首页 > 职称论文知识库 > 多少岁发表论文

多少岁发表论文

发布时间:

多少岁发表论文

戴元本是我国著名的理论物理学家,世界粒子学的领军人物,本科毕业于南京大学,在物理的一些领域成就非凡,戴元本有着传奇的一生,一生勤勤恳恳努力工作,就算在耄耋之年仍然坚持科研工作,在70岁的高龄发表了30多篇学术论文,而且还一直工作到不能工作,从这件事就足以看出老一辈科学家的科研态度和工作态度,还有对工作的热情以及对国家作出无私奉献的爱国之情,对于这件事有我主要有以下几点看法:

70岁是普通人的颐养天年,享受天伦之乐的年纪,而戴元本在70岁高龄还继续坚持科研工作做着高强度的工作,用自己此生的精力来致力于自己的工作,来为我国的科研事业做出了伟大的贡献,这不仅仅是无私奉献的体现,还可以看出老一辈科学家对科研的态度。

作为物理学领域的泰斗人物,世界粒子学的领军人物,在70岁高龄戴元本原本可以非常舒服的享受着国家给他的福利,学生们的敬仰,但是戴元本并没有选择颐养天年,而是选择继续为国家做贡献,在高龄之年仍然坚持着工作,科研,用自己的血肉之躯撑起了我国物理学领域的一角。

有句话说兴趣是最好的老师,有了兴趣才会有绵延不断的动力去学习,去研究。除了为国家做贡献外,物理学也是戴元本先生的一生挚爱,也是戴元本先生一生的兴趣所在,所以才会有源源不断的动力和精力去工作,去做科研。

关于这件事各位还有什么看法欢迎在评论区留言!

这种一般是博士在读,28-30之间。

一般是25岁以上。

有导师实验室还要写论文,说明是在读博期间。有孩子,那就说明法定结婚最低年龄再加两三岁,那么最低应该是25岁左右。上限的话不好推测。

戴元本作为我国理论物理学家,中国科学院院士 ,中国科学院理论物理研究所研究员和博士生导师 ,他的一生都在为了物理研究而努力。本应安享晚年的他,还在不断地工作,不断地发表学术论文。他的一生努力勤奋,从不懈怠。他用努力和坚持在我国物理研究中做出了伟大的贡献。他主要从事量子场论和粒子物理理论方面的研究,并在奇异位势和非定域位势的瑞奇极点理论、层子模型研究、非交换群规范场论中费密子的电磁形状因子的高能渐近行为和重强子物理等方面取得一系列重要成果,这为我国的物理研究发展提供了无限的动力和宝贵经验。

戴老先生的一生本是辉煌无数,但他一辈子为人和蔼热心,在生活中朴素简洁,工作方面更是要求精益求精,为人光明磊落 ,从不弄虚作假。他的所作所为无不体现我国老一辈的科学家们的无私奉献精神。在物理学科的领域,在Regge极点理论、层子模型、规范场论中形状因子的高能渐近行为、对称性动力学破缺和重夸克物理等方面做了有意义的工作。他的科研精神,无私奉献,为我国新一代的物理学者提供了丰富的资源和宝贵的经验。

依我个人的见解,作为一位物理学者,他的贡献是无价的;作为一位老师,他的艰苦钻研和坚持研究的精神值得我们学习;作为一位我国老一辈科学家,他个人的成就,是在于日积月累。戴先生淡泊名利的胸怀,乐观旷达的性格,严谨的治学态度和对科学的执着的追求精神值得我们一辈子学习 。

他的一句名言:志存高远,进取创新,简短的文字表达了他这一生无畏的追求,致敬老一辈的科学家们。

霍金多少岁发表论文

霍金的生平非常富有传奇性。在科学成就上,他是有史以来最杰出的科学家之一。 霍金是当代最重要的广义相对论家和宇宙论家。70年代他和彭罗斯一道证明了著名的奇性定理,他们共同获得了1988年的沃尔夫物理奖。 1980年以后,他的兴趣转向量子宇宙论。他在1982年开始写《时间简史》。霍金认为他一生的贡献是,在经典物理的框架里,证明了黑洞和大爆炸奇点的不可避免性,黑洞越变越大;但在量子物理的框架里,他指出,黑洞因辐射而越变越小,大爆炸的奇点不但被量子效应所抹平,而且整个宇宙正是起始于此。 从1988年4月首版以来,此书已被翻译成30种文字,并出售了大约550万册。

斯蒂芬.霍金(1942-)是本世纪享有国际盛誉的伟人之一,现年63岁,出生于伽利略逝世周年纪念日,剑桥大学应用数学及理论物理学系教授,当代最重要的广义相对论和宇宙论家。70年代他与彭罗斯一道证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想家和最杰出的理论物理学家”。他还证明了黑洞的面积定理。霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一。他担任的职务是剑桥大学有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡逊数学教授。他拥有几个荣誉学位,是皇家学会会员。他因患卢伽雷氏症(肌萎缩性侧索硬化症),禁锢在一张轮椅上达20年之久,他却身残志不残,使之化为优势,克服了残废之患而成为国际物理界的超新星。他不能写,甚至口齿不清,但他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”。尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到光袤的时空,解开了宇宙之谜。 霍金教授是现代科普小说家,他的代表作是1988年撰写的《时间简史》,这是一篇优秀的天文科普小说。作者想象丰富,构思奇妙,语言优美,字字珠玑,更让人咋惊,世界之外,未来之变,是这样的神奇和美妙。这本书至今累计发行量已达2500万册,被译成近 40种语言。1992年耗资350万英镑的同名电影问世。霍金坚信关于宇宙的起源和生命的基本理念可以不用数学来表达,世人应当可以通过电影——这一视听媒介来了解他那深奥莫测的学说。本书是关于探索时间本质和宇宙最前沿的通俗读物,是一本当代有关宇宙科学思想最重要的经典著作,它改变了人类对宇宙的观念。本书一出版 即在全世界引起巨大反响。《时间简史》对我们这些喜用言语表达甚于方程表达的读者而言是一本里程碑式的佳书。她长于一个对人类思想有接触贡献者之手,这是一本对知识无限追求之作,是对时空本质之谜不懈探讨之作。 《时间简史续编》 作为宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续篇》是为想更多了解霍金教授生命及其学说的读者而编的。该书以坦白真挚的私人访谈形式,叙述了霍金教授的生平历程和研究工作,展现了在巨大的理论架构后面真实的“人”。该书不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为感人又迷人的画像和描述。对于非专业读者,本书无疑是他们享受人类文明成果的机会和滋生宝贵灵感的源泉。 《霍金讲演录——黑洞、婴儿宇宙及其他》,是由霍金1976-1992年间所写文章和演讲稿共13篇结集而成。讨论了虚时间、有黑洞引起的婴儿宇宙的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和死亡作出了独到的见解。 《时空本性》80年前广义相对论就以完整的数学形式表达出来,量子理论的基本原理在70年前也已出现,然而这两种整个物理学中最精确、最成功的理论能被统一在单独的量子引力中吗?世界上最著名的两位物理学家就此问题展开一场辩论。本书是基于霍金和彭罗斯在剑桥大学的6次演讲和最后辩论而成。 《未来的魅力》本书以斯蒂芬·霍金预测宇宙今后十亿年前景开头,以唐·库比特最后的审判的领悟为结尾,介绍了预言的发展历程,及我们今天预测未来的方法。该书文字通俗易懂,作者在阐述自己观点的同时,还穿插解答了一些有趣的问题,读来饶有趣味。 霍金简史 霍金,英国理论物理学家,世界公认的引力物理科学巨人,是当代最重要的广义相对论家和宇宙论家。霍金在剑桥大学任牛顿曾担任过的卢卡逊数学讲座教授之职,他的黑洞蒸发理论和量子宇宙论不仅震动了自然科学界,并且对哲学和宗教也有深远影响。 70年代他和彭罗斯一道证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。1973年,他考虑黑洞附近的量子效应,黑洞辐射的发现具有极其基本的意义,它将引力、量子力学和统计力学统一在一起。他的目标是解决从牛顿以来一直困扰人类的“第一推力”问题。 霍金的宇宙模型是一个封闭的无边界的有限的四维时空不需要上帝的第一推力,宇宙的演化完全取决于物理定律。霍金患有严重的肌萎缩性脊髓侧索硬化症,行动困难,而竟能在物理学上作出突出贡献,因此倍受尊重。1974年,当选为英国皇家学会最年轻的会员。 霍金简历: 1942年1月8日:出生于英国牛津,这一天刚好是伽利略300年的忌日。 1963年:被诊断出患肌萎缩性侧索硬化症。这种病在英国被称作运动神经细胞病,在美国被叫做卢伽雷氏症。 1965年:霍金得到剑桥凯尔斯学院的一份研究奖学金。 1965年7月:霍金和简结婚。他们的第一个儿子罗伯特出生于1967年,女儿露西出生于1970年,而第二个儿子提莫西出生于1979年。1985年他更几乎完全丧失了生活和语言能力,当时医生曾宣布他最多活两年, 1973年:首部著作《空时的大型结构》出版。 1974年:宣布发现黑洞辐射,成为英国皇家学会会员。此后他的研究转向量子引力论。 1979年:《广义相对论评述:纪念爱因斯坦百年诞辰》出版。 1980年以后:他的兴趣转向量子宇宙论。 1981年:无边界构想《超时空和超引力》出版。 1985年:实行气管造口手术失去语言能力,使用带语音合成器的计算机。 1988年:《时间简史:从大爆炸到黑洞》出版,获沃尔夫基金奖。至今销售2500万册。 1993年:《黑洞与婴儿宇宙及其它论文》出版。

史蒂芬·霍金是英国物理学家,他用毕生精力研究黑洞普通物理学定理不再适用的时空领域)和宇宙起源大爆炸原理。他提出黑洞能发射辐射(现在叫霍金辐射)的预言现在已是一个公认的假说。他的研究工作在科学界远不及他的畅销书《时间简史》出名。他这本销售量达2,500万份的畅销书对量子物理学和相对论作了大量介绍。 生平1942年1月8日 出生于英国的牛津。 1962年 在牛津大学完成物理学学位课程,搬到剑桥大学攻读研究生,英国天文学家福雷德·霍伊尔(1915-),霍金青少年时代心目中的一位英雄,是这里的天文学教授。霍金被诊断患有运动神经元疾病。 1965年 被授予博士学位。他的研究表明:用来解释黑洞崩溃的数学方程式,也可以解释从一个点开始膨涨的宇宙。 1970年 霍金研究黑洞的特性。他预言,来自黑洞(现在叫霍金辐射)的射线辐射及黑洞的表面积永远也不会减少。 1974年 被选为皇家学会会员。他继续证明,黑洞有温度,黑洞发出热辐射,以及气化导致质量减少。 1980年 任剑桥大学数学鲁卡斯教授(艾萨克·牛顿曾任此职)。 1988年 出版《时间简史》,成为关于量子物理学与相对论最畅销的书。 1996年至今 继续在剑桥大学工作。 芬.霍金,是本世纪享有国际盛誉的伟人之一,现年60岁,出生于伽利略逝世周年纪念日,剑桥大学应用数学及理论物理学系教授,当代最重要的广义相对论和宇宙论家。70年代他与彭罗斯一道证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想家和最杰出的理论物理学家”。他还证明了黑洞的面积定理。霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一。他担任的职务是剑桥大学有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡逊数学教授。他拥有几个荣誉学位,是皇家学会会员。他因患卢伽雷氏症(肌萎缩性侧索硬化症),禁锢在一张轮椅上达20年之久,他却身残志不残,使之化为优势,克服了残废之患而成为国际物理界的超新星。他不能写,甚至口齿不清,但他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”。尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到光袤的时空,解开了宇宙之谜。 霍金教授是现代科普小说家,他的代表作是1988年撰写的《时间简史》,这是一篇优秀的天文科普小说。作者想象丰富,构思奇妙,语言优美,字字珠玑,更让人咋惊,世界之外,未来之变,是这样的神奇和美妙。这本书至今累计发行量已达2500万册,被译成近 40种语言。1992年耗资350万英镑的同名电影问世。霍金坚信关于宇宙的起源和生命的基本理念可以不用数学来表达,世人应当可以通过电影——这一视听媒介来了解他那深奥莫测的学说。本书是关于探索时间本质和宇宙最前沿的通俗读物,是一本当代有关宇宙科学思想最重要的经典著作,它改变了人类对宇宙的观念。本书一出版 即在全世界引起巨大反响。《时间简史》对我们这些喜用言语表达甚于方程表达的读者而言是一本里程碑式的佳书。她长于一个对人类思想有接触贡献者之手,这是一本对知识无限追求之作,是对时空本质之谜不懈探讨之作。 《时间简史续编》 作为宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续篇》是为想更多了解霍金教授生命及其学说的读者而编的。该书以坦白真挚的私人访谈形式,叙述了霍金教授的生平历程和研究工作,展现了在巨大的理论架构后面真实的“人”。该书不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为感人又迷人的画像和描述。对于非专业读者,本书无疑是他们享受人类文明成果的机会和滋生宝贵灵感的源泉。 《霍金讲演录——黑洞、婴儿宇宙及其他》,是由霍金1976-1992年间所写文章和演讲稿共13篇结集而成。讨论了虚时间、有黑洞引起的婴儿宇宙的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和死亡作出了独到的见解。 《时空本性》80年前广义相对论就以完整的数学形式表达出来,量子理论的基本原理在70年前也已出现,然而这两种整个物理学中最精确、最成功的理论能被统一在单独的量子引力中吗?世界上最著名的两位物理学家就此问题展开一场辩论。本书是基于霍金和彭罗斯在剑桥大学的6次演讲和最后辩论而成。 《未来的魅力》本书以斯蒂芬·霍金预测宇宙今后十亿年前景开头,以唐·库比特最后的审判的领悟为结尾,介绍了预言的发展历程,及我们今天预测未来的方法。该书文字通俗易懂,作者在阐述自己观点的同时,还穿插解答了一些有趣的问题,读来饶有趣味

最近霍金的一篇在他24岁写作的一篇论文在其学校的网站上曝光,12小时高达万人付费下载,导致学校内部网络瘫痪,霍金在采访中也表示,那绝对是他自己的原创作品,是自己当时在24岁时候原创作品。

为什么同学们会热于下载霍金几十年前的文章研究?霍金的故事震惊全世界,他身上的可贵除了他在自己所研究领域的天资之外还有哪些精神让我们动容?

霍金作为一名物理和宇宙研究者,在上大学21岁的时候患有一种不寻常的早发性和慢发性肌肉萎缩性脊髓侧索硬化症,这种疾病俗称渐冻症。本来医生断定霍金只有两年好活,但是,两年光阴飞驰而去,他不仅或者,还继续在自己的研究领域做出贡献,前几年还做了冰桶挑战。

霍金的文章之所以会被疯狂下载,一方面是因为他在学术领域的确颇有天赋,另外一方面也是因为后辈学生对霍金本身的精神的崇拜。

比起现在对一些爆红小鲜肉的崇拜,霍金的粉丝真正崇拜的是偶像的灵魂和内在,这种崇拜可以超远年代的更迭和国家、地域的跨越。那批疯狂下载论文的同学里面,应该全世界的留学生都有参与。

真正的偶像崇拜现在越来越少见,现在大部分的粉丝都是以一些外在条件来决定自己的崇拜目标,有的人面容姣好帅气,但是背地里的样子你了解过吗?他对社会和国家做过哪些贡献?很少有人会想想面容总会老去,当你的偶像不再年轻,他还能够给你留下什么?

#每天进步一点点,坚持带来大改变#

高斯多少岁发表论文

西方公认的四大数学家是:阿基米德、牛顿、欧拉、高斯。再比如 欧几里得、阿波罗尼奥斯、笛卡尔、费马、黎曼、希尔伯特、庞加莱、弗雷格、罗素等等也很牛。你可以参考《古今数学思想》第四卷的最后的人名索引,里面比较详实。中国的华罗庚和陈景润是吹出来的,比如陈景润的1+2是希尔伯特23个世纪数学疑难问题的其中第七个问题的一小问(其中这第七个问题包含三个问题即①黎曼猜想②哥德巴赫猜想③孪生素数猜想),其实这个第二小问即哥德巴赫猜想并没有取得实质性进展 甚至很多人怀疑王元、陈景润的那逐渐逼近的思路的可行性。这里所谓实质性进展的含义是 比如对费马达定理日本人给出的谷山志村猜想——只要证明了谷山志村猜想则就证明了费马达定理,这是实质性的进展。真正华人最牛的是陈省身、丘成桐和陶哲轩三人。

问题一:高斯发现了什么? 卡尔・弗里德里希・高斯 独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 贡献 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。 谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”(Ceres)对它命名,称为谷神星(Planetoiden Ceres),并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。 为了获知每年复活节的日期,高斯推导了复活节日期的计算公式。 1818年至1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论直至现在仍有应用的价值。 汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点的大地坐标。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。[来源请求]但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken――Thuringer Wald的Insel *** erg――哥廷根的Hohen Hagen三......>> 问题二:高斯奥特曼什么时候被发现的 倒数第三集或第四集被风吹发现 最后第二集大家都知道武藏就是高斯 问题三:高斯一生有什么成就 历史贡献高斯分布 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 数学上的成就 高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的激般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,......>> 问题四:高斯当时解决了什么数学难题 1796年高斯19岁,发现了正十七边形的尺规作图法,解决了自欧几里德以来悬而未决的一个难题。同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 欧几里德已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。 这些关於数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年(发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。 高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。 不久就有人推测U这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关於它的所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。他逐渐得出革命性的结论U确实存在这样的几何学,其内部相容并且没有矛盾。但因为与同代人的观点相背,他不敢发表(参阅非欧几里得几何条)。 当1830年前后匈牙利的波尔约(Janos Bolyai)和俄国的罗巴切夫斯基独立地发表非欧几何学时,高斯宣称他大约在30年前就得到同样的结论。高斯也没有发表特殊复函数方面的工作,可能是因为没有能从更一般的原理导出它们。因此这一理论不得不在他死后数十年由其他数学家从他著作的计算中重建。 1830年前后,极值(极大和极小)原理在高斯的物理问题和数学研究中开始占有重要地位,例如流体保持静止的条件等问题。在探讨毛细作用时,他提出了一个数学公式能将流体系统中一切粒子的相互作用、引力以及流体粒子和与它接触的固体或流体粒子之间的相互作用都考虑在内。这一工作对於能量守恒原理的发展作出了贡献。从1830年起高斯就与物理学家威廉・爱德华・韦伯密切合作。由於对地磁学的共同兴趣,他们一起建立了一个世界性的系统观测网。他们在电磁学方面最重要的成果是电报的发展。因为他们的资金有限,所以试验都是小规模的。 天文发现 1801天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。 1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗如今被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。 我们知道它是火星和木星的小行星带中的一个,当时天文学家无法确定这颗新星是彗星还是行星,必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯也对这颗星着了迷,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。 果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法”。在天文学中......>> 问题五:高斯的故事告诉我们什么?急 ? 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天攻的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 问题六:高斯的故事有哪些 高斯(Johann Carl Friedrich Gau? (Gauss)听 文件-播放,1777年4月30日-1855年2月23日),生于不伦瑞克,卒于格丁根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并有“数学王子”的美誉。 1792年,15岁德高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入格丁根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。 1855年2月23日清晨,高斯于睡梦中去世。 生平 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。[来源请求]能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁其便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入格丁根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。 高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子Joseph。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为格丁根大学的教授和当地天文台的台长。 虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。 高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896)、Wilhelm (1813-1883) 和 Therese (181......>> 问题七:高斯怎样发明高斯定理? 10分 高斯一次上数学课的时候,老师出了一道数学题,题目如下: 1+2+3+4+5+9+7+8+9+10+.....+100,要同学们算出答案。 同学们就埋头算起来,唯独高斯迟迟没动笔,可他发现1+100=101,2+99=101,耽共有50个101的规律用50*101等于5050,不到几分钟就算出结果,高斯从中明白一个规律。从而发明了这个定理, 因是他发明的。为了纪念他,就命为“高斯定理”。

高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。 人物介绍卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss),德国数学家、物理学家和天文学家。 高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时获博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。 高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德•迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。她性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E•T•贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E•T•贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的格丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的格丁根大学数学和天文学教授,以及格丁根天文台台长的职位。1807年,高斯赴格丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在格丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件photoshop中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名大老粗,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南,答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」、质数分布定理、及算术几何平均。 1795年高斯进入格丁根大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:1、n = 2^k,k = 2, 3,… 2、n = 2^k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 2^(2^k)+1 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有根。这结果称为「代数学基本定理」。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》,涵盖一部分现在大学念的「微分几何」。 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 罗巴切乌斯基,波埃伊。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等于夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的著名数学家贝尔,在他着的《数学工作者》一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

牛顿多少岁发表论文

西方公认的四大数学家是:阿基米德、牛顿、欧拉、高斯。再比如 欧几里得、阿波罗尼奥斯、笛卡尔、费马、黎曼、希尔伯特、庞加莱、弗雷格、罗素等等也很牛。你可以参考《古今数学思想》第四卷的最后的人名索引,里面比较详实。中国的华罗庚和陈景润是吹出来的,比如陈景润的1+2是希尔伯特23个世纪数学疑难问题的其中第七个问题的一小问(其中这第七个问题包含三个问题即①黎曼猜想②哥德巴赫猜想③孪生素数猜想),其实这个第二小问即哥德巴赫猜想并没有取得实质性进展 甚至很多人怀疑王元、陈景润的那逐渐逼近的思路的可行性。这里所谓实质性进展的含义是 比如对费马达定理日本人给出的谷山志村猜想——只要证明了谷山志村猜想则就证明了费马达定理,这是实质性的进展。真正华人最牛的是陈省身、丘成桐和陶哲轩三人。

牛顿--------------------------------------------------------------------------------牛顿(1642-1727)英国物理学家、数学家和天文学家。剑桥大学三一学院毕业。英国皇家学会会长。作为经典力学基础的牛顿运动定律的建立者以及万有引力定律的发现者。在光学方面,致力于色的现象和光的本性的研究。1666年用三棱镜分析日光,发现日光是由不同颜色(即不同波长)的光构成,成为光谱分析的基础,并制作了牛顿色盘。1675年观察到牛顿环。关于光的本性,他主张光的微粒说。在热学方面,确定冷却定律。在天文方面,1671年创制了反射望远镜,初步考察了行星运动规律,解释潮汐现象,预言地球不是正球体,并由此说明岁差现象等。在数学方面,提出“流数法”和莱布尼茨一道并称为微积分的创始人,并建了二项式定理。他承认时间、空间的客观存在,他把时间、空间看作是同运动着的物质相脱离的,相互间也并无联系,因而提出了所谓绝对时间和绝对空间的观点,这种观点具有形而上学的性质;他还受到亚里士多德的影响,提出一切行星都在某中外来的“第一推动力”作用下由静止开始运动的说法。晚年致力于编写以神学为题材的著作。著有《自然哲学的数学原理》、《光学》等。

世界公认的三大著名数学家为:阿基米德、牛顿与高斯。他们为科学发展作出了巨大贡献。此外,伟大的数学家还有欧拉、拉格朗日、冯·诺依曼等。

1、阿基米德(公元前287年-公元前212年)

伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

2、艾萨克·牛顿(1643年1月4日-1727年3月31日)

爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

3、约翰·卡尔·弗里德里希·高斯(1777年4月30日-1855年2月23日)

生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯发现了质数分布定理和最小二乘法。高斯专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

4、莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日)

瑞士数学家、自然科学家。欧拉是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

5、约翰·冯·诺依曼(1903年12月28日-1957年2月8日)

美籍匈牙利数学家、计算机科学家、物理学家,是20世纪最重要的数学家之一。冯·诺依曼是布达佩斯大学数学博士,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人称为“计算机之父”、“博弈论之父”。

扩展资料:

数学家是对世界数学的发展作出创造性工作的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。一般认为,历史上可考的最早的数学家是古希腊的泰勒斯。

近代现代中国世界著名数学家有胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱等。

参考资料来源:百度百科-世界三大数学家

参考资料来源:百度百科-数学家

牛顿出生于英国北部林肯郡的一个农民家庭。1661年考上剑桥大学特里尼蒂学校,1665年毕业,这时正赶上鼠疫,牛顿回家避疫两年,期间几乎考虑了他一生中所研究的各个方面,特别是他一生中的几个重要贡献:万有引力定律、经典力学、微积分和光学。 牛顿发现万有引力定律,建立了经典力学,他用一个公式将宇宙中最大天体的运动和最小粒子的运动统一起来。宇宙变得如此清晰:任何一个运动都不是无故发生,都是长长的一系列因果链条中的一个状态、一个环节,是可以精确描述的。人们打破几千年来神的意志统治世界的思想,开始相信没有任何东西是智慧所不能确切知道的。相比于他的理论,牛顿更伟大的贡献是使人们从此开始相信科学。 牛顿是一个远远超过那个时代所有人智慧的科学巨人,他对真理的探索是如此痴迷,以至于他的理论成果都是在别人的敦促下才公诸于世的,对牛顿来说创造本身就是最大的乐趣。 1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。 伟大的成就~对光学的三大贡献 在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说…… 牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。 牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。 许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。 牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。 同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。 牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。 伟大的成就~构筑力学大厦 牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。 在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。 早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。 1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。 牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来…… 一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。 牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。 当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。 在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。 牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。 站在巨人的肩上 牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢? 其中一个原因就是各个学科处在不同的发展阶段。在力学和天文学方面,有伽利略、开普勒、胡克、惠更斯等人的努力,牛顿有可能用已经准备好的材料,建立起一座宏伟壮丽的力学大厦。正象他自己所说的那样“如果说我看得远,那是因为我站在巨人的肩上”。而在化学方面,因为正确的道路还没有开辟出来,牛顿没法走到可以砍伐材料的地方。

欧拉多少岁发表论文

科学家大多都很多产,一生写下几十部书不算稀奇的事,但是能写出886本书的恐怕就只有瑞士数学家欧拉了。他从19岁开始发表论文,直到76岁,利用半个多世纪的时间为后人留下了浩如烟海的书籍和论文,这在科学史上是极为少见的。

欧拉于1707年4月15日出生于瑞士的巴塞尔一位牧师的家庭,父亲是一个数学家。从小受家庭环境的影响,他对数学产生了浓厚的兴趣。欧拉天生聪慧,13岁时便就读巴塞尔大学,15岁获得学士学位,次年获硕士学位。

离开学校后的欧拉在瑞士没有找到合适的工作。1727年,他应邀到俄罗斯圣彼得堡做著名教授丹尼尔的助手。1731年,他领导理论物理和实验物理教研室的工作。两年后,年仅26岁的欧拉接替丹尼尔,成为彼得堡科学院数学部的领导人。

在彼得堡科学院期间,欧拉勤奋地工作,取得了很多研究成果。1735年,欧拉使用自己发明的新方法,仅花了三天时间就计算出了一颗彗星的轨迹。长时间的持续工作使他在这一年右眼失明,但这并没有降低他对科学研究的热情。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,提出质点或粒子的概念,同时,他还创立了分析力学、刚体力学,丰富和发展了牛顿的经典力学。

18世纪中期,在研究物理问题过程中,欧拉写成了《方程的积分法研究》,创立了微分方程这门学科,并在此基础上对函数用三角级数表示的方法和解微分方程的级数法等等进行了深入地研究。

1766年他在出版的《关于曲面上曲线的研究》中,建立了曲面理论,给出了空间曲线曲率半径的解析表达式。这篇著作在微分几何发展中占有重要地位,是微分几何发展史上的一个里程碑。

长期而繁重的科学研究,使他的左眼也慢慢失去了光明,但他仍然没有放弃科学研究。1768年,他在圣彼得堡出版了《积分学原理》第一卷。两年后第三卷出版,并且口述完成了《代数学完整引论》,这部书在数学界引起了一番浪潮,几乎成为整个欧洲人学习的教科书。

在天文学上,欧拉对月球运动及摄动问题进行了研究。创立了月球绕地球运动地精确理论,解决了连牛顿都没有解决月球运动的疑难问题。为了提高天文观测的效果,他还对天文望远镜、显微镜进行了研究。

欧拉是科学历史上著作最多的数学家,除了写大量的研究性论文外,他还写了大量数学方面的课本,如《微分学原理》、《积分学原理》、《无穷小分析引论》等都成为数学史上的经典著作,其中《无穷小分析引论》为他赢得了“分析学的化身”的美誉。

欧拉是18世纪最杰出的数学家,他不仅为数学的发展作出了不可磨灭的贡献,还把数学的理论和方法推广到了物理学的各个领域。数学界把他和阿基米德、牛顿和高斯并称为数学史上的“四杰”。1783年9月18日欧拉在俄国圣彼得堡突然疾病发作离开了人世,终年76岁。

欧拉、阿基米德、牛顿、高斯等四位被称为有史以来贡献最大的四位数学家。欧拉:欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。欧拉从小就特别喜欢数学,不满10岁就开始自学《代数学》。13岁上大学,两年后获得巴塞尔大学的学士学位,次年又获得巴塞尔大学的哲学硕士学位。1725年,欧拉来到彼得堡,开始了他的数学生涯.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.过度的工作使他得了眼病,右眼失明,时年28岁.1741年欧拉到柏林担任科学院物理数学所所长.1766年,重回彼得堡任职.没过多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年一场大火将他的书房和大量研究成果全部化为灰烬。沉重的打击,仍然没有使欧拉倒下.他以惊人的毅力,凭着记忆和心算进行研究,直到逝世.在失明后的17年间,他还口述了几本书和400篇左右的论文.当大火烧掉他几乎全部的著述之后,欧拉用了一年的时间口述了所有这些论文并作了修订.欧拉知识渊博,著作丰富,令人惊叹不已!他从19岁开始发表论文,直到76岁,一生写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他共写下了886本书籍和论文,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."著名数学家拉普拉斯(Laplace)曾说过:"读读欧拉、读读欧拉,它是我们大家的老师!“欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.阿基米德:伟大的古希腊哲学家、数学家、物理学家,静力学和流体静力学的奠基人。出生于西西里岛的叙拉古。从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。阿基米德的父亲是天文学家和数学家,所以他从小受家庭影响,十分喜爱数学。给我一个支点,我可以撬动地球阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图先验的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。阿基米德是数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就,特别是在几何学方面.他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。据说罗马兵入城时,统帅马塞拉斯出于敬佩阿基米德的才能,曾下令不准伤害这位贤能。而阿基米德似乎并不知道城池已破,又重新沉迷于数学的深思之中。一个罗马士兵突然出现在他面前,命令他到马塞拉斯那里去,遭到阿基米德的严词拒绝,于是阿基米德不幸死在了这个士兵的刀剑之下。另一种说法是:罗马士兵闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形(还有一种说法他在沙滩上画图),士兵将图踩坏,阿基米德怒斥士兵:"不要弄坏我的圆!"士兵拔出短剑,这位旷世绝伦的大科学家,竟如此地在愚昧无知的罗马士兵手下丧生了。马塞拉斯对于阿基米德的死深感悲痛。他将杀死阿基米德的士兵当作杀人犯予以处决,并为阿基米德修了一座陵墓,在墓碑上根据阿基米德生前的遗愿,刻上了"圆柱容球"这一几何图形。牛顿:牛顿(Isaac Newton,1643~1727)伟大的物理学家、天文学家和数学家,经典力学体系的奠基人。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来,牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后爸所生的一子二女回到牛顿身边。牛顿自幼沉默寡言、性格倔强,这种习性可能来自他的家庭处境。大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常、成绩 一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。在1665~1666年,伦敦流行鼠疫的两年间,牛顿回到家乡。这两年牛顿才华横溢,作出了多项发明。1667年重返剑桥大学,1668年7月获硕士学位。1669年巴罗推荐26岁的牛顿继任卢卡斯讲座教授,1672年成为皇家学会会员,1703年成为皇家学会终身会长。1699年就任造币局局长,1701年他辞去剑桥大学工作,因改革币制有功,1705年被封为爵士。1727年牛顿逝世于肯辛顿,遗体葬于威斯敏斯特教堂。牛顿的伟大成就与他的刻苦和勤奋是分不开的。他的助手H.牛顿说过,“他很少在两、三点前睡觉,有时一直工作到五、六点。春天和秋天经常五、六个星期住在实验室,直到完成实验。”他有一种长期坚持不懈集中精力透彻解决某一问题的习惯。他回答人们关于他洞察事物有何诀窍时说:“不断地沉思”。这正是他的主要特点。对此有许多故事流传:他年幼时,曾一面牵牛上山,一面看书,到家后才发觉手里只有一根绳;看书时定时煮鸡蛋结果将表和鸡蛋一齐煮在锅里;有一次,他请朋友到家中吃饭,自己却在实验室废寝忘食地工作,再三催促仍不出来,当朋友把一只鸡吃完,留下一堆骨头在盘中走了以后,牛顿才想起这事,可他看到盘中的骨头后又恍然大悟地说:“我还以为没有吃饭,原来我早已吃过了”。牛顿的成就,恩格斯在《英国状况十八世纪》中概括得最为完整:“牛顿由于发明了万有引力定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定理和无限理论而创立了科学的数学,由于认识了力的本性而创立了科学的力学”。高斯:德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明 ,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

世界公认的三大著名数学家为:阿基米德、牛顿与高斯。他们为科学发展作出了巨大贡献。此外,伟大的数学家还有欧拉、拉格朗日、冯·诺依曼等。

1、阿基米德(公元前287年-公元前212年)

伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

2、艾萨克·牛顿(1643年1月4日-1727年3月31日)

爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

3、约翰·卡尔·弗里德里希·高斯(1777年4月30日-1855年2月23日)

生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯发现了质数分布定理和最小二乘法。高斯专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

4、莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日)

瑞士数学家、自然科学家。欧拉是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

5、约翰·冯·诺依曼(1903年12月28日-1957年2月8日)

美籍匈牙利数学家、计算机科学家、物理学家,是20世纪最重要的数学家之一。冯·诺依曼是布达佩斯大学数学博士,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人称为“计算机之父”、“博弈论之父”。

扩展资料:

数学家是对世界数学的发展作出创造性工作的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。一般认为,历史上可考的最早的数学家是古希腊的泰勒斯。

近代现代中国世界著名数学家有胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱等。

参考资料来源:百度百科-世界三大数学家

参考资料来源:百度百科-数学家

欧拉需从小学习带数学。

  • 索引序列
  • 多少岁发表论文
  • 霍金多少岁发表论文
  • 高斯多少岁发表论文
  • 牛顿多少岁发表论文
  • 欧拉多少岁发表论文
  • 返回顶部