十大注意事项之字数控制篇!快点进来看看吧!(侵、私、删)

一般的普通期刊字数要求都在3000字左右(即3-4页),核心期刊一般对论文字数要求比较高,在5000-6000字左右。具体情况各种杂志有不同限制。

文章的字数一般的单位是没有要求的,发表的文章一般是按版面发表。杂志社也是按版面收费的,不过一般的作者都是发一个版就可以了。评职称够用就行了,一般版面大概是2400字符-2700字符。具体的还是要看杂志,期刊不同字符数也是不一样的。不知道我说的详细不,你能不能明白。要是有什么疑问你可以随时咨询国信论文网的张老师。

  • 索引序列
  • 发表的初中数学论文多少字
  • 初中毕业论文发表多少字
  • 初中数学论文发表规定字数
  • 论文发表初稿多少字
  • 初写论文发表多少字
  • 返回顶部