孟德尔遗传规律 - 孟德尔介绍1822年出生于当时奥地利海森道夫地区的一个贫苦农民家庭,他的父亲擅长于园艺技术,在父亲的直接熏陶和影响之下,孟德尔自幼就爱好园艺。1843年,他中学毕业后考入奥尔谬茨大学哲学院继续学习,但因家境贫寒,被迫中途辍学。1843年10月,因生活所迫,他步入奥地利布隆城的一所修道院当修道士。从1851年到1853年,孟德尔在维也纳大学学习了4个学期,系统学习了植物学、动物学、物理学和化学等课程。与此同时,他还受到了从事科学研究的良好训练,这些都为他后来从事植物杂交的科学研究奠定了坚实的理论基础。1854年孟德尔回到家乡,继续在修道院任职,并利用业余时间开始了长达12年的植物杂交试验。在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。孟德尔的这篇不朽论文虽然问世了,但令人遗憾的是,由于他那不同于前人的创造性见解,对于他所处的时代显得太超前了,竟然使得他的科学论文在长达35年的时间里,没有引起生物界同行们的注意。直到1900年,他的发现被欧洲三位不同国籍的植物学家在各自的豌豆杂交试验中分别予以证实后,才受到重视和公认,遗传学的研究从此也就很快地发展起来。孟德尔遗传规律 - 孟德尔的分离规律豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生 化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对相对性状的遗传规律。所谓相对性状,即指同种生物同一性状的不同表现类型,如豌豆花色有红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。显性性状与隐性性状大家知道,孟德尔的论文的醒目标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同植株间进行异花传粉。如图2-4所示高茎豌豆与矮茎豌豆异花传粉的示意图。结果发现,无论是以高茎作母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。又如,纯种的红花豌豆和白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。分离现象及分离比在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。孟德尔让上述F1的高茎豌豆自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。对性状分离现象的解释孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的性状分离比,他仍感到困惑不解。经过一番创造性思维后,终于茅塞顿开,提出了遗传因子的分离假说,其主要内容可归纳为:(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)(2)遗传因子在体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精卵细胞带入。在形成配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。4)杂种F1所产生的不同类型的配子,其数目相等,而雌雄配子的结合又是随机的,即各种不同类型的雌配子与雄配子的结合机会均等。为了更好地证明分离现象,下面用一对遗传因子的图解来说明孟德尔的豌豆杂交试验及其假说,如图2-5所示。我们用大写字母D代表决定高茎豌豆的显性遗传因子,用小写字母d代表矮茎豌豆的隐性遗传因子。在生物的体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在性状表现上则接近于3(高)∶1(矮)。因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。基因型与表现型我们已经看到,在上述一对遗传因子的遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的配子结合成的合子发育而成的个体叫做纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为杂合体,如Dd。基因型是生物个体内部的遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是性状表现的内在因素,而表现型则是基因型的表现形式。由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有分离现象——既有高茎,也有矮茎。分离规律的验证前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。分离规律的实质孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢?这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。孟德尔遗传规律 - 孟德尔的自由组合规律孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者,又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。杂交试验现象的观察孟德尔在进行两对相对性状的杂交试验时,仍以豌豆为材料。他选取了具有两对相对性状差异的纯合体作为亲本进行杂交,一个亲本是结黄色圆形种子(简称黄色圆粒),另一亲本是结绿色皱形种子(简称绿色皱粒),无论是正交还是反交,所得到的F1全都是黄色圆形种子。由此可知,豌豆的黄色对绿色是显性,圆粒对皱粒是显性,所以F1的豌豆呈现黄色圆粒性状。如果把F1的种子播下去,让它们的植株进行自花授粉(自交),则在F2中出现了明显的形状分离和自由组合现象。在共计得到的556粒F2种子中,有四种不同的表现类型.如果以数量最少的绿色皱形种子32粒作为比例数1,那么F2的四种表现型的数字比例大约为9∶3∶3∶1。如图2-7所示豌豆种子两对相对性状的遗传实验。从以上豌豆杂交试验结果看出,在F2所出现的四种类型中,有两种是亲本原有的性状组合,即黄色圆形种子和绿色皱形种子,还有两种不同于亲本类型的新组合,即黄色皱形种子和绿色圆形种子,其结果显示出不同相对性状之间的自由组合。杂交试验结果的分析孟德尔在杂交试验的分析研究中发现,如果单就其中的一对相对性状而言,那么,其杂交后代的显、隐性性状之比仍然符合3∶1的近似比值。以上性状分离比的实际情况充分表明,这两对相对性状的遗传,分别是由两对遗传因子控制着,其传递方式依然符合于分离规律。此外,它还表明了一对相对性状的分离与另一对相对性状的分离无关,二者在遗传上是彼此独立的。如果把这两对相对性状联系在一起进行考虑,那么,这个F2表现型的分离比,应该是它们各自F2表现型分离比(3∶1)的乘积:这也表明,控制黄、绿和圆、皱两对相对性状的两对等位基因,既能彼此分离,又能自由组合。自由组合现象的解释那么,对上述遗传现象,又该如何解释呢?孟德尔根据上述杂交试验的结果,提出了不同对的遗传因子在形成配子中自由组合的理论。因为最初选用的一个亲本——黄色圆形的豌豆是纯合子,其基因型为YYRR,在这里,Y代表黄色,R代表圆形,由于它们都是显性,故用大写字母表示。而选用的另一亲本——绿色皱形豌豆也是纯合子,其基因型为yyrr,这里y代表绿色,r代表皱形,由于它们都是隐性,所以用小写字母来表示。由于这两个亲本都是纯合体二者杂交,YR配子与yr配子结合,所得后代F1的基因型全为YyRr,即全为杂合体。由于基因间的显隐性关系,所以F1的表现型全为黄色圆形种子。杂合的F1在形成配子时,根据分离规律,即Y与y分离,R与r分离,然后每对基因中的一个成员各自进入到下一个配子中,这样,在分离了的各对基因成员之间,便会出现随机的自由组合,即:(1) Y与R组合成YR;(2)Y与r组合成Yr;(3)y与R组合成yR;(4)y与r组合成yr。由于它们彼此间相互组合的机会均等,因此杂种F1(YyRr)能够产生四种不同类型、相等数量的配子。当杂种F1自交时,这四种不同类型的雌雄配子随机结合,便在F2中产生16种组合中的9种基因型合子。由于显隐性基因的存在,这9种基因型只能有四种表现型,即:黄色圆形、黄色皱形、绿色圆形、绿色皱形。如图2-8所示它们之间的比例为9∶3∶3∶1。这就是孟德尔当时提出的遗传因子自由组合假说,这个假说圆满地解释了他观察到的试验结果。事实上,这也是一个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个遗传定律——自由组合规律,也有人称它为独立分配规律。自由组合规律的验证与分离规律相类似,要将自由组合规律由假说上升为真理,同样也需要科学试验的验证。孟德尔为了证实具有两对相对性状的F1杂种,确实产生了四种数目相等的不同配子,他同样采用了测交法来验证。把F1杂种与双隐性亲本进行杂交,由于双隐性亲本只能产生一种含有两个隐性基因的配子(yr),所以测交所产生的后代,不仅能表现出杂种配子的类型,而且还能反映出各种类型配子的比数。换句话说,当F1杂种与双隐性亲本测交后,如能产生四种不同类型的后代,而且比数相等,那么,就证实了F1杂种在形成配子时,其基因就是按照自由组合的规律彼此结合的。实际测交的结果,无论是正交还是反交,都得到了四种数目相近的不同类型的后代,其比数为1∶1∶1∶1,与预期的结果完全符合。这就证实了雌雄杂种F1在形成配子时,确实产生了四种数目相等的配子,从而验证了自由组合规律的正确性。自由组合规律的实质根据前面所讲的可以知道,具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。孟德尔遗传规律 - 孟德尔遗传规律在理论和实践上的意义孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。理论应用从理论上讲,自由组合规律为解释自然界生物的多样性提供了重要的理论依据。大家知道,导致生物发生变异的原因固然很多,但是,基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对等位基因(这20对等位基因分别位于20对同源染色体上)的生物进行杂交,F2可能出现的表现型就有220=1048576种。这可以说明现在世界生物种类为何如此繁多。当然,生物种类多样性的原因还包括基因突变和染色体变异,这在后面还要讲到。分离规律还可帮助我们更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。实践应用孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,现在需要培育出一个既能稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。为本词条添加视频和组图相关影像被引用:本词条已被如下媒体引用 我来补充
文丨林下生风 生物遗传是人类很早就观察到的生命现象,经过孟德尔的育种实验和研究分析之后,才找到遗传的法则。 俗话说“龙生龙,凤生凤,老鼠的儿子会打洞。”人类很早就注意到,生物的某些特征可以在世代间传达,比如眼睛像爸爸,鼻子像妈妈等,而且也早就利用这种遗传现象进行生物育种的工作,但人们却只知其然而不知其所以然。就连达尔文在1859年提出“演化论”时,也只知生物族群中生物的特征有变异存在,且这些特征变异是演化过程中天择的选择基础,但却不知道这些变异是如何在世代间传达。这些神秘的遗传规则,直到19世纪末才由孟德尔计算出来。 清贫的高材生 孟德尔(1822—1884)出生于今捷克境内的一个小农庄,从小就经常在果园、花园里帮父母亲工作。孟德尔看到许多植物都是由两片小叶逐渐长大,然后开花结果,心里就想:“为什么麦子的种子长出来的一定是麦子,而葱的种子一定是生葱?”除了累积植物栽培的技术,他也在心里种下未来研究遗传学的种子。 孟德尔在大学毕业之后,就进入奥古斯丁修道院担任见习修士,由于这里曾是中世纪的科学研究中心,修士们热衷科学研究和教育的传统,启发了孟德尔对科学研究的兴趣。 后花园的豌豆实验 自然界的一切原理原则,最简洁的表明法就是数学式的表示法。 孟德尔成为神父之后希望能从事科学教育工作,所以在1851~1853年前往维也纳大学进修。这期间孟德尔主要修习自然科学和数学等科目,后来他确实将数学统计应用于研究中。 修道院植物栽培园中的豌豆有些开白花,有些开紫花;有高茎、也有矮茎;豆荚有圆、也有皱扁,孟德尔很想知道,用开白花的豌豆栽种出来的豌豆是否也开白花?于是从1856年起,开始进行他著名的豌豆实验,并首次以数学计算的方法来探讨问题。孟德尔详细记录豌豆上下两代间的相近性和相异性,每逢豌豆丰收期,便针对收获结果作统计,这期间记录的植物个体数超过两万一千株。搜集了大量统计数据资料之后,孟德尔逐渐对亲代和子代的关系理出一些头绪。 经过八个寒暑的努力,孟德尔终于找到生物遗传的基本规律,并计算出相对应的数学关系式,就是“分离定律”和“独立分配定律”,这两个定律揭示了生物遗传奥秘的基本规律。1865年,孟德尔将研究结果发表,题目是《植物杂交试验》;1869年又发表第二篇论文《动植物遗传之研究》。 孟德尔还把一份论文寄给遗传学家尼基利,尼基利虽然读了孟德尔的论文,但因看不懂,无法估计孟德尔的研究发现有何重要性,致使孟德尔的论文在当时未被科学界所知。 迟来的掌声 科学的研究活动是一生最大的满足。 除了豌豆杂交实验,孟德尔还长期观测气象和大阳黑子现象,并发表了9篇关于气象学的论文;同时他也对养蜂法和园艺很有研究,教导养蜂人家用杂交培育出优良品种,以制作更美味的蜂蜜。1868年孟德尔被任命为修道院院长,由于院务繁忙,从此便无暇顾及科学研究工作,但终其一生仍念念不忘。 1884年孟德尔做完最后一次气象观察后,心脏病发作,在1月6日与世长辞。当地的日报对孟德尔写下这样的颂词:“他的死使穷人失去一位恩人,使人类失去一位品德高尚的人,一位热情的朋友,和自然科学的促进者……”1月9日,修道院为孟德尔举行了葬礼,为数以千计的人们为他送葬,大家为失去这样一位敬爱的院长而悲伤,但仍不了解他在遗传学上的伟大贡献。 16年后的1900年。有3位科学家分别以不同的植物实验,同时获得与孟德尔相同的结果,这才使孟德尔的科学发现重见天日。3位科学家读了孟德尔的论文后,一致认为遗传规律的发现应当归功于孟德尔。孟德尔用心血浇灌的豌豆所告诉他的秘密,虽然时人不能与之共识,但终于还是拨云见日!为感念孟德尔在遗传学上的伟大成就,后人称他为“遗传学之父”。 我是林下生风,坐标北京,感恩你来过,谢谢你一路相陪~ 晚安,我的朋友,一夜好梦~
遗传学之父:孟德尔
孟德尔(GregorMendel)
孟德尔(Monde) 遗传学的开路先锋孟德尔选用豌豆担任遗传因子实验的「主角」。并且从豌豆上找到了遗传因子,而成为遗传学的开路先锋。
学生时代的孟德尔西元一八二一一年七月二十二日,孟德尔在捷克的海森铎(当时属于奥地利)诞生了,他是家里五个孩子中唯一的男孩。当农夫的父亲觉得种田实在太辛苦,希望孟德尔能够多念点书,将来可以找到较好的职业。
而孟德尔果然不负众望,从小就表现出过人的资质,在学校功课一直名列前矛。当孟德尔上中学时,校长也注意到他是位可造就的人才,如果留在家乡这所小型的中学,会埋没了他,所以说服他的父母亲,让他转到较大的学校─莱普尼克中学。
大学预科高中毕业后,他再度以优异的成绩,进入大学预科学校。孟德尔上学所需的学杂费,一直都是家里东拼西凑的情况下,好不容易节省下来的。等到上大学预科学校时,庞大的学杂费已经使全家人用尽最后的一分力量,再也缴不出伙食费,只好由父母亲轮流,每天步行三十多公里的路,送面包给孟德尔。孟德尔在这种压力下,仍然尽力的把书念好,但是困苦的生活加上过分的用功,还是拖垮了他的健康。
对于一个的科学家而言,能够在活着的时候,看到自己的发明或发现被全世界的人肯定,甚至于获颁奖章,那真的是极大的幸福,像是:伦琴、瓦特、爱迪生、居里夫人等人;但是还有一类的科学家,生前的研究发现,不被世人所了解,一直到死后好多年之后,他的理论才被人重视,进而获得世人的肯定。这类科学家,一生在发掘真理的道路上孤寂的前进,我们的「遗传学之父」--孟德尔,就是这样的一个科学家。
农夫的小孩
孟德尔是奥地利人,西元1822年出生,父亲曾经参加过几次对拿破仑的战役,是个见闻广博的人,战事结束后回到故乡务农,经营一片果树园。孟德尔常常到园中帮忙父亲工作,果树园对一个少年来说,正是一个最佳的自然学校。也许是正好有这样的环境,因此孕育孟德尔日后藉由培育植物来探索遗传法则的动机。孟德尔的父亲虽然只是个农夫,却有不凡的远见,他知道农民要摆脱地主和专制政府的压榨,就必须读书求学问,才能取得较高的地位,因此他极力栽培孟德尔接受高等教育。
不过孟德尔的求学生涯并不太顺利,主要是因为家里经济状况不佳,孟德尔离乡求学必须缩衣节食,导致营养不佳而生病,严重时甚至必须休学在家休养。尽管如此,孟德尔还是凭着自己的毅力和妹妹的嫁妆费的资助,终于进入一所短期大学—奥尔茅兹学院就读。后来在1843年孟德尔接受一位教授的推荐,进入一座「圣奥古斯丁派」的修道院担任见习牧师,并研究学问。修道院毕业后原本应该当个专职的牧师,但是服务了一年后孟德尔觉得自己更适合作学问和教书,于是就请求改任中学代课教师。
代课老师更厉害
孟德尔在担任代课教师的期间由于教学认真,因此非常受到学生的欢迎。于是学校便要他参加正式的教员资格考试,没想到孟德尔竟然栽在生物学和地质学上,没通过考试。尽管如此,孟德尔所属的修道院还是派他到维也纳大学继续进修。在维也纳大学,孟德尔学习各种自然学科和数学,同时得到许多优秀教授的指导,因此奠定研究能力的基础。
完成维也纳的学业后,孟德尔回到修道院所在地—布尔诺的一所专科学校任教。孟德尔和学校里的各类专家、教授朝夕相处、共同研究学问,时间一晃就是14年(1854—1868年)。这十四年的教师生涯,成为孟德尔一生最重要的黄金岁月;著名的孟德尔遗传定律,也是在这时候发展出来的。从资料上来看,孟德尔一生似乎并未取得正式教师资格,但是他的学养和教学能力,绝不输给一个大学教授。所以文凭和学历并不代表一切,自己的能力和实力更为重要。
空地里的豌豆实验
这14年中,孟德尔是生活在学校和修道院之中。在学校他是一位良师;在修道院他则是一位研究者。修道院的后院,紧邻着窗边,有一块长35公尺、宽7公尺的空
地,孟德尔在这块空地上印证了科学的真理、解释了人们长期的疑惑。在当时,人们虽然已经发现上一代和下一代之间,个体会有某些相似性,但是总是认为「本来就是这样啊!没什么好奇怪」,科学界也没有深入的研究探讨。
孟德尔发现空地上的的豌豆,有的开着白花、有的开着黄花;有高茎、也有矮茎;有的豆荚丰圆、有的却是干扁。孟德尔用长时间的观察、比对,看看豌豆上下两代间的相近性和相异性,每逢豌豆丰收期,便针对收获结果作有系统的统计,这些记录的植物个体数超过二万一千株以上。经过长期观察和大量的统计数据资料,孟德尔发现:如果长茎豌豆和矮茎豌豆交配,子代和孙代全部是长茎,一直到第四代,四株中才有一株是矮茎。孟德尔进一步用动物作实验:白鼠黑
孟德尔用来进行豌豆实验的空地,就在修道院后面
鼠交配,第二代全部是黑鼠;再让第二代黑鼠彼此交配,第三代中就有四分之一是白鼠。经由动植物的实验,孟德尔逐渐对亲代和子代的关系理出一些头绪。
孟德尔遗传定律
经过将近9年的努力,他的辛苦终于有了成果,1865年,他把研究的结果在当地布尔诺的自然历史学会上发表,论文题目是《植物杂交试验》;1869年他又发表第二篇论文《动植物遗传之研究》,这篇论文是融合他一生对遗传学的研究的结晶。可惜这两篇论文都没有引起世人的注意,因为当时的人并不清楚遗传学有什么实用价值,更不了解它对人类有何影响。
孟德尔的学说,小罐子老师把他简单整理成下面几点:
一、生物组织之内都有一个基本单元(现在称为基因),透过这个基本单元,亲代的特性可以传给下一代。
二、每一种单独的特征,例如:豌豆的颜色或高矮,都是由一对基因决定,而这对基因是由上一代的一对基因中,各继承一个基因凑成一对。
三、子代继承来的基因如果是有不同性状的区别,例如:一个基因会显现高茎的特性、另一个会显现低茎,那么只有强势的特性会显现出来(我们称为显性),在豌豆来说,就会显现高茎,这种现象叫做「优性定律」。但是隐性的基因并不会消失、也不会被破坏,它还是会经由自然的机率,分配并传递给下一代。
四、亲代的基因经过分配,再传给子代,哪个基因和哪个基因配成一对,完全是随机偶然发生的。
五、遗传和性细胞有密切的关系,不属于性细胞的特性是不能遗传的。所以后天环境、工作造成的疾病是不会遗传的,被细菌感染的疾病也不会遗传;但是某些精神错乱、神经衰弱症是会遗传的。
迟来的掌声
西元1868年,孟德尔被任命为当地修道院的院长,从此以后,繁忙的行政业务使他无法继续遗传学的研究,加上当时的修道院,经常为了税金的问题和政府闹的不愉快,使得孟德尔被纠缠在这些繁重的工作之间,终于在1884年因病去世。孟德尔寂静的在墓地里沉睡了30多年以后,忽然声名大噪,原因是1900年,在荷兰、德国、奥国都有科学家分别以不同的植物加以实验,同时获得与孟德尔相同的结果,这时候他的研究才得到科学界的重视与肯定。
从此以后,更多的科学家重复孟德尔的遗传实验,进一步由染色体的研究发现基因,再由基因的研究扩展到现在的细胞学、胚胎学、优生学、生化科技、甚至于现在最流行的「复制羊」、「复制人」等科技。
孟德尔走在时代的前端,使得他孤寂而终;但是,研究科学的美妙之处在于:只要是「真理」,必将有得到掌声的一天,只是你不知道会在何时?哥白尼、伽利略、孟德尔都是这样的人!
达尔文《进化论》施旺的细胞学说
奥地利学者孟德尔(1822―1884)是遗传学的先驱,他通过豌豆杂交实验发现了生物遗传的两个重要规律:分离律和自由组合律,并提出遗传因子假说,不但为遗传学的发展奠定了基础,而且对整个生物学的进步都有深刻的影响。孟德尔从小跟着父亲栽培果树,熟悉农艺。1840年他考入大学,却因家境贫寒而辍学,1843年进入布台恩修道院做修士。这个修道院的院长曾是奥地利某地区的农业学会主席,倡导利用庭院空地进行农学实验,还派修士到附近学校去任教,使修道院成为该地区的农学和教育中心。孟德尔曾在这里给一位很有造诣的植物学家当助手,因而受到了从事植物实验的训练。1847年他开始任神父,1851年被推荐到维也纳大学进修,学习了数学、物理、化学、动物学、植物学、昆虫学和古生物学等课程,并从物理学家多普勒和生物学家翁格等名师那里学到了开展科学实验的思路和技术。1853年他回修道院继续任神父,并在一所技术中学教自然科学课程,晚年任修道院院长。虽然孟德尔一生都担任神职,然而其科学素养之深、实验技能之高,科研成果之精,无疑是一位出类拔萃的植物学家。孟德尔从前人的工作中,看到了一种惊人的规律性现象:在相同物种之间进行人工杂交,总是反复出现同样的杂种类型。这使他产生了浓厚的兴趣。他在高度评价许多植物学家的研究成果的同时,指出了他们的不足:就实验的规模和方法来说,还没能卓有成效地提出一个能够阐明在杂种形成中亲代对子代有何种制约关系的普遍规律。孟德尔明确地以寻求这一普遍规律作为自己的研究目标,由于他在实验方法上有重大突破,经过8年艰苦工作,终于获得了杰出的成就。孟德尔对研究方法的突破和创新主要表现在两个方面:第一,下工夫选择合适的实验材料。他指出:“任何一项实验的价值和效用,决定于其材料是否适宜于研究的目的。” 第二,引用物理学等非生命科学中的因子分析方法,特别是数理统计方法。这在当时的生物学界是开创性的,孟德尔因而被认为是生物学中切实运用数学思维的创始人。为了避免实验出现可疑的甚至荒谬的结果,他认为用于杂交实验的植物必须是:1)具有稳定的可以区分的性状;2)这种植物的杂种在开花期能防止外来花粉的影响;3)杂种及其后代在可孕性上应不受明显干扰。根据前人和自己的经验,他首先把注意力集中到豆科植物,通过实验发现豌豆具备以上条件,而且豌豆还有生长期短,易栽培,花器大,便于人工杂交时去雄和受粉等优点。1856年,孟德尔在修道院内一块土地上从事豌豆杂交实验。在此之前,他花费了两年时间进行选种和试种,从34个豌豆品种中培育出22个纯系品种用以进行实验,以保证实验结果的确定性。在部署实验时,孟德尔从豌豆的诸多性状中选定了七对差异明显的性状进行实验研究:1)种子的形状,圆粒或皱粒;2)子叶的颜色,黄色或绿色;3)种皮的颜色,灰色或白色;4)豆荚的形状,饱满或皱瘪;5)豆荚的颜色,黄色或绿色;6)花的位置,主茎顶端或主茎轴上;7)茎的长度,高茎或矮茎。他对七对性状中每一对性状的纯种豌豆分别进行杂交,它们的后代植株即子一代全部表现出一个亲本的性状。例如,用高茎豌豆和矮茎豌豆杂交(以高茎为父本,矮茎为母本;或以矮茎为父本,高茎为母本),子一代全部为高茎,没有矮茎。再如,用圆粒种子和皱粒种子的纯豌豆杂交(圆粒为父本,皱粒为母本;或皱粒为父,圆粒为母本),子一代全部是圆粒,没有皱粒。孟德尔把子一代出现的性状称为显性性状,未出现的则是隐性性状。子一代植株自交得到子二代。在高茎豌豆的子二代中约有3/4是高茎,1/4是矮茎,高矮比例接近3:1。在圆粒豌豆自交的子二代中也约有3/4是圆粒,1/4是皱粒,二者之比也接近3:1。对其它几对性状的豌豆作杂交实验,其子二代中显性与隐性的比例同样都接近于3:1。这种在子二代中显性和隐性性状分别出现,并且具有稳定比例的规律性,被称为遗传学的分离律。孟德尔进而对两对性状的豌豆作杂交实验。例如,以圆粒种子、黄色子叶的豌豆与皱粒种子、绿色子叶的豌豆进行杂交,子一代全部表现出圆粒种子和黄色子叶这两个显性性状;子二代则分化为四种类型:圆黄、圆绿、皱黄、皱绿,在数量上呈现出9/16:3/16:3/16:1/16,即9: 3: 3:1。对任何两对性状的豌豆杂交实验都能得到同样稳定的比值。这一规律被称为遗传学的自由组合律。孟德尔提出遗传因子假说以解释实验结果。他认为植物的每一种性状都来源于生殖细胞中的一对“遗传因子”,一个来自父本,一个来自母本。产生显性性状的显性遗传因子用大写字母A,B……表示;产生隐性性状的隐性遗传因子用小写字母a,b……表示。如果两个因子相同,则表示具有某一性状的纯种,例如,高茎性状用A代表,矮茎性状用a代表,那么亲代的纯高茎植株则表示为AA;亲代的纯矮茎植株为aa。他还假设,每个生殖细胞只得到这一对遗传因子中的一个。例如,高茎豌豆的生殖细胞中只有一个A,矮茎豌豆的生殖细胞中只有一个a。杂交后,两个遗传因子结合成为Aa。A对a 是显性,因此,子一代植株都是高茎。子一代自交受粉形成生殖细胞时,A和a发生分离。分别含有A和a的两种精子和两种卵子,它们结合而成的子二代有4个因子组合:AA、Aa、Aa、aa。前三个是显性,后一个是隐性,显性与隐性之比是3:1。孟德尔在论文中写道:“设n代表两个原种的可区分性状的数目,3n就表示组合系列的项数,4n 为属于这个系列的个体数,2n为保持稳定的组合数。”这样的一些理论总结与他的实验结果都符合得相当好。孟德尔的题为“植物杂交实验”的论文发表在《布台恩自然科学研究学会会报》1865年第4卷,并送给了欧美各国的120多家图书馆。他希望有人能做重复性实验或对照性实验,使他的结论能够得到检验。然而论文除了受到冷落、怀疑和讥讽外,却没有人来做这样的实际工作。35年之后,1900年有三位植物学家认识到这篇论文的重要价值,使之重见天日。这一历史事实说明孟德尔的论文确实具有强盛的生命力,而八年扎扎实实的实验工作、大量真实可靠的实验数据,精湛独到的研究方法以及深入合理的理论分析,正是其强盛生命力之所在。
王子一心要娶一位真正的公主为妻。为了测试雨夜投宿的小姐是不是真的公主,王后在20张床垫和20床羽绒被下放上一粒豌豆。注:本视频根据2019新人教版教材制作。
遗传学奠基人是奥地利学者孟德尔。许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。
孟德尔的工作结果直到20世纪初才受到重视。19世纪末叶在生物学中,关于细胞分裂、染色体行为和受精过程等方面的研究和对于遗传物质的认识,这两个方面的成就促进了遗传学的发展。
遗传学的研究方法:
杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。
生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。系统科学理论(systems theory)、组学生物技术、计算生物学与合成生物学是系统遗传学的研究方法。
以上内容参考:百度百科-遗传学
王子一心要娶一位真正的公主为妻。为了测试雨夜投宿的小姐是不是真的公主,王后在20张床垫和20床羽绒被下放上一粒豌豆。注:本视频根据2019新人教版教材制作。
1、遗传学之父是孟德尔。
2、时隔多年才被人发现的原因:
豌豆的杂交实验从1856年至1864年共进行了8年。孟德尔将其研究的结果整理成论文《植物杂交试验》发表,但未能引起当时学术界的重视!其原因有三个。
第一,在孟德尔论文发表前7年(1859年),达尔文的名著《物种起源》出版了。这部著作引起了科学界的兴趣,几乎全部的生物学家转向生物进化的讨论。这一点也许对孟德尔论文的命运起了决定性的作用。
第二,当时的科学界缺乏理解孟德尔定律的思想基础。首先那个时代的科学思想还没有包含孟德尔论文所提出的命题:遗传的不是一个个体的全貌,而是一个个性状。其次,孟德尔论文的表达方式是全新的,他把生物学和统计学、数学结合了起来,使得同时代的博物学家很难理解论文的真正含义。
第三,有的权威出于偏见或不理解,把孟德尔的研究视为一般的杂交实验,和别人做的没有多大差别。
孟德尔晚年曾经充满信心地对他的好友,布鲁恩高等技术学院大地测量学教授尼耶塞尔说:“看吧,我的时代来到了。”这句话成为伟大的预言。直到孟德尔逝世16年后,豌豆实验论文正式出版后34年,他从事豌豆试验后43年,预言才变成现实。
3、人物启示:
孟德尔揭示遗传基本规律的过程表明,任何一项科学研究成果的取得,不仅需要坚韧的意志和持之以恒的探索精神,还需要严谨求实的科学态度和正确的研究方法。
文丨林下生风 生物遗传是人类很早就观察到的生命现象,经过孟德尔的育种实验和研究分析之后,才找到遗传的法则。 俗话说“龙生龙,凤生凤,老鼠的儿子会打洞。”人类很早就注意到,生物的某些特征可以在世代间传达,比如眼睛像爸爸,鼻子像妈妈等,而且也早就利用这种遗传现象进行生物育种的工作,但人们却只知其然而不知其所以然。就连达尔文在1859年提出“演化论”时,也只知生物族群中生物的特征有变异存在,且这些特征变异是演化过程中天择的选择基础,但却不知道这些变异是如何在世代间传达。这些神秘的遗传规则,直到19世纪末才由孟德尔计算出来。 清贫的高材生 孟德尔(1822—1884)出生于今捷克境内的一个小农庄,从小就经常在果园、花园里帮父母亲工作。孟德尔看到许多植物都是由两片小叶逐渐长大,然后开花结果,心里就想:“为什么麦子的种子长出来的一定是麦子,而葱的种子一定是生葱?”除了累积植物栽培的技术,他也在心里种下未来研究遗传学的种子。 孟德尔在大学毕业之后,就进入奥古斯丁修道院担任见习修士,由于这里曾是中世纪的科学研究中心,修士们热衷科学研究和教育的传统,启发了孟德尔对科学研究的兴趣。 后花园的豌豆实验 自然界的一切原理原则,最简洁的表明法就是数学式的表示法。 孟德尔成为神父之后希望能从事科学教育工作,所以在1851~1853年前往维也纳大学进修。这期间孟德尔主要修习自然科学和数学等科目,后来他确实将数学统计应用于研究中。 修道院植物栽培园中的豌豆有些开白花,有些开紫花;有高茎、也有矮茎;豆荚有圆、也有皱扁,孟德尔很想知道,用开白花的豌豆栽种出来的豌豆是否也开白花?于是从1856年起,开始进行他著名的豌豆实验,并首次以数学计算的方法来探讨问题。孟德尔详细记录豌豆上下两代间的相近性和相异性,每逢豌豆丰收期,便针对收获结果作统计,这期间记录的植物个体数超过两万一千株。搜集了大量统计数据资料之后,孟德尔逐渐对亲代和子代的关系理出一些头绪。 经过八个寒暑的努力,孟德尔终于找到生物遗传的基本规律,并计算出相对应的数学关系式,就是“分离定律”和“独立分配定律”,这两个定律揭示了生物遗传奥秘的基本规律。1865年,孟德尔将研究结果发表,题目是《植物杂交试验》;1869年又发表第二篇论文《动植物遗传之研究》。 孟德尔还把一份论文寄给遗传学家尼基利,尼基利虽然读了孟德尔的论文,但因看不懂,无法估计孟德尔的研究发现有何重要性,致使孟德尔的论文在当时未被科学界所知。 迟来的掌声 科学的研究活动是一生最大的满足。 除了豌豆杂交实验,孟德尔还长期观测气象和大阳黑子现象,并发表了9篇关于气象学的论文;同时他也对养蜂法和园艺很有研究,教导养蜂人家用杂交培育出优良品种,以制作更美味的蜂蜜。1868年孟德尔被任命为修道院院长,由于院务繁忙,从此便无暇顾及科学研究工作,但终其一生仍念念不忘。 1884年孟德尔做完最后一次气象观察后,心脏病发作,在1月6日与世长辞。当地的日报对孟德尔写下这样的颂词:“他的死使穷人失去一位恩人,使人类失去一位品德高尚的人,一位热情的朋友,和自然科学的促进者……”1月9日,修道院为孟德尔举行了葬礼,为数以千计的人们为他送葬,大家为失去这样一位敬爱的院长而悲伤,但仍不了解他在遗传学上的伟大贡献。 16年后的1900年。有3位科学家分别以不同的植物实验,同时获得与孟德尔相同的结果,这才使孟德尔的科学发现重见天日。3位科学家读了孟德尔的论文后,一致认为遗传规律的发现应当归功于孟德尔。孟德尔用心血浇灌的豌豆所告诉他的秘密,虽然时人不能与之共识,但终于还是拨云见日!为感念孟德尔在遗传学上的伟大成就,后人称他为“遗传学之父”。 我是林下生风,坐标北京,感恩你来过,谢谢你一路相陪~ 晚安,我的朋友,一夜好梦~
寂孟德尔和他的遗传理论 1965年夏天的一个傍晚,在捷克布林诺的摩拉维亚镇的一座教堂里,曾举行过一次盛大的纪念会。参加这次纪念会的大部分人并非教徒,而是应捷克科学院邀请而来的各国遗传学家。他们怀着崇敬而又惋惜的心情来纪念一位为遗传学奠定了基础,而其成果又被埋没35年之久的伟大生物学家。他就是格里戈.孟德尔神父。1965年是他的研究成果发表一百周年。 孟德尔其人 孟德尔(G.J.Mendel,1822-1884)出生于奥地利摩亚维亚的海因申多夫村。现今这个地方是捷克境内的海因西斯村。孟德尔的父亲是个农民,素性酷爱养花。因此,孟德尔自幼养成了养花弄草的兴趣。这也许是这位科学家后来在豌豆实验上成名的一个最初的契机吧。 孟德尔的童年不但平常,且有些寒苦。整个小学可以说是在半饥半饱中念完的。中学毕业后,主要靠妹妹准备作嫁妆的钱,读了欧缪兹学院的哲学系。大学毕业后,21岁的孟德尔在老师的建议下,进了设在鄂尔特伯伦的奥古斯丁派的修道院当了一名修士,取了一个教名叫格里戈。25年后被选为该修道院院长。 如果说童年的孟德尔是在贫寒中度过的,那么青年的孟德尔则饱历了生活道路的坎坷。孟德尔不满意于修道院的单调、古板的修士生活,兼任了布林诺一所实验学校代课教师的职务。他曾两次申请转为正式教师,但经考试的均名落孙山。特别令人气愤的是,在第二次考试中,主考官竟这样来评论他的考卷说:“这次的考卷使我们认为,该生连作为初等学校的老师也不够格”。在这期间他还到维也纳大学旁听了植物生理学、数学和物理学等课程。 好学勤奋和充满进取的孟德尔,考试落榜后,便在修道院的花园里从事植物杂交的研究工作。他的成果只发表了很小一部分。除了死后使他成名的《植物杂交实验》(1865)外,还有《人工授粉得到的山柳菊属的杂种》(1870)和《1870年10月13日的旋风》(1871)。 孟德尔的晚年,可说是在愁云惨雾中度过的。他孑身一个,无妻无子,孤苦令仃。又因拒绝缴纳当局对修道院征收的一笔税金,而遭受着与当局僵持之苦。学志未酬而又愤懑填膺的孟德尔,终于于1884年1月6日因患肾炎不治而与世长辞,享年只有62岁。当人们吊唁这位少年清贫,中年研究成果遭冷遇,晚年孤独悲惨的老人时,谁也未想到他是一位在科学史上留下峥嵘篇章的伟大科学家。 孟德尔的业绩 孟德尔开始研究植物杂交工作,所用的实验材料是豌豆。他选用了22个豌豆品种,按种子的外形是圆的还是皱的,子叶是黄的还是绿的……等特征。把豌豆分成了7对相对的性状。然后,按一对相对性状和两对相对性状,分别进行了杂交实验,得到了如下的一些结果。 一对相对性状的杂交实验孟德尔通过人工授粉使高茎豌豆跟矮茎豌豆互相杂交。第一代杂种(子1代)全是高茎的。他又通过自花授粉(自交)使子1代杂种产生后代,结果子2代的豌豆有3/4是高茎的,1/4是矮茎的,比例为3:1。孟德尔对所选的其它6对相对性状,也一一地进行了上述的实验,结果子2代都得到了性状分离3:1的比例。 两对相对性状的杂交实验孟德尔又用具有两对相对性状的豌豆作了杂交实验。结果发现,黄圆种子的豌豆同绿皱种子的豌豆杂交后,子1代都是黄圆种子;子1代自花授粉所生的子2代,出现4种类型种子。在556粒种子里,黄圆、绿圆、黄皱、绿皱种子之间的比例是9:3:3:1。 通过上述实验材料,孟德尔天才地推出了如下的遗传原理。 1.分离定律。孟德尔假定,高茎豌豆的茎所以是高的,是因为受一种高茎的遗传因子(DD)来控制。同样,矮茎豌豆的矮茎受一种矮茎遗传因子(dd)来控制。杂交后,子1代的因子是Dd。因为D为为性因子,d为隐性因子,故子1代都表现为高茎。子1代自交后,雌雄配子的D,d是随机组合的,因此子1代在理论上应有大体相同数量的4种结合型别:DD,Dd,dD,dd。由于显性隐性关系,于是形成了高、矮3:1的比例。孟德尔根据这些事实得出结论:不同遗传因子虽然在细胞里是互相结合的,但并不互相掺混,是各自独立可以互相分离的。后人把这一发现,称为分离定律。 2.自由组合定律。对于具 有两种相对性状的豌豆之间的杂交,也可以用上述原则来解释。如设黄圆种子的因子为YY和RR,绿皱种子的因子为yy和rr。两种配子杂交后,子1代为YyRr,因Y,R为显性,y,r为隐性,故子1代都表现为黄圆的。自交后它们的子2代就将有16个个体,9种因子型别。因有显性、隐性关系,外表上看有4种类型:黄圆、绿圆、黄皱、绿皱,其比例为9:3:3;1。根此孟德尔发现,植物在杂交中不同遗传因子的组合,遵从排列组合定律,后人把这一规律称为自由组合定律。 孟德尔的发现被埋没 孟德尔从1856年开始,经过8个的专心研究,得出了上述两上定律并写成一篇题为《植物杂交实验》的论文。在好友耐塞尔(一个气象学家)的鼓励的支援下,他于1865年2月8日和3月8日举行的布林诺学会自然科学研究会上,报告了这一论文。与会者很有兴致地听取了他的报告,但大概并不理解其中的内容。因为既没有人提问题,也没有人进行讨论。不过该会还是于1866年在自己的刊物《布林诺自然科学研究会会报》上全文发表了这篇论文。 曾一个时期,人们以为孟德尔的工作被埋没,是由于当时学术情报囿闭不通,交流不广,人们不知道他的工作造成的。后经调查,才知情况并非如此。原来该学会至少同120个协会或学会研究会有交流资料关系。刊载孟文的杂志,共寄出115本。其中,当地有关单位12本,柏林8本,维也纳6本,美国4本,英国2本(英国皇家学会和林耐学会)。孟德尔本人还往外寄送过该论文的抽印本。迄今有据可查的至少有5个人了解他的工作。第一个是耐格里。他是19世纪著名的植物学家。他的研究对解剖学、生理学、分类学和进化论的发展,有一定的推动作用。在植物学方面,他是心柳菊属方面的权威。孟德尔不仅把自己的论文寄给了他,且还给他写过进一步说明论文的长信。第二个是A.凯尔纳。他曾在因斯布罗克任教授,在维也纳植物园当主任。第三个是H.霍夫曼,一位植物学教授。第四个是威廉.奥尔勃斯.福克,他是植物杂交方面的权威。第五个是俄国的施马尔豪森。但是,刊物也好,论文也好,都如石沉大海,没有得到明显的反响。这样,孟德尔的为遗传学奠定了基础的、具有划时代意义的发现,竟被当代人们所忽视和遗忘,被埋没达35年之久。 1900年,对孟德尔盖棺后成名具有重要意义。这一年,有三人几乎同时重新作出了孟德尔那样的发现。第一个是德弗里期,他于1900年3月26日发表了同孟德尔的发现相的的论文;第二个人是科仑斯,收到他论文的时间是1900年4月24日;第三个人是丘歇马克,收到他论文的时间为1900胪6月20日。也就是在这一年里,他们也都发现了孟德尔的论文。这时,他们才清楚,原来自己的工作,早在35年前就由孟德尔做过了。 对孟德尔发现被埋没的原因分析 有不少生物史学家。对这一问题很感兴趣,也曾进行了一些调查。但因事情发生已年深日久,有确凿证据的材料所得无几,尤其关系到人们心理方面的活材料更难以到手。现据已有材料作如下分析: 历史的局限性 1866年孟德尔发表自己的论文时,正值达尔文的《物种起源》发表的第七个年头。这期间各国的生物学家,特别是著名生物学家都把兴趣转到了生物进化问题上,而物种杂交问题自然就不是人们瞩目的中心问题了。“这一事实也许对孟德尔的工作所遭到的命运,起到了更为决定性的作用”。其次,由于历史条件的限制,当时学术资料不能广泛地交 流也是一个原因。如,对杂交问题蒐集资料较多的达尔文,就没有看到过孟德尔的论文。虽然也有人说,即使达尔文看到了这一成果,也不一定能充分地认识到它的意义。但,这样推论是没有多大根据的。又如,了解孟德尔工作的俄国的施马尔豪森,他本来在自己学位论文的历史部分加了一个附注,正确地评价了孟德尔的工作。但遗憾的是,当1875年《植物区系》杂志发表他的论文译本时,删去了加有评价孟德尔工作的附注。这样,就又减少了后人了解孟德尔工作的机会。 怀疑以至完全不相信这是一项新发现孟德尔发表他的新发现时,当时只是一名普普通通的修士。至于他从事植物杂交的研究,只被人们看作“不过是为了消遣,他的理论不过是一个有魅力的懒汉的唠叨罢了”。的确,在一个专业学者的眼里,他还够不上一名地道的生物学家。因为他既没有生物学专业的学历,也没有博士、教授的头衔。因此,他的具有挑战性的发现,自然不易被人们所相信。从已知的少数几个看过他论文的人的反映和态度看,怀疑以至不相信孟德尔这个小人物能有什么新发现,乃是忽视他成果的一个和重要原因。当时了解孟德尔最多的是生物学家耐格里。孟德尔跟他素来关系甚密,相互交往达七年之久,孟德尔常同他交换种子。他也是读过孟文的第一个人。然而,正是由于他不仅没有正确地认识孟德尔的工作,而且还提出种种怀疑和责难,从而成为这桩遗憾后世的科学蒙难案的重要原因。现已查到,他看过孟德尔论文后,于1866年12月31日给孟德尔的覆信。从中可以确凿地看到他是怎样地怀疑、责难以至忽视了孟的工作。他在信中说:“我认为,你用豌豆属作的实验还远远没有完成,其实还只是个开端。……能为最重要的结论提出无可争辩的证明的这样一套试验,决不是已在着手进行了。……你打算在你的试验中包括其他植物,这是很好的,我相信,从其他品种中会得到完全不同的结果(就遗传性而言)”。他还怀疑孟德尔得出的3:1的规律。如他说:“你应当把数量的表现看作仅仅是经验的理象,因为它们还不能被证明是合理的”。在耐格里看来,“只有那些在最模糊的专业领域能够作出正确判断的人,才能探究这个问题”。另一个了解孟德尔工作的A.凯尔纳,接到孟德尔寄送的论文后,曾给孟德尔写过覆信。但据凯尔纳的助手说,孟德尔的论文在凯尔纳的图书室中压根就没有拆过封。人们是否可以推论:在凯尔纳的眼中,像孟德尔这样的小人物的文章,简直是不屑一顾的。 不理解其成果的重要意义 孟德尔的发现本身,在一定程度上超出了当时的流行观念。在当时,传统的遗传学观点是融合遗传理论,而孟德尔的思想则是粒子遗传;其次,当时在生物学领域主要的研究方法是定性的观察和实验,而孟德尔用的是定量的数学统计分析。所以,即使是认真地看过他的文章,如果跳不出传统框框,也不一定能理解其重要意义。如H.霍夫曼不仅看过他的文章,而且在自己的著作中,五处引用了孟德尔的文章,但现在看来,不是没有引到重要的地方,就是有所误解,总之,没有真正理解孟德尔工作的意义。所以,在霍夫曼的书中完全忽视了孟德尔的贡献。福克也曾多次提到孟德尔的成果,但他说:“孟德尔所作的很多次杂交的结果,十分类似于奈特的结果,但孟德尔自以为发现了各种杂种型别之间稳定的数量关系”。他所否定的正是孟德尔的成功之处,说明他根本不理解孟德尔发现的意义。他的提到孟德尔,不过是因为孟德尔培育成了植物杂种,不得不得一下而已。 教训和启示 埋没孟德尔发现一案,已经过去一百多年了。今天,孟德尔在科学史上的地位及其光辉业绩已被充分肯定,以他的成果为基础的遗传学也已取得辉煌胜利。然而,我们不应忘记,忽视孟德尔发现的代价是沉重的,它也许使生物学的发展延 缓了几十年。难道我们不应从中悟出应有的教训,找出以古鉴今的富有启发性的道理,以便今后不犯或少犯同类错误吗? 警惕传统观念的束缚 有些人认为孟德尔的发现是早产儿,它超越了时代的认识水平,因此被埋没是必然的。然而,我们却认为,孟德尔的发现不被理解从而导致被埋没,主要应归咎于传统观念的束缚。理由是,孟德尔的课题当时已经摆到了人拉的面前。至少有向个人的工作接近于孟德尔的结论(参阅斯多倍《遗传学史》,第126-138页,第189页),其中甚至包括人所共知的达尔文,他关于金鱼草的杂交实验距离孟德尔的结论只差一小步。这充分说明,孟德尔的发现决非偶然的早产儿,而是具备成熟的历史条件的。上述几个人和看过孟德尔论文的人,之所以没有作出孟德尔那样的结论和没有认识到其意义,主要因为他们没有冲破传统观念的束缚和跳出传统的定性方法的局面。而孟德尔的成功,正由于他的老框框少些,所以才有可能冲破当时的研究方法和流行的
怎样写生物小论文 1、 在中小学课外科技活动,对生物学科的某一专题是某一现象进行探索研究,把研究过程中枢观察纪录的资料,加工整理,综合分析,去会有共,并指出自己的观点。把上述的工作用文字系统全面的表达出来,这就是生物科学小论文。 2、 学生论文的特点 课题应具体,题目不应过大。因为基础知识薄弱,研究深度浅。生物科技小论文是学生进行生物科技活动的总结,这对扩大学生知识领域、培养能力、发展创造力,都有重要的实践意义。 完成生物小论文课题的方法 小论文课题确定后,怎样去完成研究课题呢?下面分别作些介绍。 (一) 考察法 即调查某一区域内的某些生物种类组成、数目和分布的规性等。如某的去昆虫种类及数目变化;环境宝物种的各种动物吹气候变化的调变,等等。 这种研究犯法化钱少,不需要复杂的仪器和装置一般的中小学都可进行。但指导教师事前应适当扑导,让学生与县长掌握一定的动物分类知识,并且事先订好固定的考察计划。 (二) 观察法:就是对某种动植物的个体进行仔细的观察,以了解掌握其生活习性和生长发育的规定性。佩观察的物件必须要有一定的数目,因为只对一个个体进行观察,其必然性的因素太大,回引响研究的结论。观察的同时,应随时注意收集实物资料,使证据更完全,效果更好。 (三) 实验法 在人物改变某个环境因素条件下(如营养、温度、光照等),观察在某一特定环境下,环境对生物产生的引响,找出其中的规定性的研究方法。注意点:1:要有对照组 2:研究的物件要有一定的数目。 例:"营养对青蛙蝌蚪发育的影响"。 实验时,分天然水和坦然谁加少是农家肥,两族作对照。试验过程中,除了营养条件不同外,其他条件如蝌蚪的来源、大小、水温、光照等都要尽权,一免其他因素影响了实验。 以上三种方法在实验研究中常有的,以那一中为止,以课题内容、性质而定。但不要用那种方法,都要引导学生进行仔细的观察,特别是在变化过程,要做好计数和测量,记录下来,然后用统计学得出正确的结论
哪方面的?我自由发挥了。。 现如今计算机技术应用越来越广泛,越来越多的人开始探讨人机互动(人类与计算机进行资讯互换)的可行性。英国雷丁大学的奇云·沃里克博士在自己的左臂植入100多块晶片以此来控制计算机,他还打算将晶片植入妻子脑中与妻子进行资讯交流,这项技术几乎使他获得了第六感。这项生物与计算机技术相结合的新兴技术迟早会有重大突破它将彻底改变我们的生活,我们的思维将通过无线网路与因特网相连,可以快速获取大量知识,计算机,手机也将被淘汰。其实这项技术并不年轻,之前有科学家在大脑完好的渐冻症患者体内神经中接入电极板,通过训练让他们用“意念”操控滑鼠以此与人交流。如果解决了蛋白质富集和产生大量自由基这些问题人机互动必将带给我们福音,人类医疗史上多数神经系统疾病也将被治愈。现在这项技术仍有许多路要走,在未来也许我们要解决的就是如何区分人类和智慧机器人了! 纯手打,也许不太严谨,高中不会强求吧。。。看我这么不容易求采纳。
可以
去猿题库会伐?实在不行,一遍过啊,高中必刷题啊等等有你做的了。
你确定600字就是论文了吗? 树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支援植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支援作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支援力最大,横向承受力最小;圆柱状物体纵向支援力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支援力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联络实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。
例: 数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
谈历史 - 我不敢说历史是什么,我只能说历史像什么。 历史像一条满满的海滩,古人是海滩的缔造者,而我们是一个个悠闲地过客,我们在历史的海滩上散步,又想拾起点什么 于是我们知道了秦前的战乱纷飞、群雄争霸;汉朝的文景之治、丝绸之路;盛唐的公主出嫁,歌舞升平;宋末的骨肉分离,词人思瘦;还有大元并不属于我们的莫斯科,我们的祖宗通过郑和下西洋将恩泽遍洒蓝色星球,我们还看到了史上最贵的一把火怎样烧掉天朝上国的尊严,烧毁半个中国的骄傲,烧痛我们后辈人的心,月光下破碎的斑驳是那些琉璃的泪吗? 我们就在这条海滩上一步一步的前行,拾起古人留给我们的记忆,岳飞、秦桧同样应该被记住,就像石头钻石同样硌脚。 人累了,天黑了,海滩却同样在那里,我不敢说明天也不敢信明天,但愿明天的海滩有更多下陷的足迹。 历史是一首唱不完的歌,大自然来作词,人类来谱曲,农民和领袖同样唱得出转音,只不过秦始皇转的大一点,陈胜转的小一点,五线谱写满了前辈们足够的功底,让他们一直从离骚唱到东方红,有花美的霓裳羽衣曲,也有悲凉的骊山怀古,还有黄河大合唱和雄壮的义勇军进行曲,每一个词都是历史的赐予,每一个音符都是感人的触控,在音乐的灵魂里我读出了历史的发展壮大,80后华人的历史不止只唱到R&B,中国人的历史是一首唱不完的歌,我不敢说明天也不敢信明天,但愿明天的歌谣可以让更多的人传唱。 历史不是谁写给谁看得而是谁来书写的,古人写下了万里长城,近现代人写下了万里长征,我们应该写下更多可以万年来辉煌,历史是伟大的。
就高中生物来说,遗传学部分属于有点困难,需要理科思维的部分。但高中学的遗传学也只是最基础的东西罢了
是啊 楼上说的对啊 你要哪方面的啊? 我记得我高中的时候主要做的是有丝分裂的观察
孟德尔(GregorMendel)
孟德尔(Monde) 遗传学的开路先锋孟德尔选用豌豆担任遗传因子实验的「主角」。并且从豌豆上找到了遗传因子,而成为遗传学的开路先锋。
学生时代的孟德尔西元一八二一一年七月二十二日,孟德尔在捷克的海森铎(当时属于奥地利)诞生了,他是家里五个孩子中唯一的男孩。当农夫的父亲觉得种田实在太辛苦,希望孟德尔能够多念点书,将来可以找到较好的职业。
而孟德尔果然不负众望,从小就表现出过人的资质,在学校功课一直名列前矛。当孟德尔上中学时,校长也注意到他是位可造就的人才,如果留在家乡这所小型的中学,会埋没了他,所以说服他的父母亲,让他转到较大的学校─莱普尼克中学。
大学预科高中毕业后,他再度以优异的成绩,进入大学预科学校。孟德尔上学所需的学杂费,一直都是家里东拼西凑的情况下,好不容易节省下来的。等到上大学预科学校时,庞大的学杂费已经使全家人用尽最后的一分力量,再也缴不出伙食费,只好由父母亲轮流,每天步行三十多公里的路,送面包给孟德尔。孟德尔在这种压力下,仍然尽力的把书念好,但是困苦的生活加上过分的用功,还是拖垮了他的健康。
对于一个的科学家而言,能够在活着的时候,看到自己的发明或发现被全世界的人肯定,甚至于获颁奖章,那真的是极大的幸福,像是:伦琴、瓦特、爱迪生、居里夫人等人;但是还有一类的科学家,生前的研究发现,不被世人所了解,一直到死后好多年之后,他的理论才被人重视,进而获得世人的肯定。这类科学家,一生在发掘真理的道路上孤寂的前进,我们的「遗传学之父」--孟德尔,就是这样的一个科学家。
农夫的小孩
孟德尔是奥地利人,西元1822年出生,父亲曾经参加过几次对拿破仑的战役,是个见闻广博的人,战事结束后回到故乡务农,经营一片果树园。孟德尔常常到园中帮忙父亲工作,果树园对一个少年来说,正是一个最佳的自然学校。也许是正好有这样的环境,因此孕育孟德尔日后藉由培育植物来探索遗传法则的动机。孟德尔的父亲虽然只是个农夫,却有不凡的远见,他知道农民要摆脱地主和专制政府的压榨,就必须读书求学问,才能取得较高的地位,因此他极力栽培孟德尔接受高等教育。
不过孟德尔的求学生涯并不太顺利,主要是因为家里经济状况不佳,孟德尔离乡求学必须缩衣节食,导致营养不佳而生病,严重时甚至必须休学在家休养。尽管如此,孟德尔还是凭着自己的毅力和妹妹的嫁妆费的资助,终于进入一所短期大学—奥尔茅兹学院就读。后来在1843年孟德尔接受一位教授的推荐,进入一座「圣奥古斯丁派」的修道院担任见习牧师,并研究学问。修道院毕业后原本应该当个专职的牧师,但是服务了一年后孟德尔觉得自己更适合作学问和教书,于是就请求改任中学代课教师。
代课老师更厉害
孟德尔在担任代课教师的期间由于教学认真,因此非常受到学生的欢迎。于是学校便要他参加正式的教员资格考试,没想到孟德尔竟然栽在生物学和地质学上,没通过考试。尽管如此,孟德尔所属的修道院还是派他到维也纳大学继续进修。在维也纳大学,孟德尔学习各种自然学科和数学,同时得到许多优秀教授的指导,因此奠定研究能力的基础。
完成维也纳的学业后,孟德尔回到修道院所在地—布尔诺的一所专科学校任教。孟德尔和学校里的各类专家、教授朝夕相处、共同研究学问,时间一晃就是14年(1854—1868年)。这十四年的教师生涯,成为孟德尔一生最重要的黄金岁月;著名的孟德尔遗传定律,也是在这时候发展出来的。从资料上来看,孟德尔一生似乎并未取得正式教师资格,但是他的学养和教学能力,绝不输给一个大学教授。所以文凭和学历并不代表一切,自己的能力和实力更为重要。
空地里的豌豆实验
这14年中,孟德尔是生活在学校和修道院之中。在学校他是一位良师;在修道院他则是一位研究者。修道院的后院,紧邻着窗边,有一块长35公尺、宽7公尺的空
地,孟德尔在这块空地上印证了科学的真理、解释了人们长期的疑惑。在当时,人们虽然已经发现上一代和下一代之间,个体会有某些相似性,但是总是认为「本来就是这样啊!没什么好奇怪」,科学界也没有深入的研究探讨。
孟德尔发现空地上的的豌豆,有的开着白花、有的开着黄花;有高茎、也有矮茎;有的豆荚丰圆、有的却是干扁。孟德尔用长时间的观察、比对,看看豌豆上下两代间的相近性和相异性,每逢豌豆丰收期,便针对收获结果作有系统的统计,这些记录的植物个体数超过二万一千株以上。经过长期观察和大量的统计数据资料,孟德尔发现:如果长茎豌豆和矮茎豌豆交配,子代和孙代全部是长茎,一直到第四代,四株中才有一株是矮茎。孟德尔进一步用动物作实验:白鼠黑
孟德尔用来进行豌豆实验的空地,就在修道院后面
鼠交配,第二代全部是黑鼠;再让第二代黑鼠彼此交配,第三代中就有四分之一是白鼠。经由动植物的实验,孟德尔逐渐对亲代和子代的关系理出一些头绪。
孟德尔遗传定律
经过将近9年的努力,他的辛苦终于有了成果,1865年,他把研究的结果在当地布尔诺的自然历史学会上发表,论文题目是《植物杂交试验》;1869年他又发表第二篇论文《动植物遗传之研究》,这篇论文是融合他一生对遗传学的研究的结晶。可惜这两篇论文都没有引起世人的注意,因为当时的人并不清楚遗传学有什么实用价值,更不了解它对人类有何影响。
孟德尔的学说,小罐子老师把他简单整理成下面几点:
一、生物组织之内都有一个基本单元(现在称为基因),透过这个基本单元,亲代的特性可以传给下一代。
二、每一种单独的特征,例如:豌豆的颜色或高矮,都是由一对基因决定,而这对基因是由上一代的一对基因中,各继承一个基因凑成一对。
三、子代继承来的基因如果是有不同性状的区别,例如:一个基因会显现高茎的特性、另一个会显现低茎,那么只有强势的特性会显现出来(我们称为显性),在豌豆来说,就会显现高茎,这种现象叫做「优性定律」。但是隐性的基因并不会消失、也不会被破坏,它还是会经由自然的机率,分配并传递给下一代。
四、亲代的基因经过分配,再传给子代,哪个基因和哪个基因配成一对,完全是随机偶然发生的。
五、遗传和性细胞有密切的关系,不属于性细胞的特性是不能遗传的。所以后天环境、工作造成的疾病是不会遗传的,被细菌感染的疾病也不会遗传;但是某些精神错乱、神经衰弱症是会遗传的。
迟来的掌声
西元1868年,孟德尔被任命为当地修道院的院长,从此以后,繁忙的行政业务使他无法继续遗传学的研究,加上当时的修道院,经常为了税金的问题和政府闹的不愉快,使得孟德尔被纠缠在这些繁重的工作之间,终于在1884年因病去世。孟德尔寂静的在墓地里沉睡了30多年以后,忽然声名大噪,原因是1900年,在荷兰、德国、奥国都有科学家分别以不同的植物加以实验,同时获得与孟德尔相同的结果,这时候他的研究才得到科学界的重视与肯定。
从此以后,更多的科学家重复孟德尔的遗传实验,进一步由染色体的研究发现基因,再由基因的研究扩展到现在的细胞学、胚胎学、优生学、生化科技、甚至于现在最流行的「复制羊」、「复制人」等科技。
孟德尔走在时代的前端,使得他孤寂而终;但是,研究科学的美妙之处在于:只要是「真理」,必将有得到掌声的一天,只是你不知道会在何时?哥白尼、伽利略、孟德尔都是这样的人!
遗传现象
遗传现象是指经由基因的传递,使后代获得亲代的特征、性状的一种现象。遗传学是研究这一现象的学科。
原因
产生遗传现象的原因是生物体内具有遗传物质。 遗传物质的基础是脱氧核糖核酸(DNA),亲代将自己的遗传物质DNA传递给子代,而且遗传的性状和物种保持相对的稳定。遗传物质在生物进程之中得以代代相承,从而使后代具有与前代相近的性状。
遗传现象的研究
1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了称为孟德尔定律的遗传规律。
孟德尔的工作于1900年为德弗里斯、德国植物遗传学家科伦斯和奥地利 植物遗传学家切尔马克三位从事植物杂交试验工作的学者所分别发现。
1900~1910年除证实了植物中的豌豆、玉米等和动物中的鸡,小鼠、豚鼠等的某些性状的遗传符合孟德尔定律以外,还确立了遗传学的一些基本概念。
1909年丹麦植物生理学家和遗传学家约翰森称孟德尔式遗传中的遗传因子为基因,并且明确区别基因型和表型。同年贝特森还创造了等位基因、杂合体、纯合体等术语,并发表了代表性著作《孟德尔的遗传原理》。
文丨林下生风 生物遗传是人类很早就观察到的生命现象,经过孟德尔的育种实验和研究分析之后,才找到遗传的法则。 俗话说“龙生龙,凤生凤,老鼠的儿子会打洞。”人类很早就注意到,生物的某些特征可以在世代间传达,比如眼睛像爸爸,鼻子像妈妈等,而且也早就利用这种遗传现象进行生物育种的工作,但人们却只知其然而不知其所以然。就连达尔文在1859年提出“演化论”时,也只知生物族群中生物的特征有变异存在,且这些特征变异是演化过程中天择的选择基础,但却不知道这些变异是如何在世代间传达。这些神秘的遗传规则,直到19世纪末才由孟德尔计算出来。 清贫的高材生 孟德尔(1822—1884)出生于今捷克境内的一个小农庄,从小就经常在果园、花园里帮父母亲工作。孟德尔看到许多植物都是由两片小叶逐渐长大,然后开花结果,心里就想:“为什么麦子的种子长出来的一定是麦子,而葱的种子一定是生葱?”除了累积植物栽培的技术,他也在心里种下未来研究遗传学的种子。 孟德尔在大学毕业之后,就进入奥古斯丁修道院担任见习修士,由于这里曾是中世纪的科学研究中心,修士们热衷科学研究和教育的传统,启发了孟德尔对科学研究的兴趣。 后花园的豌豆实验 自然界的一切原理原则,最简洁的表明法就是数学式的表示法。 孟德尔成为神父之后希望能从事科学教育工作,所以在1851~1853年前往维也纳大学进修。这期间孟德尔主要修习自然科学和数学等科目,后来他确实将数学统计应用于研究中。 修道院植物栽培园中的豌豆有些开白花,有些开紫花;有高茎、也有矮茎;豆荚有圆、也有皱扁,孟德尔很想知道,用开白花的豌豆栽种出来的豌豆是否也开白花?于是从1856年起,开始进行他著名的豌豆实验,并首次以数学计算的方法来探讨问题。孟德尔详细记录豌豆上下两代间的相近性和相异性,每逢豌豆丰收期,便针对收获结果作统计,这期间记录的植物个体数超过两万一千株。搜集了大量统计数据资料之后,孟德尔逐渐对亲代和子代的关系理出一些头绪。 经过八个寒暑的努力,孟德尔终于找到生物遗传的基本规律,并计算出相对应的数学关系式,就是“分离定律”和“独立分配定律”,这两个定律揭示了生物遗传奥秘的基本规律。1865年,孟德尔将研究结果发表,题目是《植物杂交试验》;1869年又发表第二篇论文《动植物遗传之研究》。 孟德尔还把一份论文寄给遗传学家尼基利,尼基利虽然读了孟德尔的论文,但因看不懂,无法估计孟德尔的研究发现有何重要性,致使孟德尔的论文在当时未被科学界所知。 迟来的掌声 科学的研究活动是一生最大的满足。 除了豌豆杂交实验,孟德尔还长期观测气象和大阳黑子现象,并发表了9篇关于气象学的论文;同时他也对养蜂法和园艺很有研究,教导养蜂人家用杂交培育出优良品种,以制作更美味的蜂蜜。1868年孟德尔被任命为修道院院长,由于院务繁忙,从此便无暇顾及科学研究工作,但终其一生仍念念不忘。 1884年孟德尔做完最后一次气象观察后,心脏病发作,在1月6日与世长辞。当地的日报对孟德尔写下这样的颂词:“他的死使穷人失去一位恩人,使人类失去一位品德高尚的人,一位热情的朋友,和自然科学的促进者……”1月9日,修道院为孟德尔举行了葬礼,为数以千计的人们为他送葬,大家为失去这样一位敬爱的院长而悲伤,但仍不了解他在遗传学上的伟大贡献。 16年后的1900年。有3位科学家分别以不同的植物实验,同时获得与孟德尔相同的结果,这才使孟德尔的科学发现重见天日。3位科学家读了孟德尔的论文后,一致认为遗传规律的发现应当归功于孟德尔。孟德尔用心血浇灌的豌豆所告诉他的秘密,虽然时人不能与之共识,但终于还是拨云见日!为感念孟德尔在遗传学上的伟大成就,后人称他为“遗传学之父”。 我是林下生风,坐标北京,感恩你来过,谢谢你一路相陪~ 晚安,我的朋友,一夜好梦~