因为是Nature这个杂志是世界上历史最悠久的自然文化杂志之一,在这个领域有着非常高的声望,可以说是自然领域的权威杂志。杂志的声望高,门槛高,对于文章的要求也随之就高。
这个可能和他受到的教育有关系,也和个人的性格有关,因为他热爱生活,善于观察,所以他才可以发现这一系列的现象,才能够发nature。
Nature是世界上最有名望的科学杂志之一,首版于1896年11月4日。在科学研究领域中,很多最重要,最前沿的研究结果都是以短讯的形式发表在Nature上。能在Nature杂志上发表论文,说明这个人在某个领域处于顶尖水平。1996年,曹原出生于四川成都。在小时候他就喜欢捣鼓各种奇奇怪怪的东西。曹原在两年内就完成了他的初中和高中课程。 2010年正是他14岁时,被选如最杰出的“严济慈物理人才班”,这里的课程主要是培养学生扎实的物理基础。即使在天才青年班,曹原依然十分优秀。他经常会问一些奇怪的问题,并与教授讨论。18岁时获得了中国科学技术大学的本科学位,之后前往美国的麻省理工学院进行深造。2018年,22岁的曹原因发现石墨烯超导角度轰动国际学界,开辟了凝聚态物理研究的新领域,成为Nature杂志创刊149年来以第一作者身份发表论文的最年轻中国学者。2018年,曹原曾一天连发2篇Nature。2020年5月7日,他再次一天连发2篇Nature。 本次在Nature杂志上发论文已经是曹原的第五篇了。
世界上还有很多未知的领域,等待着人们去探索,但是往往普通人是发现不了这些的,一般都是科学家进行研究之后得出的结论,有时候甚至是猜想。所以要在未知的领域探索出一星半点是很难的。曹原从小开始就喜欢拆东西然后看里面的构造,甚至自己搭建了一个化学实验室,在里面做各种实验。这些都离不开他的好奇心,好奇心驱使着他学习更多的知识,当他学习到更深层次的知识就发现原来自己知道的只是冰山一角。
在普通人眼里,科研毫无疑问是枯燥的。2017年,曹原再做实验过程中偶然发现石墨烯具备非常规的超导电性,这让他很惊讶,这个发现勾起了他浓厚的兴趣。 之后的日子里,曹原为了这个“不起眼”的现象花费了不计其数个日夜,难以想象他要做多少次实验,查多少次资料。除了热爱真的找不出一个词来形容这么令人敬佩的行为。
羡慕天才啊!像我这样生物专业的学生,我最羡慕在Nature杂志上发表文章的学生啦!
他是我们国家的骄傲,能够在如此年纪就做出如此大的成就,值得夸奖。
他的确是我们国家的骄傲。他在凝聚态物理领域的新发现引起了科学界的轰动,是一个天才一样的人物。
是,是因为他之前就发表过这样的文章,然后也在物理方面非常的有成就,而且他的这些著作也获得了很多人的认可。
如今他为中国做出了巨大的贡献,而且通过自己的努力将事业发展的非常好,现在也过得非常的幸福。
他是李明德,他的父亲和母亲都是大学的教授,自幼受到父母的熏陶。
众所周知,在我国上下五千年的历史中,天才一直是一种稀缺的存在,人人喜好天才,人人想要天才,人人想成为天才。而天才并不是仅凭想象就能担当的,还需要足够的天赋与努力,才有可能在众人中脱颖而出,成为天才,也是因此,我国能称之为天才的人才少之又少。
"紫髯青眼代天才,韩白孙吴稍可陪",用《大蜀皇帝潜龙日述圣德诗五首》中的这句话来形容天才,是再好不过的了。虽说天才数量稀少,但也并不是没有。我国就有一位天才少年,他拒绝美国绿卡,登上科学杂志,24岁小伙曹原正向世界展现中国力量,这是怎么回事呢?
1.天才少年的年少时光
曹原,生于1996年的成都。2007年时,凭借着傲人的成绩和远超常人的理解能力,曹原被选入校内的超常班进行学习,为他以后奇迹般的人生做足可铺垫。虽然曹原就读的只是深圳的一个普通小学,但超常班的老师却一点也不普通。超常班的老师是一个在中科大有着20多年教学经验的副校长,对曹原最初的人生教育起到重大影响。
超常班总共就3个学生,老师比学生还多,比一对一教学的待遇还要好上不少。凭借优秀教资的辅助,外加自身远超常人的理解能力,他在超常班的三个天才中脱颖而出,只用了3年时间,便将小、初、高的全部知识学完,并且运用自如。
由于年龄的限制,曹原并没有过早的离开超常班,而是"被迫"的开始进行复习。直到14岁时,曹原才在当年的高考中考出669分的高分,被中国科学技术大学的少年班招录,继续他的奇迹人生。
在中科大的这个少年班里,曾经走出过无数优秀学者,凭借独特的天才培养机构,只用了40年的时间,便在业内闻名,为全世界提供了大量人才。也是因此,曹原才对这个少年班充满向往。
2.小有成就,未来可期
"玉阶良史笔,金马掞天才",如同《中书寓直咏雨简褚起居上官学士》中说的那样,曹原进入少年班后,并没有因为天才过多而被埋没,反而异军突起,只用了不到一年的时间,便成为了校内的风云人物,变成了众多天才中最闪耀的一颗星。
曹原对物理实验有着极高的兴趣,在小学时他便尝试做过众多物理实验,进入少年班后,环境、设备都上了一个层次,也给他提供了更大的施展空间。在兴趣的驱使下,他的学习进度极快,很快便领先所有人一步,完成了学业需要,随后便开始朝着物理实验这个方向发展。
在当时,物理界内有一个致命难题,那就是常温状态下的超导体材料问题,谁能将这个问题解决,那距离诺贝尔奖的获得,也不远了。曹原得知这个难题后,直接将此项目当作他的研究目标,开始认真钻研。
16岁时,曹原升至大二,在校内教授的帮助下,他开始了对石墨烯方面的相关实验,获得了不少突破,还在研究期间获得了校内最高奖项-郭沫若奖。对此,物理学院院长以及校内的众多教授,都对曹原这个天才表示感叹,认为这个天才必定未来可期。
3.功成名就,毫不忘本
18岁时,曹原本科刚毕业,就收到了麻省理工大学的录取通知书,前往美国攻读物理学博士学位。虽然麻省理工里的天才更多,但却依旧没能掩盖住曹原的光辉,很快他便将学业内的知识学完,又开始进行科学实验方面的高强度研究。
经过一年的伏案研究,曹原发现了常温下实现超导体的秘密,那就是当两层平行石墨烯出现大约1.1°的偏移后,材料就会发生反应,进而实现超导的可能。
经过几个月的研究证明后,曹原将此发现成果整理成论文,发布到了科学杂志《Nature》上。论文一经面世,便引起业内广泛震惊,曹原不仅解决了困难科学家百余年的问题,还给物理学家带来了新的希望,开辟了一个全新的领域,令众人兴奋。
2018年《Nature》公布科学人物时,中国物理学家曹原的名字高居榜首。在近两年,曹原又在《Nature》上发布了两篇专业论文,巩固他的地位。
对于外界的功名利禄,曹原觉得受之有愧,毕竟他觉得,自己也和普通人一样,本科上了四年,只是比别人要更努力一些罢了。小有名气之后,美国向其递来了橄榄枝,愿意给他美国绿卡,只希望他能留在美国,但却被他断然拒绝。曹原说:自己如今获得的成功,离不开祖国对我的培养,我是一个中国人,将来也要留在中国。
天才,本就稀少,不忘本的天才,更是少之又少,令人敬佩。其实,24岁的曹原在业内获得成就之后,第一时间便回到母校,与对他有恩的众多导师分享他的喜悦。曹原还表示,等自己学成归来,一定会留在母校任教,为中国物理学领域的发展,献出属于自己的力量,而这股力量,或许就叫中国力量吧。故事至此结束,那么关于拒绝美国绿卡,登上科学杂志,24岁小伙曹原正向世界展现中国力量这件事,大家有什么想说的吗?欢迎留言讨论!
曹原 ,其实从小的时候就是非常的聪明,后来确实在科学方面也展现出了自己的天赋。
曹原是美国麻省理工学院博士生,获得许多成就:1. 曹原发现让石墨烯实现零电阻导电的方法,能源利用率与能源运输效率大幅提高。2.2020年5月6日,分别以第一作者兼共同通讯作者、共同第一作者的身份在最新一期Nature连发两篇论文。3.2021年2月1日,在《自然》杂志上发表《Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene》论文。
《才智》杂志知网全文收录,评职称认可。栏目设置:创新教育、医药与卫生、改革与探讨、科技天地、建筑工程、生态与环境、图书馆纵横、百花园、档案管理、海事专栏、农业天地、电子与通信、技术与应用、研究与探索、经济与管理等教育类文章都可以发(采稿邮箱 张编辑)
《才智》进入知网数据库,在知网中能找到!评职称应该是承认的,至少我们广西是承认的。
《才智》杂志是一本专业发表各类论文评定职称的省级理论性杂志,我之前在本刊物上发表过有关图书馆的论文,评职很不错,还有效!您要是着急评职的话,我可以给您推荐一个专门给杂志社征稿的采编部,可以联系这位编辑,邮箱:!
栏目设置:创新教育、医药与卫生、改革与探讨、科技天地、建筑工程、生态与环境、图书馆纵横、百花园、档案管理、海事专栏、农业天地、电子与通信、技术与应用、研究与探索、经济与管理等百度名咨询正刊发表质量保障
外面有那么多的星系、恒星和行星,就真的没有一个外星人吗?为什么我们还没有发现他们存在的迹象?
这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?
他们的答案是 40万年 。
对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。
这是根据对交流地外智能文明(CETI)的一些新研究得出的。
论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。
“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”
研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。
“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。
这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。
但德雷克方程式有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。
它也是这项新研究的起点。
“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”
那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?
他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。
这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。
那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。
但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。
这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。
研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。
宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。
乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。
这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。
但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。
现在是悲观的情况。
在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。
这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)
这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。
“然而,有人提出,由于许多潜在的破
坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”
科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”
我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。
他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”
人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。
或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。
但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。
天文学中许多问题的答案都隐藏在深时间的面纱后面。其中一个问题是关于超新星在早期宇宙中所扮演的角色。早期超新星的任务是锻造出在大爆炸中没有锻造的更重的元素。这个过程是如何进行的?早期的恒星爆炸是如何发生的? 三名研究人员转向超级计算机模拟来寻找答案。 他们的研究结果发表在一篇题为“镍-56衰变加热对不稳定超新星的气体动力学”的论文中。论文的主要作者是来自台湾天文学与天体物理研究所的中央研究院的陈克俊。这篇论文发表在《天体物理学杂志》上。 这项工作是关于一种特殊类型的超新星。超新星的能量大约是花园型超新星的100倍,只有太阳质量130到250倍的恒星才会出现。 科学家们对超新星进行了大量的研究。研究人员了解它们是如何工作的,以及它们的类型。他们知道如何制造比氢和氦重的元素,并在爆炸时将这些元素送入宇宙。但是在我们的理解上有一些重要的差距,特别是在早期宇宙中。 这三位研究人员想研究超新星,因为他们认为这可能给他们提供宇宙中第一颗超新星的线索,以及早期元素是如何产生的。在早期宇宙中,恒星往往质量更大,因此可能有更多的超新星。但超新星现在极为罕见。所以他们转向超级计算机模拟。通过他们的模拟,他们模拟超新星的核心,观察爆炸开始300天后爆炸恒星的样子。 超新星的形成有两种方式:核心崩塌和成对不稳定。 在一颗核心塌陷的超新星中,一颗大质量恒星已经到了生命的尽头,燃料也快用完了。随着聚变的减少,聚变的向外压力也随之下降。由于缺乏向外的压力,恒星自身的引力能会向下推动核心。最终,引力能导致核心坍塌,恒星以超新星的形式爆炸。根据恒星的质量,它可以留下一个中子星残骸,或者一个黑洞。 不稳定超新星发生在质量约为130至250倍太阳质量的超大质量恒星中。当电子和它们的反物质对应物正电子在恒星中产生时,就会发生这种情况。这就在恒星的核心产生了不稳定性,并降低了内部辐射压力,而这种压力是支持如此巨大的恒星对抗其自身巨大引力所需要的。不稳定性引发部分坍塌, 从而引发失控的热核爆炸。最终,恒星被一场大爆炸摧毁,没有留下任何残余。该团队专注于对不稳定超新星。作出这一选择的原因之一是对不稳定超新星可能产生大量的镍-56。 镍-56是镍的放射性同位素,在我们对超新星的观测中起着重要作用。镍-56的衰变是产生超新星余辉的原因。如果没有它,超新星就只是一个明亮的闪光,没有余光。 该团队使用日本国家天文台(NAOJ)计算天体物理中心(CfCA)的超级计算机进行模拟。这是一台Cray XC50,2018年开始运行,它是世界上用于天体物理模拟的最快超级计算机。这么强大的超级计算机能否帮助我们了解早期宇宙的一些情况? 据主要作者Chen介绍,整个项目极具挑战性。在一份翻译好的新闻稿中,Chen说:"模拟规模越大,要保持较高的分辨率,整个计算就会变得非常困难,对计算能力的要求也会提高很多,更何况涉及的物理学也很复杂。" 为了应对这些,Chen说,他们最大的优势就是 "精心编写的代码和强大的程序结构"。研究人员三人组有长期模拟超新星的经验,所以他们有条件做这项工作。 这不是第一次模拟超新星。其他研究人员也很想了解它们,并做了自己的模拟。但以往的模拟都是在爆炸后30天内运行,而这次的模拟却运行了300天。其中一个关键原因是镍-56。事实证明,镍-56的作用不仅仅是制造超新星的长寿光芒。它在爆炸中起到了持续的作用。为了彻底了解超新星爆炸,研究小组对三颗不同的原生星进行了模拟。一个超新星需要一个非常巨大的原星,有时超过200个太阳质量。该超新星可以制造大量的镍-56。根据论文,它们可以合成0.1-30个太阳质量的放射性镍-56。除了创造这些光之外,镍-56还能做其他事情。作者在他们的论文中写道,所有这些镍-56 "还可能在喷出物深处驱动重要的动力效应,这些效应能够混合元素并影响这些事件的观测信号。" 研究小组想要探究 "超新星内部的气体运动和能量辐射之间的关系"。他们发现,在镍-56衰变的初始阶段,被加热的气体膨胀,并形成了具有薄壳的结构。 在解释模拟结果之一时,陈建国说:"气体外壳内的温度极高,从计算中我们了解到,应该有~30%的能量用于气体运动,那么剩下的~70%的能量就有可能成为超新星的发光体了。"。早期的模型都忽略了气体动态效应,所以超新星光度结果都被高估了。"