你好 同学,如果你能在初中发表论文那么肯定对升学或者出国有不少的帮助相比之下,本科生发表论文的数量不多,初中生就更少了所以如果你有足够能力就去试一下吧关于论文具体问题可以私信我,详细单独给你一些帮助。
在写论文的研究意义的时候作者要根据自己的选题来写,如下:
1、是前人没有研究过的,也就是说研究领域中一个新颖有意义的课题,被前人所忽略的。
2、前人有研究过,或者阐述过但阐述论证的不全面和有不足的地方,作者加以丰满,或者驳斥前人的观点。
总之就是,所写论文研究的意义一定要叙述的清晰并且是有一定的新意。次也要注意自己所使用的理论,是用什么理论证明此观点的,也要叙述清楚,否则难以有说服力。
而且在做文献综述和国内外研究水平的评价等也要有详实的根据,这样才能衬托出作者的选题的意义所在。
当然,研究的意义也就是为什么要研究、研究它有什么价值。所以要从现实的方面去进行论述,要写的具体点。这里,作者可以了解一下数学教学论文研究有什么意义。
其主要内容包括:
1、研究的有关背景课题的提出:即根据什么、受什么启发而搞这项研究。
2、通过分析本地的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。
论文作用
所谓撰写教育科研论文,就是在调查研究或实验的基础上,经过分析论证的深化认识过程,把研究成果文字化,形成论文或报告。
撰写教育科研论文是中小学教育科研活动的一个重要环节,其作用在于:
⑴、显示研究的水平与价值
⑵、提高研究者的研究水平
撰写科研论文,不仅是反映科研成果的问题,而且也是个深化科研成果和发展科研成果的问题,在撰写科研论文过程中,对实验研究过程所取得的大量材料进行去粗取精,实现由感性认识向理性认识的飞跃和升华,使研究活动得到深化,使人们的认识得到深化。
⑶、推广经验,交流认识
教育科研过程,是人们获得直接经验的过程。这种经过精心设计、精心探索而获得的直接经验不仅对直接参加者来说是十分宝贵的,而且对于所有教育工作者,对于人类整体认识的提高和发展都是十分宝贵的。
正如恩格斯所指出:“现代自然科学已经把全部思维内容起源于经验这一命题加以扩展,以至把它的旧的形而上学的限制和公式完全推翻了。
由于它承认了获得性的遗传,它便把经验的主体从个体扩大到类,每一个体都必须亲自去经验,这不再是必要的了;它的个体经验,在某种程度上可以由它的历代祖先的经验的结果来代替。”(《马克思恩格斯选集》3卷564页)可见,为了不同空间、不同时间人们交流认识,承接认识成果,必须搞好论文撰写。
⑷、推动教育科研活动自身不断完善
教育科研活动是个探索未知领域的活动,并无既定模式和途径可循,在一定意义上可以讲,教育科研活动均属创造性活动。为了保证教育科研活动越发卓有成效,为了给进一步开展教育科研活动提供可靠依据,在每一科研活动终端都撰写报告或论文是十分必要的。
我去···论点呢?你们老师没给你们范围么···
好处是有的,发表一篇期刊都难的,更何况你晒子啊核心期刊上发表呢,只要成功了,对你以后的工作会有帮助的。。。
面对如今找工作难的现状,发表小论文可以说是为刚刚走出校门的大学生一个金牌令箭,用人单位多半会考虑有经验的人才,所以大学生在积累工作经验的同时,发表一两篇论文可以大大缓解找工作的压力。对于很多研究生或者本科生来说都有一定用处。正规全日制本科大学对于在大学期间在公开刊物上发表论文或获得专利的学生,都可以视论文等级获得加学分的优待,除此之外还可以在评奖学金、评优秀学生、评党员等荣誉中获得加分。大多数在校学生都不知道一些专业毕业以后上班评职称或者读研都是需要发表论文的。所以不管你是否毕业,如果有想法就尽快去行动,提前发表论文对以后不管是学习还是上班的发展都有非常好的作用。。大学本科发表论文、获得专利以及参加自主创业活动好处多多,不管你处在大学的哪个阶段,努力上进求学的你,快用它们来展现你的能力吧!发表论文可以说是一条捷径 发论文可以用来考研,加绩点,消分,评职称的小企鹅(五期二流巴尔一起一)
据学术堂了解, 论文发表好处多多:1.对于保研、考研的同学来说,论文是其科研能力、创新能力的体现。对于打算保研的同学来说,发表学术论文是保研的前提条件。没有公开发表学术论文,保研将是一句空话。对于考研的同学来说,进入复试之后,导师非常看重学生的科研能力。因为导师最喜欢的学生就是科研型的学生,能够帮助自己做各种课题,成为自己研究工作的得力助手。所以,如果在本科、研究生阶段有一定数量的学术论文发表,将为自己进入硕士、博士的学习打下良好的基础,在研究生复试中占尽优势。2.对于在校学习的同学来说,发表论文对自己在学校里的发展是一件锦上添花的事情。现在的大学对于学生的评价存在很多机制:奖学金评选、优秀干部评选、党员评选、科研积极分子评选、社团活动优秀分子评选、实践活动评选等等,在这些评选过程中都存在一个量化评分的问题。如果发表了学术论文,在很多情况下,都会有不少的加分。毕竟高校是一个重知识,重学术的地方。大学里,靠着自己的学习成绩和论文加分,拿奖拿到手软。所以,想获奖的同学也可以用好这一机制。3.对于大多数毕业生来讲,发表一定量学术论文是拿到学位证的必要条件。发表论文关系到我们读大学的最终成果——学位证。很多大学明确规定,学分不够或者其他原因不能拿到学位证者,如果能以第一作者身份在省级以上(含省级)学术性期刊发表论文一样颁发学位。硕士生、博士生要想顺利毕业,拿到文凭,发表规定级别的学术论文那是必须的。所以发表论文的重要性在此可见一斑。其实,大学生发表论文的好处,远远不止这些。
期刊分为核心级,国家级,省级,评职称的等级越高要求发表期刊的等级也越高,在核心期刊上面发表文章,对作者的职称和学历也有一定的要求。各级别论文发表联系30580 4441
对于打算读研的同学来说,本科期间发表论文是很有必要的,因为研究生期间经常要看论文、写论文,所以导师都比较看重学生的科研水平和论文写作能力。如果发表过论文的话,不管是在保研夏令营申请、保研面试、考研复试,还是留学申请,都是很好的加分项,比那些没有发表过论文的人更有优势。
面试增加履历而已,其他并没什么用。
走进新课程的今天,写数学小论文作为一种学习方式,已逐渐被广大教育工作者认可。那么数学小论文是什么呢,所谓数学小论文是指学生在数学学习中所学写的以数学内容为中心的短小文章,其文体形式包括数学日记、数学故事、数学童话等。其中,数学日记是学生以日记的形式,记述自己学习和应用数学知识的过程、感受和体会;数学童话、数学故事是指学生将所学的数学知识,依据自己的理解有机地融合于故事、童话的框架中,以形成完整的情节。1、培养学生数学阅读的习惯 数学阅读是指围绕数学问题或相关资料,以数学思维为基础和纽带,用数学的方法、观念来认知、理解、吸取知识和感受数学文化的学习活动。最初,我们从网上、报刊上找来一些优秀的学生日记,让学生阅读,了解数学日记的格式与内容的选择,激发学生的撰写热情。后来,结合学校读书活动,组织学生相互推荐优秀数学科普读物。如:《生活中的数学》、《十万个为什么(数学卷)》、《数学万话筒》同时,开展丰富多彩的阅读展示活动:学生自编的一张张五彩斑斓的数学手抄报、一本本价值连城的数学剪贴本、一块块内容丰富的黑板报带领学生在阅读中走进数学的世界,体会数学的魅力。激发学生的写作热情。2、提高学生自我反思的能力 数学小论文是学生自我评价的重要方式之一。反思型论文可以根据自己的数学作业或试卷以及课堂中的表现,对解决某个问题所采用方法的优劣进行自我反思,认识自我,澄清有关问题,从而为充满信心地继续学习数学打好基础。这样有利于学生取长补短,提高数学交流能力,增强其自信心。长期以往,使学生养成自我反思的习惯,提高数学学习中的认知水平,增强他们自我反思的能力。3、指导学生积累论文资料 数学小论文不能满足于数学反思日记,而要将视野开阔。教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。开始,学生不明白如何将数学知识、数学问题融于故事情节中,如何观察生活中的数学知识。教师要站在学生的角度考虑问题,写范文,读给学生听,并带学生分析:哪些地方应用了数学知识?是怎么应用的?还可以应用哪些数学知识、续编哪些故事情节?学生模仿练写数学小论文,逐步养成了从数学的角度观察生活的习惯,为数学学习积累了丰富的感性经验。在为数学小论文撰写而进行的调查活动中,还培养了学生事事心中有数学的节约、环保等意识和强烈的社会责任感。4、组织学生踊跃参赛和投稿 苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者。而在儿童的精神世界中,这种需要特别强烈。写数学小论文可以使不同层次的学生得到发展,使每位学生体验到数学学习与交流表达的欢乐、成功,激发他们的数学学习热情。 我们欣喜地发现,让学生写好数学小论文,提高了学生对数学来源于生活的认识,唤起了学生亲近数学的热情,体会数学与生活同在的乐趣,远比在书本中咬文嚼字学习数学来得更生动、更深刻,从而有力地促进学生的数学学习,推动学生综合素质的发展。
第一,大学生发表论文可以为自己以后找工作奠定基础。大多数在校学生都不知道毕业以后上班评职称或者读研都是需要发表论文的。所以提前发表论文对以后不管是学习还是上班的发展都有非常好的作用。最后,其实论文不是说发表就能发表的,在学术期刊上发表论文一般对论文的质量要求都是相当高的,所以学生在校还是要努力学习研究才能写出好的文章。作为本科大学生,你是想混过去还是拿奖拿到手软毕业就有好工作好研究生学校上门呢?如果你是后者,想认真求学,谋求一个好前途,就趁早考虑多多发表论文了,因为发表论文可以为你的梦想锦上添花,助力圆梦。为什么这么说呢?本科发表论文有什么好处呢?一、最眼前的好处是,发表论文可以在评优奖学金、三好学生、党员中获得优势。不信你可以翻翻自己的学生守则中关于论文奖励的规定。本科院校都会在你入学的时候发一本学生守则,说明你在大学期间的一些注意事项,很多学生可能都丢不知道哪去了,那就借来看看吧。发表论文是可以获得各种加分的,这里就不一一细说了,各个学校优待条件不同。二、如果你毕业学分不够或者害怕自己得不到高学分难就业,就发表论文吧。一般大学都有规定,在正规期刊上发表论文的学生可以多加学分的。发表一定数量的论文有助于大学生直接拿学位证。对于挂科多的学生来说,尤其重要。三、大学毕业后准备上研究生继续深造的同学,论文是其对本科期间学业的总结,是其科研能力、创新能力的体现。对于打算保研的同学来说,发表学术论文是保研的前提条件。保研是必须发表论文证明自己有同等学力水平的。对于考研的同学来说,进入复试之后,导师非常看重学生的科研能力。因为导师最喜欢的学生是能独立思考,有科研能力的学生,能够帮助自己做各种课题,成为自己研究工作的得力助手。所以,想在研究学业上有所深造,发表论文吧,你将在考研独木桥上占尽优势。四、如果你不想考研只想尽早工作步入社会,那论文更能体现你的就业能力。论文凝结这你四年本科学习的精华,别人一看就知道你是什么水平,相对一轮轮面试中的口水战,一篇论文更能体现你的水平。用人单位对学生的创新能力、研究能力、看问题的角度和处理问题的能力非常看重。论文恰恰是一个学术创新能力的最直接的体现。五、近几年,出国留学大军不断壮大,成为一种趋势。如果你选择出国留学,应该很能清楚论文对申请一所好学校的帮助有多大。国外优秀大学对学习成绩并不看重,看重的是学生独立思考问
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
需要推荐期刊的,可以抓紧到fbxslw筛选。综合类的教育期刊、数学学习与研究等是可以安排。
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
学生还是老师写的
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点. 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息. 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息. 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大. 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上. 有条件的,还能使用录音、录像、刻录光盘等等方式. 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导. 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理. 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好. “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起. 几年来,我以“教学手记“形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字. 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习·数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选. 三、立足实践,提炼新意 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的. 正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 近期,我正负责河北省“创新教育”子课题“培养学生创造性思维能力”的研究工作,这一课题也是当前教育界的一个热门话题,我将自己的阶段性研究成果写成论文《培养学生创造性思维能力的常用方法》,参加了2000年8月在京举办的“全国初中数学教育第十届年会”论文评选,荣获二等奖. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手,据此李凤君老师和我合作写成《怎样判断勾股数》一文,发表在《教育实践与研究》2000年第2期上. 论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时. 就拿对中考试题的研究来说:河北省2000年中考于6月22日结束,我随即对当年的中考试题加以分析,从考查学生创造性思维能力的角度深入剖析,于7月份创作完成了《注重考查学生的创造性思维能力——2000年河北省中考数学试题评析》并寄给《中小学数学》(初中教师版),后来发表于该刊2001年第3期;一般每年的全国各地中考试题汇编资料最早在10月份面世,通过研究我发现,1998年的中考试题中不等式应用题异军突起,而且当年考生的得分率偏低,必将引起以后中考师生的注意,针对这一新动向,我于11月份写成《例谈中考不等式(组)应用题》一文,对此进行分类研究,并补充编拟新试题,指出命题趋势,该文发表于《河北教研》1999年第2期. 四、从小到大,循序渐进 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,提醒初写者先尝试以下两个步骤: 第一步,练习写学习辅导类的文章. 几年来,我在《学习报》、《少年智力开发报》、《初中生周报》等报纸上,发表学习辅导类文章数十篇. 这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究. 学习辅导类的报刊面向广大学生,通常用稿量大,发表得快;其内容突出针对性,深入浅出,形式灵活;所需稿件短小精悍,通常有1000字左右;要求与教学同步,应该比教学进度提前3个月寄稿;写稿还应分析用稿动向,目前学习辅导类报刊多数存在高年级稿多、低年级稿少,综合知识稿多、单个知识稿少等等现象,初写者可以倾向于写“少”的方面的稿;稿件写完后要反复修改,确保无误,再抄写或打印寄出. 第二步,进行教学研究类论文的写作,侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等. 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,比如发表于《中小学数学》(初中教师版)2001年第9期的《谈计算器的教学》一文,就是在此方面的尝试. 需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华;论文篇幅不求长,大家都知道的少说或不说,适可而止,相信读者的阅读水平,主要适于教师阅读的论文,长短不一,就我发表的论文而言,短的仅千余字,长的近7000字,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,但对与教学同步性的要求则比较宽松;为提高发稿率,应认真研读报刊风格,留心新增栏目、征稿启事,对发现的问题勇于质疑争鸣. 五、文外功夫,提高修养 文外功夫,主要指一个人的思想境界、个人修养、意志品格等方面的表现. 它具体体现在两个方面: 一方面是,讲究文德,不要过分看重名利、沽名钓誉. 必须信守承诺,尤其是应约写稿,一定要迅速及时,保质保量;如所约稿件较多,也可以多写几篇给编辑以选择的余地;为避免信件丢失,可用挂号信寄稿,有时还需用特快专递、传真、发E-mail等方式. 当前很多单位(甚至有的是个人)利用教师希望发表论文的迫切心理,征集各种名目的“自助论文”,对此应慎重对待,不能为了名利,就写一些没有价值的文字,花钱发表. 一稿多发一般是由一稿多投所致,如果在约定时间内未收到用稿通知、样报样刊或稿费,而再投他刊造成重复发表的尚有情可原;但有的把一篇稿同时寄往多家报刊,甚至明知已经发表录用又另投他刊,即使侥幸被重复发表,无论间隔时间长短,也很容易被读者识破,这样做既不尊重编辑,影响报刊质量,又坑害读者,降低个人声誉,结果适得其反. 更为严重的是剽窃抄袭他人论文,不但可耻,而且是一种违法行为. 另一方面是,坚持不懈,持之以恒. 我从1996年初开始着手于素材的积累,不断自觉的夯实基本功,历时一年多,直至1997年开始投稿,结果投寄的第3篇论文《代数式求值十法》就被发表于《理科考试研究》1997年第6期,喜悦之情溢于言表,细细回味,一年多的“寂寞”也是初次收获的重要因素,如果坚持不下来,也只能是半途而废了. 相对于更多的论文作者来说,我还算是幸运的,他们在谈到自己的写作经验时,提到投稿数十次、甚至近百次以后才有作品问世,其间的酸甜苦辣、经验体会是难以言传的,“失败是成功之母”、“功夫不负有心人”在他们身上得到了充分的体现. 以上所谈是我对初中数学论文写作的几点看法,希望能给刚刚开始写作的朋友带来一些帮助. 所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一.