首页 > 职称论文知识库 > 欧拉论文发表

欧拉论文发表

发布时间:

欧拉发表论文

1+2+3+4+5+……一直加下去,等于多少?告诉您等于负的十二分之一。最先得出这个结论的就是发明函数的著名数学家莱昂哈德保罗·欧拉。数学大神欧拉欧拉是史上发表论文数第二多的数学家,全集共计75卷:他的纪录一直到了20世纪才被保罗·埃尔德什打破。他发表的论文856篇,著作32部。产量之多,难有人及。欧拉实际统治了18世纪至现在的数学。在1735年至1771年,欧拉的双眼先后失明,据说是因为用裸眼直接观察太阳所致。在他一只眼睛失明时,他就说,这样可以让他不会分散注意力,他双目完全失明后,他论文产出速度极大提升,平均1周1篇质量极高的论文,在他人生的最后7年,以惊人的速度产出了生平一半的著作。欧拉年轻时曾研读神学,他一生虔诚、笃信上帝,并不容许有任何诋毁上帝的言论。他上大学时,学的就是神学。如果不是在大学兴趣班上,他的数学天赋被数学大师丹尼尔·伯努力发现,也许将会改写整个人类文明进程。虽然欧拉改学数学,但他内心依然笃信神的存在。对于拥有科学思维的数学家,他一向在思考一个问题,那就是上帝既然存在,为什么我们看不到?他认为,我们只能看见世界的一面,看不见世界的另一面。如何来证明上帝的存在?一般人认为,1+2+3+4+5+……一定等于无穷大,可欧拉却说等于负的十二分之一他认为,这就是我们看不见的世界的另一面?后来,黎曼函数也证明了这个结果。同样,另一位数学家斯里尼瓦瑟拉马努金,也给出了一个小学生都能看懂的证明过程。在此做如下整理:这个在数学上证明是对的结果,在现实中应该不可能发生很多数学家对此非常不理解。这时,爱因斯坦就说了一句话似平点出了其中的奥秘:"No problems can be solved from the same level of consciousness thatcreatedit",翻译过来就是,没有什么问题能从创造它的同一意识水平上得到解决,也就是就是很多问题的答案永远不可能在产生这个问题的维度上出现往往在另外一个维度。

乔治·安德鲁·欧拉 (George Andrew Olah,Oláh György)(1927年5月22日-),出生于布达佩斯,是一个美籍匈牙利化学家。他在超强酸稳定碳正离子的研究中有杰出贡献。他曾获得1994年诺贝尔化学奖,并在不久后获得普利斯特理奖章——美国化学会所颁发的最高荣誉。

欧拉作为人类历史上最伟大的数学家之一,他的研究涵盖了数学和物理学许多领域,有众多方程被冠以“欧拉方程”之名。在流体动力学中,欧拉方程指的是一组用来描述无黏性流体运动的方程。在大多数文献中,欧拉方程被表述为以下形式:其中:ρ表示流体的质量密度u表示流体的速度,包含x、y、z三个方向分量E表示每一单位体积所含的能量p表示压强▽·u表示u的梯度在欧拉方程中,每一个方程都有特定的物理意义。第一个方程被称为连续性方程,表示流体质量守恒;第二个方程为动量方程,表示流体的动量守恒;第三个方程被称为绝热条件,表示流体的能量守恒。欧拉方程最早见载于欧拉于1757年发表在《柏林科学院论文集》的论文——《流体运动的一般原理》。值得一提的是,欧拉最初发表其研究成果时,仅包括连续性方程和动量方程,方程也只能被用来描述不可压缩流体。而对于可压缩流体,方程组会给出多个解。1816年,数学家拉普拉斯在欧拉研究的基础上,增加了绝热条件,使得欧拉方程可以同时描述可压缩流体。

欧拉论文发表

1.数论欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。2.代数欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。3.无穷级数欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。1777年,为了把一个给定函数展成在(0,“180”)区间上的余弦级数,欧拉又推出了傅里叶系数公式。欧拉还把函数展开式引入无穷乘积以及求初等分式的和,这些成果在后来的解析函数一般理论中占有重要的地位。他对级数的和这一概念提出了新的更广泛的定义。他还提出了两种求和法。这些丰富的思想,对19世纪末,20世纪初发散级数理论中的两个主题,即渐近级数理论和可和性的概念产生了深远影响。4.函数概念欧拉写的数学名著《无穷分析引论》18世纪中叶,分析学领域有许多新的发现,其中不少是欧拉自已的工作。它们系统地概括在欧拉的《无穷分析引论》、《微分学原理》和《积分学原理》组成的分析学三部曲中。这三部书是分析学发展的里程碑四式的著作。5.初等函数《无穷分析引论》第一卷共18章,主要研究初等函数论。其中,第八章研究圆函数,第一次阐述了三角函数的解析理论,并且给出了棣莫弗(de Moivre)公式的一个推导。欧拉在《无穷分析引论》中研究了指数函数和对数函数,他给出著名的表达式——欧拉恒等式(表达式中用表示趋向无穷大的数;1777年后,欧拉用表示虚数单位 ),但仅考虑了正自变量的对数函数。1751年,欧拉发表了完备的复数理论。6.单复变函数通过对初等函数的研究,达朗贝尔和欧拉在1747-1751年间先后得到了(用现代数语表达的)复数域关于代数运算和超越运算封闭的结论。他们两人还在分析函数的一般理论方面取得了最初的进展。数学中最美的公式——欧拉公式[8]7.微积分学欧拉的《微分学原理》和《积分学原理》二书对当时的微积分方法作了最详尽、最有系统的解说,他以其众多的发现丰富可无穷小分析的这两个分支。8.微分方程《积分原理》还展示了欧拉在常微分方程和偏方程理论方面的众多发现。他和其他数学家在解决力学、物理问题的过程中创立了微分方程这门学科。在常微分方程方面,欧拉在1743年发表的论文中,用代换给出了任意阶常系数线性齐次方程的古典解法,最早引人了“通解”和“特解”的名词。1753年,他又发表了常系数非齐次线性方程的解法,其方法是将方程的阶数逐次降低。欧拉在18世纪30年代就开始了对偏微分程的研究。他在这方面最重要的工作,是关于二阶线性方程的。9.变分法1734年,他推广了最速降线问题。然后,着手寻找关于这种问题的更一般方法。1744年,欧拉的《寻求具有某种极大或极小性质的曲线的方法》一书出版。这是变分学史上的里程碑,它标志着变分法作为一个新的数学分析的诞生。10.几何学欧拉解决了哥尼斯堡七桥问题,开创了图论坐标几何方面,欧拉的主要贡献是第一次在相应的变换里应用欧拉角,彻底地研究了二次曲面的一般方程。微分几何方面,欧拉于1736年首先引进了平面曲线的内在坐标概念,即以曲线弧长这一几何量作为曲线上点的坐标,从而开始了曲线的内在几何研究。1760年,欧拉在《关于曲面上曲线的研究》中建立了曲面的理论。这本著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的里程碑。欧拉对拓扑学的研究也是具有第一流的水平。1735年,欧拉用简化(或理想化)的表示法解决了著名的歌尼斯堡七桥游戏问题,得到了具有拓扑意义的河-桥图的判断法则,即现今网络论中的欧拉定理。[9]其他贡献欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等.[1]欧拉线欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。在数论里他引入了欧拉函数。自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如φ(8)=4,因为有四个自然数1,3,5和7与8互质。欧拉圆在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声。欧拉将虚数的幂定义为欧拉公式,它成为指数函数的中心。在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公式'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式)。在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数。他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。欧拉的发明——数独在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系。在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法 》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行。[7]详情请见百度百科

莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。

13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。

他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。

但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家让·巴普蒂斯·约瑟夫·傅立叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里叶方程。

参考资料来源:百度百科-莱昂哈德·欧拉

400/8=50是当教授后工作的年数50+7=57是发表论文之后的年数发表论文前,是四分之一,也就是说,论文后又活了四分之三那么,论文后活的年数是之前的三倍因此,57/3=19因此,一共活了19+57=76岁

社会在不断的进步和发展着,其中,科学便是一大助力。科学是一个很有意义的存在,它会以证据为前提,让人类得知一些神奇的认知。“科学家”这个词,令我们敬佩又膜拜!人类知识的进化,时代经济的发展都离不开科学家们的辛劳科研。接下来民族文化就为大家详细介绍为社会做了巨大贡献的世界十大科学家,一起来看看! 莱昂哈德·欧拉,瑞士数学家、自然科学家。18世纪最优秀的数学家,也是历史上最伟大的数学家之一, 欧拉于1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。 欧拉是历史上最多产的数学家。瑞士自然科学基金会组织编写《欧拉全集》,计划出84卷,每卷都是4开本(一张报纸大小)。如果按每本300页计算,欧拉从18岁开始每天得写1张半纸。然而这些只是遗存的作品,欧拉的手稿在1771年彼得堡大火中还丢失了一部分。欧拉曾说他的遗稿大概够彼得堡科学院用20年。但实际上在他去世后的第80年,彼得堡科学院院报还在发表他的论着。 “天才在于勤奋,欧拉就是这条真理的化身。”曾有专家表示,“很多科学家都很勤奋,而欧拉最为典型。他失明后的十多年都是在完全看不见的情况下作研究。欧拉心算能力很强,可以通过口述让别人记录。有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案。” 欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。 2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国有关部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。 欧拉是史上发表论文数第二多的数学家,全集共计75卷;他的纪录一直到了20世纪才被保罗·埃尔德什打破。后者发表的论文达1525篇,著作有32部。 据说,欧拉是因为用肉眼直接观察太阳,导致双眼先后失明。但在人生最后7年(1765年至1771年),欧拉的双目完全失明,他还是以惊人的速度产出了生平一半的著作。 欧拉在他的时代,产量之多,无人能及。欧拉实际上支配了18世纪至今的数学;对于当时新数学分支微积分,他推导出了很多结果。很多数学的分枝,也是由欧拉所创或因而有了极大的进展。

欧拉发表的论文

1.数论欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。2.代数欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。3.无穷级数欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。1777年,为了把一个给定函数展成在(0,“180”)区间上的余弦级数,欧拉又推出了傅里叶系数公式。欧拉还把函数展开式引入无穷乘积以及求初等分式的和,这些成果在后来的解析函数一般理论中占有重要的地位。他对级数的和这一概念提出了新的更广泛的定义。他还提出了两种求和法。这些丰富的思想,对19世纪末,20世纪初发散级数理论中的两个主题,即渐近级数理论和可和性的概念产生了深远影响。4.函数概念18世纪中叶,分析学领域有许多新的发现,其中不少是欧拉自已的工作。它们系统地概括在欧拉的《无穷分析引论》、《微分学原理》和《积分学原理》组成的分析学三部曲中。这三部书是分析学发展的里程碑四式的著作。5.初等函数《无穷分析引论》第一卷共18章,主要研究初等函数论。其中,第八章研究圆函数,第一次阐述了三角函数的解析理论,并且给出了棣莫佛(de Moivre)公式的一个推导。欧拉在《无穷分析引论》中研究了指数函数和对数函数,他给出著名的表达式(这里i表示趋向无穷大的数;1777年后,欧拉用i表示 ),但仅考虑了正自变量的对数函数。1751年,欧拉发表了完备的复数理论。6.单复变函数通过对初等函数的研究,达朗贝尔和欧拉在1747-1751年间先后得到了(用现代数语表达的)复数域关于代数运算和超越运算封闭的结论。他们两人还在分析函数的一般理论方面取得了最初的进展。7.微积分学欧拉的《微分学原理》和《积分学原理》二书对当时的微积分方法作了最详尽、最有系统的解说,他以其众多的发现丰富可无穷小分析的这两个分支。8.微分方程《积分原理》还展示了欧拉在常微分方程和偏方程理论方面的众多发现。他和其他数学家在解决力学、物理问题的过程中创立了微分方程这门学科。在常微分方程方面,欧拉在1743年发表的论文中,用代换 给出了任意阶常系数线性齐次方程的古典解法,最早引人了“通解”和“特解”的名词。1753年,他又发表了常系数非齐次线性方程的解法,其方法是将方程的阶数逐次降低。欧拉在18世纪30年代就开始了对偏微分程的研究。他在这方面最重要的工作,是关于二阶线性方程的。9.变分法1734年,他推广了最速降线问题。然后,着手寻找关于这种问题的更一般方法。1744年,欧拉的《寻求具有某种极大或极小性质的曲线的方法》一书出版。这是变分学史上的里程碑,它标志着变分法作为一个新的数学分析的诞生。10.几何学坐标几何方面,欧拉的主要贡献是第一次在相应的变换里应用欧拉角,彻底地研究了二次曲面的一般方程。微分几何方面,欧拉于1736年首先引进了平面曲线的内在坐标概念,即以曲线弧长这一几何量作为曲线上点的坐标,从而开始了曲线的内在几何研究。1760年,欧拉在《关于曲面上曲线的研究》中建立了曲面的理论。这本著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的里程碑。欧拉对拓扑学的研究也是具有第一流的水平。1735年,欧拉用简化(或理想化)的表示法解决了著名的歌尼斯堡七桥游戏问题得到了具有拓扑意义的河-桥图的判断法则,即现今网络论中的欧拉定理。

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."

欧拉 一数学欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。 1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。 欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。 1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。二科学欧拉,匈牙利裔美国人,由于他发现了使碳阳离子保持稳定的方法,在碳正离子化学方面的研究而获奖。研究范畴属有机化学,在碳氢化合物方面的成就尤其卓著。早在60年代就发表大量研究报告并享誉国际科学界,是化学领域里的一位重要人物,他的这项基础研究成果对炼油技术作出了重大贡献,这项成果彻底改变了对碳阳离子这种极不稳定的碳氢化合物的研究方式,揭开了人们对阳离子结构认识的新一页,更为重要的是他的发现可广泛用于从提高炼油效率,生产无铅汽油到改善塑料制品质量及研究制造新药等各个行业,对改善人民生活起着重要作用。

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

欧拉发表多少论文

欧拉是哪国的科学家?一生写了多少篇论文? A.英国,700篇B.法国,600篇C.瑞士,856篇D.俄国,888篇正确答案:瑞士,856篇

欧拉是瑞士著名的数学家,是世界最杰出的数学家之一,尤其是在微积分领域,欧拉取得了很深的造诣,对数学乃至物理的发展都做出了巨大的贡献。欧拉每年能写出八百多页的论文,是产量最高的数学家之一,以他的名字来命名的公式、定理有很多。欧拉的成就主要在数学领域,十八世纪被人们称为欧拉世纪,他对数学分析学和微积分的研究相当透彻,偏微分方程、椭圆函数论等著名的论著是数学领域最为重要的内容之一。他的很多研究成果是数论的基础,他还总结了前人对代数学的研究,完成了《代数学入门》这本书,为初学代数的人提供了很好的参考依据,无穷级数、初等函数、单复变函数、微积分学、微分方程,欧拉的成绩几乎覆盖了数学的各个方面。除了数学上的造诣,欧拉在力学、几何学、经济学都取得了不错的成绩,他甚至将音乐和数学结合起来,用数学诠释了音乐的独特之处。欧拉的成就不仅仅在学术方面,他还是一个非常优秀的老师,他培养出了另外一个伟大的数学家拉格朗日,据说为了推荐这个天才一般的学生,欧拉将自己的研究成果藏了起来,发表了拉格朗日的论文。在欧拉毫无保留的培养下,拉格朗日成为了数学大师。晚年的时候,欧拉双目失明,但这仍然没有阻挡他对数学的热情,他以常人难以想象的毅力坚持研究,让助理帮助他写文章,欧拉的成就有不少是在他失明之后做出来的,实在是让人敬佩不已。

欧拉与普鲁士国王腓特烈的相处不好。正在这时,俄皇叶卡杰琳娜二世盛情邀请。1762年,欧拉返回彼得堡。在他59岁时,他的双眼全部失明了。这对一般人来说打击是沉重的。然而欧拉在黑暗中整整17年依然工作和研究。他性格乐观,开朗热情。他一生发表的成熟著作有860多篇论文,其中400多篇是双目失明后研究得出的。然而不幸接连而至,64岁的欧拉遇上了大火灾。住宅着了火,他差点葬身火海之中。仆人把他救出来,然而异常不幸的是:他的著作几乎丧失殆尽!我们所有的读者看到这里心都会一沉,因为欧拉的成果和藏书是他一生的心血,不仅仅是他个人的生命凝聚;而且如果这些著作丧失,将会有多少伟大的发明和发现不知要经过几百年要由几百个人才能重新做出来!然而,天才在这时充分展示出来:坚强的欧拉毫不灰心,这位年近古稀的老人开始口述,由他的大儿子A•欧拉记录,把自己损失的著作一卷一卷地口述出来,他的脑子宛然一部百科全书!他不仅将自己失去的著作全回忆出来,而且借回忆口述的机会全都订正心算加以完善,更加完美!欧拉与拉格朗日,都被称为是当时伟大的数学家。欧拉的品质和业绩真正令人感动和无限钦佩。

欧拉发表论文速度

1+2+3+4+5+……一直加下去,等于多少?告诉您等于负的十二分之一。最先得出这个结论的就是发明函数的著名数学家莱昂哈德保罗·欧拉。数学大神欧拉欧拉是史上发表论文数第二多的数学家,全集共计75卷:他的纪录一直到了20世纪才被保罗·埃尔德什打破。他发表的论文856篇,著作32部。产量之多,难有人及。欧拉实际统治了18世纪至现在的数学。在1735年至1771年,欧拉的双眼先后失明,据说是因为用裸眼直接观察太阳所致。在他一只眼睛失明时,他就说,这样可以让他不会分散注意力,他双目完全失明后,他论文产出速度极大提升,平均1周1篇质量极高的论文,在他人生的最后7年,以惊人的速度产出了生平一半的著作。欧拉年轻时曾研读神学,他一生虔诚、笃信上帝,并不容许有任何诋毁上帝的言论。他上大学时,学的就是神学。如果不是在大学兴趣班上,他的数学天赋被数学大师丹尼尔·伯努力发现,也许将会改写整个人类文明进程。虽然欧拉改学数学,但他内心依然笃信神的存在。对于拥有科学思维的数学家,他一向在思考一个问题,那就是上帝既然存在,为什么我们看不到?他认为,我们只能看见世界的一面,看不见世界的另一面。如何来证明上帝的存在?一般人认为,1+2+3+4+5+……一定等于无穷大,可欧拉却说等于负的十二分之一他认为,这就是我们看不见的世界的另一面?后来,黎曼函数也证明了这个结果。同样,另一位数学家斯里尼瓦瑟拉马努金,也给出了一个小学生都能看懂的证明过程。在此做如下整理:这个在数学上证明是对的结果,在现实中应该不可能发生很多数学家对此非常不理解。这时,爱因斯坦就说了一句话似平点出了其中的奥秘:"No problems can be solved from the same level of consciousness thatcreatedit",翻译过来就是,没有什么问题能从创造它的同一意识水平上得到解决,也就是就是很多问题的答案永远不可能在产生这个问题的维度上出现往往在另外一个维度。

  • 索引序列
  • 欧拉发表论文
  • 欧拉论文发表
  • 欧拉发表的论文
  • 欧拉发表多少论文
  • 欧拉发表论文速度
  • 返回顶部