改进yolov5能发小论文。
主做目标检测的,正好最近在用yolov5,说点个人看法吧,不一定对。
首先yolo系列发展到现在,思想已经很成熟了,像具体的改进,其实4和5也有很多异曲同工的地方,无论是backbone还是neck。
目前很多改进yolov5发论文的,一些是在backone上做轻量化处理,一些是加入注意力机制,一些是改进neck,或者调整head,还有改损失函数或者nms过程的。
主要是因为yolo本身的思想已经很成熟了,在这个框架下的确很难做出些通用性的创新和提升。至于把各种成熟的模块塞进去发论文,这种仁者见仁智者见智吧。个人感觉还是结合某个方向改进yolo,会有方向一些。毕竟不同的数据集和尺度上,同样的改进有时候效果也是不同的。
Yolov5 目标检测的损失函数由三部分组成,分别是矩形框预测损失函数、置信度预测损失函数以及类别预测损失函数,在上节中分析了目标检测损失函数GIoU 的缺陷及其改进,使用 CIoU 以及带有调节因子的二元交叉熵函数替代原网络的损失函数。
实验验证此次改进,与原算法结果对比如下表所示。根据上表数据可以看到,针对本文的损失函数的改进在实验时得到了 92.1%的准确率,提升了 0.5%,可以证明对损失函数的改进可以对目标检测的性能提升提供很大帮助。
yolo v3是2018年出来的,比SSD和retinanet都要晚,在map0.5这个指标上速度比SSD和retinanet快很多。在工业应用上面map0.5已经满足使用,并且yolo v3简介,文档丰富,还有tiny版本等一些列变种。最重要的是速度非常快,比SSD和retinanet都要快。
YOLOv3 的提出不是为了解决什么问题,整篇论文其实是技术报告。YOLOv3 在 YOLOv2 基础上做了一些小改进,文章篇幅不长,核心思想和 YOLOv2、YOLO9000差不多。
模型改进:
边界框预测:定位任务采用 anchor box 预测边界框的方法,YOLOv3 使用逻辑回归为每个边界框都预测了一个分数 objectness score,打分依据是预测框与物体的重叠度。如果某个框的重叠度比其他框都高,它的分数就是 1,忽略那些不是最好的框且重叠度大于某一阈值(0.5)的框。
本文是我对YOLO算法的细节理解总结,本文的阅读前提是已读过YOLO相关论文,文中不会谈及YOLO的发展过程,不会与其他对象检测算法进行对比,也不会介绍YOLO9000相关的内容,只总结YOLOv3算法的具体流程和实现细节。所以,下文中所有提到的YOLO,如非特别说明,均指YOLOv3。 如果需要了解更多对象检测算法,可以参考以下部分相关论文: R-CNN Fast R-CNN Faster R-CNN SSD YOLOv1 YOLOv2 YOLOv3 RetinaNet 最新关于对象检测的综述文献可以参考这篇论文: Deep Learning for Generic Object Detection: A Survey 在YOLO算法发表之前,大部分表现比较好的对象检测(Object Detection)算法都是以R-CNN为代表两阶段算法,这样的算法存在一个很明显的问题,那就是速度太慢,对于实时性要求很高的应用场景是不适用的。YOLO算法的作者没有走优化算法第一阶段或者第二阶段的老路子,而是直接提出一步完成预测,而且是在一个CNN网络模型中完成图片中所有位置对象的box和类别预测,推理速度大大提升,完全可以满足实时对象检测。 YOLO算法创新性地提出了将输入图片进行N*N的栅格化(每个小单元叫grid cell),然后将图片中某个对象的位置的预测任务交与该对象中心位置所在的grid cell的bouding box。简单理解的话,可以认为这也是一种很粗糙的区域推荐(region proposal),在训练的时候,我们通过grid cell的方式告诉模型,图片中对象A应该是由中心落在特定grid cell 的某个范围内的某些像素组成,模型接收到这些信息后就在grid cell周围以一定大小范围去寻找所有满足对象A特征的像素,经过很多次带惩罚的尝试训练后,它就能找到这个准确的范围了(说明不是瞎找,如滑动窗口),当然这个方位不仅是指长宽的大小范围,也包括小幅度的中心位置坐标变化,但是不管怎么变,中心位置不能越过该grid cell的范围。这大大限制了模型在图片中瞎找时做的无用功。这样将位置检测和类别识别结合到一个CNN网络中预测,即只需要扫描一遍(you only look once)图片就能推理出图片中所有对象的位置信息和类别。举例如下图。 以上是我个人理解的YOLO算法的核心思想,不管是YOLOv1还是v2、v3,其主要的核心还是以上所述,只是在bounding box的拟合方式、骨干网络的设计、模型训练的稳定性、精度方面有所提升罢了。下面对整个模型的网络结构、实现和训练细节进行阐述。 既然已经有了you only look once的想法,那接下来就要将这个想法数学化,这样才能用数学的方法训练模型学习拟合坐标和类别的特征,用于后期的预测。YOLO算法几乎是输入原图就直接预测出每个grid cell“附近”是否有某个对象和具体的 box位置,那最终这个想法数学化后便体现在loss函数上,这里我先不给出loss函数的具体公式,因为在提出loss函数之前要先了解三个概念:anchor box、置信度(confidence)和对象条件类别概率(conditional class probabilities)。作者提出,在网络最后的输出中,对于每个grid cell对应bounding box的输出有三类参数:一个是对象的box参数,一共是四个值,即box的中心点坐标(x,y)和box的宽和高(w,h);一个是置信度,这是个区间在[0,1]之间的值;最后一个是一组条件类别概率,都是区间在[0,1]之间的值,代表概率。下面分别具体介绍这三个参数的意义。 anchor box最初是由Faster RCNN引入的。anchor box(论文中也称为bounding box prior,后面均使用anchor box)其实就是从训练集的所有ground truth box中统计(使用k-means)出来的在训练集中最经常出现的几个box形状和尺寸。比如,在某个训练集中最常出现的box形状有扁长的、瘦高的和宽高比例差不多的正方形这三种形状。我们可以预先将这些统计上的先验(或来自人类的)经验加入到模型中,这样模型在学习的时候,瞎找的可能性就更小了些,当然就有助于模型快速收敛了。以前面提到的训练数据集中的ground truth box最常出现的三个形状为例,当模型在训练的时候我们可以告诉它,你要在grid cell 1附件找出的对象的形状要么是扁长的、要么是瘦高的、要么是长高比例差不多的正方形,你就不要再瞎试其他的形状了。anchor box其实就是对预测的对象范围进行约束,并加入了尺寸先验经验,从而可以有效解决对象多尺度的问题(Faster RCNN论文中指出的作用)。 这篇文章 对anchor box的作用进行了另外的解释,个人觉得也很有道理,将部分内容翻译如下: 要在模型中使用这些形状,总不能告诉模型有个形状是瘦高的,还有一个是矮胖的,我们需要量化这些形状。YOLO的做法是想办法找出分别代表这些形状的宽和高,有了宽和高,尺寸比例即形状不就有了。YOLO作者的办法是使用k-means算法在训练集中所有样本的ground truth box中聚类出具有代表性形状的宽和高,作者将这种方法称作维度聚类(dimension cluster)。细心的读者可能会提出这个问题:到底找出几个anchor box算是最佳的具有代表性的形状。YOLO作者方法是做实验,聚类出多个数量不同anchor box组,分别应用到模型中,最终找出最优的在模型的复杂度和高召回率(high recall)之间折中的那组anchor box。作者在COCO数据集中使用了9个anchor box,我们前面提到的例子则有3个anchor box。 那么有了量化的anchor box后,怎么在实际的模型中加入anchor box的先验经验呢?我们在前面中简单提到过最终负责预测grid cell中对象的box的最小单元是bounding box,那我们可以让一个grid cell输出(预测)多个bounding box,然后每个bounding box负责预测不同的形状不就行了?比如前面例子中的3个不同形状的anchor box,我们的一个grid cell会输出3个参数相同的bounding box,第一个bounding box负责预测的形状与anchor box 1类似的box,其他两个bounding box依次类推。作者在YOLOv3中取消了v2之前每个grid cell只负责预测一个对象的限制,也就是说grid cell中的三个bounding box都可以预测对象,当然他们应该对应不同的ground truth。那么如何在训练中确定哪个bounding box负责某个ground truth呢?方法是求出每个grid cell中每个anchor box与ground truth box的IOU(交并比),IOU最大的anchor box对应的bounding box就负责预测该ground truth,也就是对应的对象,后面还会提到负责预测的问题。 到此,还有最后一个问题需要解决,我们才能真正在训练中使用anchor box,那就是我们怎么告诉模型第一个bounding box负责预测的形状与anchor box 1类似,第二个bounding box负责预测的形状与anchor box 2类似?YOLO的做法是不让bounding box直接预测实际box的宽和高(w,h),而是将预测的宽和高分别与anchor box的宽和高绑定,这样不管一开始bounding box输出的(w,h)是怎样的,经过转化后都是与anchor box的宽和高相关,这样经过很多次惩罚训练后,每个bounding box就知道自己该负责怎样形状的box预测了。这个绑定的关系是什么?那就是下面这个公式: 其中, 和 为anchor box的宽和高, 和 为bounding box直接预测出的宽和高, 和 为转换后预测的实际宽和高,这也就是最终预测中输出的宽和高。你可能会想,这个公式这么麻烦,为什么不能用 这样的公式,我的理解是上面的公式虽然计算起来比较麻烦,但是在误差函数求导后还带有 和 参数,而且也好求导 (此观点只是个人推测,需要进一步查证) 。 既然提到了最终预测的宽和高公式,那我们也就直接带出最终预测输出的box中心坐标 的计算公式,我们前面提到过box中心坐标总是落在相应的grid cell中的,所以bounding box直接预测出的 和 也是相对grid cell来说的,要想转换成最终输出的绝对坐标,需要下面的转换公式: 其中, 为sigmoid函数, 和 分别为grid cell方格左上角点相对整张图片的坐标。作者使用这样的转换公式主要是因为在训练时如果没有将 和 压缩到(0,1)区间内的话,模型在训练前期很难收敛。 最终可以得出实际输出的box参数公式如下,这个也是在推理时将输出转换为最终推理结果的公式:关于box参数的转换还有一点值得一提,作者在训练中并不是将 、 、 和 转换为 、 、 和 后与ground truth box的对应参数求误差,而是使用上述公式的逆运算将ground truth box的参数转换为与 、 、 和 对应的 、 、 和 ,然后再计算误差,计算中由于sigmoid函数的反函数难计算,所以并没有计算sigmoid的反函数,而是计算输出对应的sigmoid函数值。关于anchor box训练相关的问题除了与loss函数相关的基本上都解释清楚了,但是预测的问题还没有解释清楚,还存在一个很关键的问题:在训练中我们挑选哪个bounding box的准则是选择预测的box与ground truth box的IOU最大的bounding box做为最优的box,但是在预测中并没有ground truth box,怎么才能挑选最优的bounding box呢?这就需要另外的参数了,那就是下面要说到的置信度。 置信度是每个bounding box输出的其中一个重要参数,作者对他的作用定义有两重:一重是代表当前box是否有对象的概率 ,注意,是对象,不是某个类别的对象,也就是说它用来说明当前box内只是个背景(backgroud)还是有某个物体(对象);另一重表示当前的box有对象时,它自己预测的box与物体真实的box可能的 的值,注意,这里所说的物体真实的box实际是不存在的,这只是模型表达自己框出了物体的自信程度。以上所述,也就不难理解作者为什么将其称之为置信度了,因为不管哪重含义,都表示一种自信程度:框出的box内确实有物体的自信程度和框出的box将整个物体的所有特征都包括进来的自信程度。经过以上的解释,其实我们也就可以用数学形式表示置信度的定义了:其中, 表示第i个grid cell的第j个bounding box的置信度。对于如何训练 的方法,在损失函数小节中说明。 对象条件类别概率是一组概率的数组,数组的长度为当前模型检测的类别种类数量,它的意义是当bounding box认为当前box中有对象时,要检测的所有类别中每种类别的概率,其实这个和分类模型最后使用softmax函数输出的一组类别概率是类似的,只是二者存在两点不同:1.YOLO的对象类别概率中没有background一项,也不需要,因为对background的预测已经交给置信度了,所以它的输出是有条件的,那就是在置信度表示当前box有对象的前提下,所以条件概率的数学形式为 ;2.分类模型中最后输出之前使用softmax求出每个类别的概率,也就是说各个类别之间是互斥的,而YOLOv3算法的每个类别概率是单独用逻辑回归函数(sigmoid函数)计算得出了,所以每个类别不必是互斥的,也就是说一个对象可以被预测出多个类别。这个想法其实是有一些YOLO9000的意思的,因为YOLOv3已经有9000类似的功能,不同只是不能像9000一样,同时使用分类数据集和对象检测数据集,且类别之间的词性是有从属关系的。 介绍完所有的输出参数后,我们总结下模型最终输出层的输出维数是多少。假如一个图片被分割成S*S个grid cell,我们有B个anchor box,也就是说每个grid cell有B个bounding box, 每个bounding box内有4个位置参数,1个置信度,classes个类别概率,那么最终的输出维数是: 。 介绍完模型最终输出中有哪些参数后,我们应该可以定义loss函数了,作者使用了最简单的差平方和误差(sum-squared error),使用的原因很简单,因为好优化。那我们试着给出loss函数的公式:如果看过YOLOv1的论文你会发现,这里的公式和论文中的公式虽然相似,但是差别还是很大的。其实,作者是在上面这个公式的基础上加了很多限制和优化参数,上面的公式只是我为了更好说明YOLO的loss公式而给出的对比公式,这样有助于更好的理解YOLO的loss函数公式中加入的每个参数的意义,下面给出真正的YOLO loss函数公式(这个公式是我根据YOLO三篇论文前后的发展总结出来的,v3论文中未给出此类似的公式):细心的你一定也注意到了,这个公式和YOLOv1论文中的公式是不一样的。那是因为在YOLOv3中,作者将置信度和条件类别概率放到了每个bounding box中,即每个bounding box都有一对置信度和条件类别概率,而v1中所有的bounding box共用一个条件类别概率,上文中在说明输出的各个参数时,默认解释的是v3的输出格式,关于v1的细节不再赘述。下面几点是loss函数的几点细节: YOLO算法从三个不同的尺寸预测对象box,这三个不同的尺寸来自不同层级的卷积层的输出。该方法借鉴了feature pyramid network的思想: 由于卷积层每隔几层,特征映射(feature mapping)的宽和高就会减少,而通道数会增加,随着网络层次的加深,特征映射组成的形状类似于金字塔,如果将不同层级的特征映射转换为最终的输出,那么将有助于提升模型在对象不同尺度大小上的表现,即有助于提高模型从小目标到大目标的综合检测(box的精度)能力,关于feature pyramid network的具体内容,此处不详细展开,可参考 论文 。我们先看下YOLO模型的网络结构,我们以检测COCO数据集输入尺寸为416*416的网络结构为例(COCO数据集类别数为80,anchor box总数为9): 从上面的模型的网络结构图我们可以明显看出基于darknet-53的最新的模型结构有以下几个特点: 以上,就是我个人理解的YOLO算法的一些细节。 作者能力有限,不正确之处欢迎斧正。
YOLO是“You Only Look Once”的简称,它虽然不是最精确的算法,但在精确度和速度之间选择的折中,效果也是相当不错。YOLOv3借鉴了YOLOv1和YOLOv2,虽然没有太多的创新点,但在保持YOLO家族速度的优势的同时,提升了检测精度,尤其对于小物体的检测能力。YOLOv3算法使用一个单独神经网络作用在图像上,将图像划分多个区域并且预测边界框和每个区域的概率。 YOLOv3仅使用卷积层,使其成为一个全卷积网络(FCN)。文章中,作者提出一个新的特征提取网络,Darknet-53。正如其名,它包含53个卷积层,每个后面跟随着batch normalization层和leaky ReLU层。没有池化层,使用步幅为2的卷积层替代池化层进行特征图的降采样过程,这样可以有效阻止由于池化层导致的低层级特征的损失。Darknet-53网络如下图左边所示。 输入是 。输出是带有识别类的边界框列表,每个边界框由 六个参数表示。如果 表示80个类别,那么每个边界框由85个数字表示。 在YOLO中,预测过程使用一个 卷积,所以输入是一个特征图。由于使用 卷积,因此预测图正好是特征图大小( 卷积只是用于改变通道数)。在YOLOv3中,此预测图是每个cell预测固定数量的边界框。 如上图所示,预测图的深度为75,假设预测图深度为 , 表示每个cell可以预测的边界框数量。这些 个边界框可以指定检测到一个物体。每个边界框有 个特征,分别描述中心点坐标和宽高(四个)和物体分数(一个)以及 个类置信度(上图中 )。YOLOv3每个cell预测三个边界框。 如果对象的中心(GT框中心)落在该cell感受野范围内,我们希望预测图的每个单元格都能通过其中一个边界框预测对象。其中只有一个边界框负责检测物体,首先我们需要确定此边界框属于哪个cell。 为了实现上面的想法,我们将原始图像分割为最后预测图维度大小的网格。如下图所示,输入图像维度为 ,步幅为32(最后的预测图降采样32倍),最后预测图维度为 ,所以我们将原始图像划分为 的网格。 直接预测框的宽高会导致训练时不稳定的梯度问题,因此,现在的很多目标检测方法使用log空间转换或者简单的偏移(offset)到称为锚框的预定义默认边界框。然后将这些变换应用到锚框以获得预测,YOLOv3具有三个锚框,可以预测每个单元格三个边界框。 锚框是边界框的先验,是使用k均值聚类在COCO数据集上计算的。我们将预测框的宽度和高度,以表示距聚类质心的偏移量。 以下公式描述了如何转换网络输出以获得边界框预测:这里 分别是我们预测的中心坐标、宽度和高度。 是网络的输出。 是网格从顶左部的坐标。 是锚框的维度(见下图)。 通过sigmoid函数进行中心坐标预测,强制将值限制在0和1之间。YOLO不是预测边界框中心的绝对坐标,它预测的是偏移量:相对于预测对象的网格单元的左上角;通过特征图cell归一化维度。 例如,考虑上面狗的图像。如果预测中心坐标是 ,意味着中心在 (因为红色框左上角坐标是 )。但是如果预测的坐标大于1,例如 ,意味着中心在 ,现在中心在红色框右边,但是我们只能使用红色框对对象预测负责,所以我们添加一个sidmoid函数强制限制在0和1之间。 通过对输出应用对数空间转换,然后与锚框相乘,可以预测边界框的尺寸(如上面的计算公式)。 物体分数表示一个边界框包含一个物体的概率,对于红色框和其周围的框几乎都为1,但边角的框可能几乎都为0。物体分数也通过一个sigmoid函数,表示概率值。 类置信度表示检测到的物体属于一个具体类的概率值,以前的YOLO版本使用softmax将类分数转化为类概率。在YOLOv3中作者决定使用sigmoid函数取代,原因是softmax假设类之间都是互斥的,例如属于“Person”就不能表示属于“Woman”,然而很多情况是这个物体既是“Person”也是“Woman”。 为了识别更多的物体,尤其小物体,YOLOv3使用三个不同尺度进行预测(不仅仅只使用 )。三个不同尺度步幅分别是32、16和8。这意味着,输入 图像,检测尺度分别为 、 和 (如下图或者更详细如图2所示)。 YOLOv3为每种下采样尺度设定3个先验框,总共聚类9个不同尺寸先验框。在COCO数据集上9个先验框分别是: 。下表是9个先验框分配情况: 我们的网络生成10647个锚框,而图像中只有一个狗,怎么将10647个框减少为1个呢?首先,我们通过物体分数过滤一些锚框,例如低于阈值(假设0.5)的锚框直接舍去;然后,使用NMS(非极大值抑制)解决多个锚框检测一个物体的问题(例如红色框的3个锚框检测一个框或者连续的cell检测相同的物体,产生冗余),NMS用于去除多个检测框。 具体使用以下步骤:抛弃分数低的框(意味着框对于检测一个类信心不大);当多个框重合度高且都检测同一个物体时只选择一个框(NMS)。 为了更方便理解,我们选用上面的汽车图像。首先,我们使用阈值进行过滤一部分锚框。模型有 个数,每个盒子由85个数字描述。将 分割为下面的形状:box_confidence: 表示 个cell,每个cell5个框,每个框有物体的置信度概率;boxes: 表示每个cell5个框,每个框的表示;box_class_probs: 表示每个cell5个框,每个框80个类检测概率。 即使通过类分数阈值过滤一部分锚框,还剩下很多重合的框。第二个过程叫NMS,里面有个IoU,如下图所示。 下图给出更加详细的输入输出情况: 文章原文: 论文原文: YOLOv3深入理解: keras实现YOLOv3博客: What new in YOLOv3?:
yolo v3是2018年出来的,比SSD和retinanet都要晚,在map0.5这个指标上速度比SSD和retinanet快很多。在工业应用上面map0.5已经满足使用,并且yolo v3简介,文档丰富,还有tiny版本等一些列变种。最重要的是速度非常快,比SSD和retinanet都要快。
YOLOv3 的提出不是为了解决什么问题,整篇论文其实是技术报告。YOLOv3 在 YOLOv2 基础上做了一些小改进,文章篇幅不长,核心思想和 YOLOv2、YOLO9000差不多。
模型改进:
边界框预测:定位任务采用 anchor box 预测边界框的方法,YOLOv3 使用逻辑回归为每个边界框都预测了一个分数 objectness score,打分依据是预测框与物体的重叠度。如果某个框的重叠度比其他框都高,它的分数就是 1,忽略那些不是最好的框且重叠度大于某一阈值(0.5)的框。
yolo系列和ssd发表的时间顺序是yolov1,ssd,yolov2,yolov3,当然现在yolov4也出现了。这个是我之前在看完yolov1之后阅读ssd论文的时候记录的笔记,因此会涉及到很多和yolov1实现的对比。
fast rcnn系列的模型的套路: 1.使用事先设定的bounding boxes,
和fasterRCNN区别是没有使用RPN和Pooling操作
论文的贡献: 1. 引入了一种单阶段的检测器,比以前的算法YOLOv1更准更快,并没有使用RPN和Pooling操作; 2. 使用一个小的卷积滤波器应用在不同的feature map层从而预测BB的类别的BB偏差; 3. 可以在更小的输入图片中得到更好的检测效果(相比Faster-rcnn); 4. 在多个数据集(PASCAL、VOC、COCO、ILSVRC)上面的测试结果表明,它可以获得更高的mAp值;
整个是一个基于前向反馈的卷积网络,SSD模型最终提供一个固定大小的bounding boxes集合以及这些bounding boxes是否存在分类物品的得分的集合,通常在模型之后,添加了一个非极大抑制步骤来提供最终的检测结果。
主干网络backbone network 主干网络是基于VGG的, 是一个高质量的分类网络,把这个基础模型作为ssd的前面层,用于给后面的层提供高质量的图片分类,我们称这个层为基础网络,注意这个基础模型在使用的时候,需要截去最后面的分类层。在这里使用的VGG16网络。然后添加辅助的结构来 提供最终的检测功能。
主干网对VGG16的修改: 1.将VGG16的FC6和FC7层转化为卷积层,如图1上的Conv6和Conv7; 2.去掉所有的Dropout层和FC8层; 3.添加了Atrous算法(hole算法),参考该链接; 4.将Pool5从2x2-S2变换到3x3-S1;
最终的检测功能的实现依赖于下面提到的关键技术:
在基础网络之后,添加了很多个卷积层,卷积层不断的减小特征图的宽高尺寸,比如从8 8经过一层卷积之后就变成4 4了。然后在这些特征图上都应用目标检测算法。正如上面那张图所示,对于前面一层来说,相当于是在一个比较小的8 8的尺度上,对每个位置检测4个固定横纵比的bounding box,而对于后面一层来说,就是在一个相对较大的4 4尺寸上对每个位置检测4个固定横纵比的bounding box。这样就实现了在多尺度特征图上检测的目的。
图中的所有信道的对应位置的像素点集合被认为是一个anchor,那么对于每个anchor就会有N个比率的bounding box,需要注意的是,每一层的bounding box数量不一定是一样的。
我们从feature layer或者说feature map上抽取特征。feature layer可能是基础网络上面的某一层,也可以是在基础网络后面添加的卷积层。对于一个 m x nxc的feature layer,使用一个3x3xp的核过滤器(small kernel),那么对于每一个输出的pixel,都可以得到一个channel数为p大小的检测结果,一般p=4 (|Classes|+4)大小,最终可以得到m n p大小的检测结果。这个检测结果中包含了每个位置的分类物品出现的置信度以及四个表示位置和偏移的(cx,cy,w,h)。因为设置了bounding box的数量为4,所以结果是4 (|Classes|+4). 需要注意到这里使用的卷积预测器而不是全连接层(yolov1使用的是全连接层)。
这里的bounding box的概念类似于Faster R-CNN中的anchor boxes.但是这里不同的feature map层可以安排不同形状和数量的bounding box。,这样可以有效的离散化可能的输出box的空间(想象一下,如果每个feature map的bounding box长的差不多,那么得到的可能差异只在大小上,我们需要的是不同大小和形状的box来拟合真实的物品的坐标,因此box越多样越好。
The key difference between training SSD and training a typical detector that uses region proposals, is that ground truth information needs to be assigned to specific outputs in the fixed set of detector outputs.
把真实的物品坐标框称为ground truth,对于一张图片,在经过SSD模型的各层检测,会有8732个prior box(也就是检测结果),需要标记这些检测结果中,哪些是正样本,那些是负样本。 这些标记过程都是在训练之前做好的;不同层的default box的数量和大小也是在训练钱都确定好的;还需要准备好难负例挖掘的策略。
对于打标的真实框GT,需要选择哪个预测框是与真实框对应的。这里选择是jaccard overlap>0.5的所有默认框。这样正负样本就不会很悬殊。Multibox论文中则只会选择jaccard overlap最高的一个框框。
个人理解中,这里的预测框是指没有偏移变化的预测框prior box,也叫先验框(prior box)。在GT确定、输入图像尺寸固定、prior box确定之后,就可以得到jaccard overlap>0.5的所有先验框。然后学习的时候,这些正例需要根据ground truth进行偏移和长宽比缩放的学习。而其他负例则不需要学习位置参数。
为图像的面积的交并比.
在训练过程中,首先要确定训练图片中的ground truth(真实目标)与哪个先验框来进行匹配,与之匹配的先验框所对应的边界框将负责预测它。
在Yolov1中,ground truth的中心落在哪个单元格,该单元格中与其IOU最大的边界框负责预测它。但是在SSD中却完全不一样,SSD的先验框与ground truth的匹配原则主要有两点。
首先,对于图片中每个ground truth,找到与其IOU最大的先验框,该先验框与其匹配,这样,可以保证每个ground truth一定与某个先验框匹配。通常称与ground truth匹配的先验框为正样本(其实应该是先验框对应的预测box,不过由于是一一对应的就这样称呼了),反之,若一个先验框没有与任何ground truth进行匹配,那么该先验框只能与背景匹配,就是负样本。一个图片中ground truth是非常少的, 而先验框却很多,如果仅按第一个原则匹配,很多先验框会是负样本,正负样本极其不平衡,所以需要第二个原则。
第二个原则是:对于剩余的未匹配先验框,若某个ground truth的 IOU 大于某个阈值(一般是0.5),那么该先验框也与这个ground truth进行匹配。这意味着某个ground truth可能与多个先验框匹配,这是可以的。但是反过来却不可以,因为一个先验框只能匹配一个ground truth,如果多个ground truth与某个先验框IOU大于阈值,那么先验框只与IOU最大的那个先验框进行匹配。第二个原则一定在第一个原则之后进行,仔细考虑一下这种情况,如果某个ground truth所对应最大IOU小于阈值,并且所匹配的先验框却与另外一个ground truth的IOU大于阈值,那么该先验框应该匹配谁,答案应该是前者,首先要确保某个ground truth一定有一个先验框与之匹配。
损失函数是回归损失和置信度损失的加权平均
下面是位置回归损失函数的介绍,看着就很晕。
N表示匹配的框,应该可以理解为正样本框。首先g表示是ground truth box的各个指标,d是先验框的各个指标,l是预测结果的各个指标。g^ 这个是根据g和d得到的可以和预测结果匹配计算损失函数的指标。比如g^cx 这个指标,是归一化的横坐标偏移指标,因为先验框的中心不会完全和ground truth的中心重合,因此计算实际的偏移量。这个值就是我们希望模型学习到的值。同理,先验框的宽度也不会完全重合ground truth的宽度,我们用log函数来计算g^w,这也意味着我们希望学习到的宽度也是这种变换的。
smoothL1损失函数长这样:
分类的置信度损失函数如下,正样本的softmax loss函数以及负样本的背景置信度损失.
在某些论文的方法中,为了获得不同缩放的图片的结果,通过现将图片缩放在不同的尺度然后在最后将每个缩放尺度的结果组合起来。而在这篇论文中使用的方式是使用同一个网络中的不同层上抽取的feature map来获得和上面的缩放效果一样的结果。
我觉得这个idea真的很赞,超级赞。这样不仅仅可以利用参数共享,而且很方便。已经有研究表明使用前面层的feature map可以优化语义分段质量semantic segmentation quality,因为前面的层可以获得更多的细节的优质的关于输入的信息。
这张图上有两个feature map。我们知道网络的不同层有不同的感受野。在SSD中,bounding box的大小不需要匹配对应层的感受野。我们设计了bounding box的尺寸规则,这样每个feature map就可以自己计算。 如果我们使用m个feature map,其中1表示较低层,m表示叫高层。bounding box的默认尺度按照如下的计算公式计算
bounding box的横纵比尺度为
什么是hard negative mining: 【1】对于目标检测中我们会事先标记处ground truth,然后再算法中会生成一系列proposal,这些proposal有跟标记的ground truth重合的也有没重合的,那么重合度(IOU)超过一定阈值(通常0.5)的则认定为是正样本,以下的则是负样本。 【2】然后扔进网络中训练。However,这也许会出现一个问题那就是正样本的数量远远小于负样本,这样训练出来的分类器的效果总是有限的,会出现许多false positive,把其中得分较高的这些false positive当做所谓的Hard negative,既然mining出了这些Hard negative,就把这些扔进网络得到类别的损失函数,将这些难负样本的损失函数作为背景损失函数,从而加强分类器判别假阳性的能力。
绝大部分的bounding box最后匹配出来是没有物品的,这样会导致负样本和正样本严重失衡。SSD这里没有使用全部的负样本,而是对每个负样本的bounding box根据其confidence loss排序,然后选择最大的一批作为负样本,这样是的负样本和正样本的比率稳定在3:1。实践证明,这样的方式是的优化的碎度更快,训练也更加稳定。
数据的扩充策略中数据来自于以下三种之一
base netowrk是VGG16。SSD300的模型就是上面那张结构图所示。新的层的初始化使用xavier方式( , )。实验认为和RCNN相比,SSD在定位localization上更加优秀,因为在神经网络模型中直接学习回归了物品的形状。但是SSD很容易有分类错误问题,尤其是类似的类别(比如动物)。SSD对bounding box的大小很敏感,也就是说,小物体的表现不如大物体。结合模型来看,因为小物体的预测使用的是网络的前面的层,而前面的层并没有很多的信息。虽然存在上面的问题,但是SSD在大物体上的表现很好,二千对于不同横纵比的物体的性能鲁棒。
下面这张图展示了ssd中的哪些技术使得性能得到了提升。
性能提升的贡献:
SSD是如何提升小物体的检测准确率的:通过数据扩充
SSD用的是VGG16(但去掉了fc层加速)而YOLO普通版有24个卷积层。 SSD的输入尺寸较小(300 300),而YOLO是448 448,即使网络结构类似计算量差距还是挺明显的,速度快一点正常。 ssd全靠卷积完成,而yolo里还有全连接,用上gpu的话肯定是ssd快
在ssd中,首先每个真实物品都先选择一个负责它的bounding box,在没有训练指之前,因为prior bounding box的位置都是确定的,所以选择IOU最大的为正样本。为平衡正负样本的比率,将IOU大于0.5的prior bounding box都设置为正样本。这样模型就更加稳定了。
SSD算法思想和结构详解 :
SSD详解
出版时间跟你发表时间是不一样的,所以要区分开来,我的经验告诉我,早点发表会好些
问题一:发表论文去哪里投稿 若你是初次投稿,建议先找些门槛低的省级期刊投稿,这类杂志有《故事》、《故事汇》、《故事世界》、《幽默与笑话》。另外《知识窗》、《青年科学》、《思维与智慧》这些杂志你也可去试试。投稿时,你还要注意投稿格式,电子邮件投稿注意事项。 在这里顺便给你介绍一些注意事项,以提高你命中率:稿件后面要有完备的联系方式:作者名字、署名、地址、电话、邮箱,QQ什么的都要详细,以便编辑联系你啊!要是没有这些,发了你文章,难找你拿稿酬! 用电子邮件投稿,得注明投什么栏目,写上你名字和稿件名字。 另外,现在《故事会》在征稿。其原创稿酬千字400元,笑话每篇最高稿酬100元。 希望能解决您的问题。 问题二:哪里可以发表论文 有的啊,,, 问题三:论文在哪里发表 一般在期刊上发表讠仑文基本上都是需要评职称才发的,一般这种的找那种代理就行,网上很多的不过也有不可靠的,最好找熟人介绍下比较好,我发的时候就是同事介绍的壹品优,我也是直接就在那边发了,和同事说的差不多,挺好的。如果你没有熟人介绍不行就去看看。 问题四:在哪里发表论文比较可靠 答-您写的专业性很强的学术论文最好在正规刊物上发表,毕业论文或学习的论文就在学校学刊上发表。 问题五:论文在哪发表比较好? 答-您写的专业性很强的学术论文最好在正规刊物上发表,毕业论文或学习的论文就在学校学刊上发表。 问题六:在哪里可以发表论文 有的啊,, 问题七:在哪可以发表论文 你发论文主要是干嘛用的 问题八:评职称在哪发表论文 我也是广告,给你一个参考:第一,化工行业中级职称,如果没有意外的话,普刊,就是国家级或者省级刊物就可以。所谓的意外,就是说你可能处于大学或者科研单位,这样的话中级才会要求核心刊物。第二,价格问题,核心我就不说了,浮动太大没法说估计你也用不着,通常而言,综合科技类的省级和国家级价格基本持平,在五百左右,这个价格仅供参考,每个期刊都有自己的价格,如果是化工类专业性强一点的,价格可能略贵。大家不说价格的原因是公开的地方不方便,每个人都有自己的渠道,高了低了难免有纠纷,估计你也能理解,此外,注意无论是找编辑部还是找代理,资金安全要注意。定金和真伪鉴定都是作者需要考察的东西。我是代理,前几天还遇到了《学问》这个期刊的假刊,差点上当。 问题九:医学论文在哪发表论文好? 这个要看你的具体专业,以及对发表杂志有无要求。 比如你是传染病防治的,那最好还是发中国疾病控制之类的。 比如你要求中文核心期刊,那就选择专业对口的中文核心。 比如你要求SCI,那就选择SCI杂志。
YOLO是“You Only Look Once”的简称,它虽然不是最精确的算法,但在精确度和速度之间选择的折中,效果也是相当不错。YOLOv3借鉴了YOLOv1和YOLOv2,虽然没有太多的创新点,但在保持YOLO家族速度的优势的同时,提升了检测精度,尤其对于小物体的检测能力。YOLOv3算法使用一个单独神经网络作用在图像上,将图像划分多个区域并且预测边界框和每个区域的概率。 YOLOv3仅使用卷积层,使其成为一个全卷积网络(FCN)。文章中,作者提出一个新的特征提取网络,Darknet-53。正如其名,它包含53个卷积层,每个后面跟随着batch normalization层和leaky ReLU层。没有池化层,使用步幅为2的卷积层替代池化层进行特征图的降采样过程,这样可以有效阻止由于池化层导致的低层级特征的损失。Darknet-53网络如下图左边所示。 输入是 。输出是带有识别类的边界框列表,每个边界框由 六个参数表示。如果 表示80个类别,那么每个边界框由85个数字表示。 在YOLO中,预测过程使用一个 卷积,所以输入是一个特征图。由于使用 卷积,因此预测图正好是特征图大小( 卷积只是用于改变通道数)。在YOLOv3中,此预测图是每个cell预测固定数量的边界框。 如上图所示,预测图的深度为75,假设预测图深度为 , 表示每个cell可以预测的边界框数量。这些 个边界框可以指定检测到一个物体。每个边界框有 个特征,分别描述中心点坐标和宽高(四个)和物体分数(一个)以及 个类置信度(上图中 )。YOLOv3每个cell预测三个边界框。 如果对象的中心(GT框中心)落在该cell感受野范围内,我们希望预测图的每个单元格都能通过其中一个边界框预测对象。其中只有一个边界框负责检测物体,首先我们需要确定此边界框属于哪个cell。 为了实现上面的想法,我们将原始图像分割为最后预测图维度大小的网格。如下图所示,输入图像维度为 ,步幅为32(最后的预测图降采样32倍),最后预测图维度为 ,所以我们将原始图像划分为 的网格。 直接预测框的宽高会导致训练时不稳定的梯度问题,因此,现在的很多目标检测方法使用log空间转换或者简单的偏移(offset)到称为锚框的预定义默认边界框。然后将这些变换应用到锚框以获得预测,YOLOv3具有三个锚框,可以预测每个单元格三个边界框。 锚框是边界框的先验,是使用k均值聚类在COCO数据集上计算的。我们将预测框的宽度和高度,以表示距聚类质心的偏移量。 以下公式描述了如何转换网络输出以获得边界框预测:这里 分别是我们预测的中心坐标、宽度和高度。 是网络的输出。 是网格从顶左部的坐标。 是锚框的维度(见下图)。 通过sigmoid函数进行中心坐标预测,强制将值限制在0和1之间。YOLO不是预测边界框中心的绝对坐标,它预测的是偏移量:相对于预测对象的网格单元的左上角;通过特征图cell归一化维度。 例如,考虑上面狗的图像。如果预测中心坐标是 ,意味着中心在 (因为红色框左上角坐标是 )。但是如果预测的坐标大于1,例如 ,意味着中心在 ,现在中心在红色框右边,但是我们只能使用红色框对对象预测负责,所以我们添加一个sidmoid函数强制限制在0和1之间。 通过对输出应用对数空间转换,然后与锚框相乘,可以预测边界框的尺寸(如上面的计算公式)。 物体分数表示一个边界框包含一个物体的概率,对于红色框和其周围的框几乎都为1,但边角的框可能几乎都为0。物体分数也通过一个sigmoid函数,表示概率值。 类置信度表示检测到的物体属于一个具体类的概率值,以前的YOLO版本使用softmax将类分数转化为类概率。在YOLOv3中作者决定使用sigmoid函数取代,原因是softmax假设类之间都是互斥的,例如属于“Person”就不能表示属于“Woman”,然而很多情况是这个物体既是“Person”也是“Woman”。 为了识别更多的物体,尤其小物体,YOLOv3使用三个不同尺度进行预测(不仅仅只使用 )。三个不同尺度步幅分别是32、16和8。这意味着,输入 图像,检测尺度分别为 、 和 (如下图或者更详细如图2所示)。 YOLOv3为每种下采样尺度设定3个先验框,总共聚类9个不同尺寸先验框。在COCO数据集上9个先验框分别是: 。下表是9个先验框分配情况: 我们的网络生成10647个锚框,而图像中只有一个狗,怎么将10647个框减少为1个呢?首先,我们通过物体分数过滤一些锚框,例如低于阈值(假设0.5)的锚框直接舍去;然后,使用NMS(非极大值抑制)解决多个锚框检测一个物体的问题(例如红色框的3个锚框检测一个框或者连续的cell检测相同的物体,产生冗余),NMS用于去除多个检测框。 具体使用以下步骤:抛弃分数低的框(意味着框对于检测一个类信心不大);当多个框重合度高且都检测同一个物体时只选择一个框(NMS)。 为了更方便理解,我们选用上面的汽车图像。首先,我们使用阈值进行过滤一部分锚框。模型有 个数,每个盒子由85个数字描述。将 分割为下面的形状:box_confidence: 表示 个cell,每个cell5个框,每个框有物体的置信度概率;boxes: 表示每个cell5个框,每个框的表示;box_class_probs: 表示每个cell5个框,每个框80个类检测概率。 即使通过类分数阈值过滤一部分锚框,还剩下很多重合的框。第二个过程叫NMS,里面有个IoU,如下图所示。 下图给出更加详细的输入输出情况: 文章原文: 论文原文: YOLOv3深入理解: keras实现YOLOv3博客: What new in YOLOv3?:
yolo系列和ssd发表的时间顺序是yolov1,ssd,yolov2,yolov3,当然现在yolov4也出现了。这个是我之前在看完yolov1之后阅读ssd论文的时候记录的笔记,因此会涉及到很多和yolov1实现的对比。
fast rcnn系列的模型的套路: 1.使用事先设定的bounding boxes,
和fasterRCNN区别是没有使用RPN和Pooling操作
论文的贡献: 1. 引入了一种单阶段的检测器,比以前的算法YOLOv1更准更快,并没有使用RPN和Pooling操作; 2. 使用一个小的卷积滤波器应用在不同的feature map层从而预测BB的类别的BB偏差; 3. 可以在更小的输入图片中得到更好的检测效果(相比Faster-rcnn); 4. 在多个数据集(PASCAL、VOC、COCO、ILSVRC)上面的测试结果表明,它可以获得更高的mAp值;
整个是一个基于前向反馈的卷积网络,SSD模型最终提供一个固定大小的bounding boxes集合以及这些bounding boxes是否存在分类物品的得分的集合,通常在模型之后,添加了一个非极大抑制步骤来提供最终的检测结果。
主干网络backbone network 主干网络是基于VGG的, 是一个高质量的分类网络,把这个基础模型作为ssd的前面层,用于给后面的层提供高质量的图片分类,我们称这个层为基础网络,注意这个基础模型在使用的时候,需要截去最后面的分类层。在这里使用的VGG16网络。然后添加辅助的结构来 提供最终的检测功能。
主干网对VGG16的修改: 1.将VGG16的FC6和FC7层转化为卷积层,如图1上的Conv6和Conv7; 2.去掉所有的Dropout层和FC8层; 3.添加了Atrous算法(hole算法),参考该链接; 4.将Pool5从2x2-S2变换到3x3-S1;
最终的检测功能的实现依赖于下面提到的关键技术:
在基础网络之后,添加了很多个卷积层,卷积层不断的减小特征图的宽高尺寸,比如从8 8经过一层卷积之后就变成4 4了。然后在这些特征图上都应用目标检测算法。正如上面那张图所示,对于前面一层来说,相当于是在一个比较小的8 8的尺度上,对每个位置检测4个固定横纵比的bounding box,而对于后面一层来说,就是在一个相对较大的4 4尺寸上对每个位置检测4个固定横纵比的bounding box。这样就实现了在多尺度特征图上检测的目的。
图中的所有信道的对应位置的像素点集合被认为是一个anchor,那么对于每个anchor就会有N个比率的bounding box,需要注意的是,每一层的bounding box数量不一定是一样的。
我们从feature layer或者说feature map上抽取特征。feature layer可能是基础网络上面的某一层,也可以是在基础网络后面添加的卷积层。对于一个 m x nxc的feature layer,使用一个3x3xp的核过滤器(small kernel),那么对于每一个输出的pixel,都可以得到一个channel数为p大小的检测结果,一般p=4 (|Classes|+4)大小,最终可以得到m n p大小的检测结果。这个检测结果中包含了每个位置的分类物品出现的置信度以及四个表示位置和偏移的(cx,cy,w,h)。因为设置了bounding box的数量为4,所以结果是4 (|Classes|+4). 需要注意到这里使用的卷积预测器而不是全连接层(yolov1使用的是全连接层)。
这里的bounding box的概念类似于Faster R-CNN中的anchor boxes.但是这里不同的feature map层可以安排不同形状和数量的bounding box。,这样可以有效的离散化可能的输出box的空间(想象一下,如果每个feature map的bounding box长的差不多,那么得到的可能差异只在大小上,我们需要的是不同大小和形状的box来拟合真实的物品的坐标,因此box越多样越好。
The key difference between training SSD and training a typical detector that uses region proposals, is that ground truth information needs to be assigned to specific outputs in the fixed set of detector outputs.
把真实的物品坐标框称为ground truth,对于一张图片,在经过SSD模型的各层检测,会有8732个prior box(也就是检测结果),需要标记这些检测结果中,哪些是正样本,那些是负样本。 这些标记过程都是在训练之前做好的;不同层的default box的数量和大小也是在训练钱都确定好的;还需要准备好难负例挖掘的策略。
对于打标的真实框GT,需要选择哪个预测框是与真实框对应的。这里选择是jaccard overlap>0.5的所有默认框。这样正负样本就不会很悬殊。Multibox论文中则只会选择jaccard overlap最高的一个框框。
个人理解中,这里的预测框是指没有偏移变化的预测框prior box,也叫先验框(prior box)。在GT确定、输入图像尺寸固定、prior box确定之后,就可以得到jaccard overlap>0.5的所有先验框。然后学习的时候,这些正例需要根据ground truth进行偏移和长宽比缩放的学习。而其他负例则不需要学习位置参数。
为图像的面积的交并比.
在训练过程中,首先要确定训练图片中的ground truth(真实目标)与哪个先验框来进行匹配,与之匹配的先验框所对应的边界框将负责预测它。
在Yolov1中,ground truth的中心落在哪个单元格,该单元格中与其IOU最大的边界框负责预测它。但是在SSD中却完全不一样,SSD的先验框与ground truth的匹配原则主要有两点。
首先,对于图片中每个ground truth,找到与其IOU最大的先验框,该先验框与其匹配,这样,可以保证每个ground truth一定与某个先验框匹配。通常称与ground truth匹配的先验框为正样本(其实应该是先验框对应的预测box,不过由于是一一对应的就这样称呼了),反之,若一个先验框没有与任何ground truth进行匹配,那么该先验框只能与背景匹配,就是负样本。一个图片中ground truth是非常少的, 而先验框却很多,如果仅按第一个原则匹配,很多先验框会是负样本,正负样本极其不平衡,所以需要第二个原则。
第二个原则是:对于剩余的未匹配先验框,若某个ground truth的 IOU 大于某个阈值(一般是0.5),那么该先验框也与这个ground truth进行匹配。这意味着某个ground truth可能与多个先验框匹配,这是可以的。但是反过来却不可以,因为一个先验框只能匹配一个ground truth,如果多个ground truth与某个先验框IOU大于阈值,那么先验框只与IOU最大的那个先验框进行匹配。第二个原则一定在第一个原则之后进行,仔细考虑一下这种情况,如果某个ground truth所对应最大IOU小于阈值,并且所匹配的先验框却与另外一个ground truth的IOU大于阈值,那么该先验框应该匹配谁,答案应该是前者,首先要确保某个ground truth一定有一个先验框与之匹配。
损失函数是回归损失和置信度损失的加权平均
下面是位置回归损失函数的介绍,看着就很晕。
N表示匹配的框,应该可以理解为正样本框。首先g表示是ground truth box的各个指标,d是先验框的各个指标,l是预测结果的各个指标。g^ 这个是根据g和d得到的可以和预测结果匹配计算损失函数的指标。比如g^cx 这个指标,是归一化的横坐标偏移指标,因为先验框的中心不会完全和ground truth的中心重合,因此计算实际的偏移量。这个值就是我们希望模型学习到的值。同理,先验框的宽度也不会完全重合ground truth的宽度,我们用log函数来计算g^w,这也意味着我们希望学习到的宽度也是这种变换的。
smoothL1损失函数长这样:
分类的置信度损失函数如下,正样本的softmax loss函数以及负样本的背景置信度损失.
在某些论文的方法中,为了获得不同缩放的图片的结果,通过现将图片缩放在不同的尺度然后在最后将每个缩放尺度的结果组合起来。而在这篇论文中使用的方式是使用同一个网络中的不同层上抽取的feature map来获得和上面的缩放效果一样的结果。
我觉得这个idea真的很赞,超级赞。这样不仅仅可以利用参数共享,而且很方便。已经有研究表明使用前面层的feature map可以优化语义分段质量semantic segmentation quality,因为前面的层可以获得更多的细节的优质的关于输入的信息。
这张图上有两个feature map。我们知道网络的不同层有不同的感受野。在SSD中,bounding box的大小不需要匹配对应层的感受野。我们设计了bounding box的尺寸规则,这样每个feature map就可以自己计算。 如果我们使用m个feature map,其中1表示较低层,m表示叫高层。bounding box的默认尺度按照如下的计算公式计算
bounding box的横纵比尺度为
什么是hard negative mining: 【1】对于目标检测中我们会事先标记处ground truth,然后再算法中会生成一系列proposal,这些proposal有跟标记的ground truth重合的也有没重合的,那么重合度(IOU)超过一定阈值(通常0.5)的则认定为是正样本,以下的则是负样本。 【2】然后扔进网络中训练。However,这也许会出现一个问题那就是正样本的数量远远小于负样本,这样训练出来的分类器的效果总是有限的,会出现许多false positive,把其中得分较高的这些false positive当做所谓的Hard negative,既然mining出了这些Hard negative,就把这些扔进网络得到类别的损失函数,将这些难负样本的损失函数作为背景损失函数,从而加强分类器判别假阳性的能力。
绝大部分的bounding box最后匹配出来是没有物品的,这样会导致负样本和正样本严重失衡。SSD这里没有使用全部的负样本,而是对每个负样本的bounding box根据其confidence loss排序,然后选择最大的一批作为负样本,这样是的负样本和正样本的比率稳定在3:1。实践证明,这样的方式是的优化的碎度更快,训练也更加稳定。
数据的扩充策略中数据来自于以下三种之一
base netowrk是VGG16。SSD300的模型就是上面那张结构图所示。新的层的初始化使用xavier方式( , )。实验认为和RCNN相比,SSD在定位localization上更加优秀,因为在神经网络模型中直接学习回归了物品的形状。但是SSD很容易有分类错误问题,尤其是类似的类别(比如动物)。SSD对bounding box的大小很敏感,也就是说,小物体的表现不如大物体。结合模型来看,因为小物体的预测使用的是网络的前面的层,而前面的层并没有很多的信息。虽然存在上面的问题,但是SSD在大物体上的表现很好,二千对于不同横纵比的物体的性能鲁棒。
下面这张图展示了ssd中的哪些技术使得性能得到了提升。
性能提升的贡献:
SSD是如何提升小物体的检测准确率的:通过数据扩充
SSD用的是VGG16(但去掉了fc层加速)而YOLO普通版有24个卷积层。 SSD的输入尺寸较小(300 300),而YOLO是448 448,即使网络结构类似计算量差距还是挺明显的,速度快一点正常。 ssd全靠卷积完成,而yolo里还有全连接,用上gpu的话肯定是ssd快
在ssd中,首先每个真实物品都先选择一个负责它的bounding box,在没有训练指之前,因为prior bounding box的位置都是确定的,所以选择IOU最大的为正样本。为平衡正负样本的比率,将IOU大于0.5的prior bounding box都设置为正样本。这样模型就更加稳定了。
SSD算法思想和结构详解 :
SSD详解
目标检测的发展大致经历了两个历史时期,如下图所示:
从图中可以看出,Joseph Redmon于2015年提出YOLO算法是的单阶段目标检测算法的开山鼻祖,跟R.Girshick于2014年提出的RCNN系列两阶段目标算法一起引领基于深度学习的目标检测算法的发展。YOLO系列算法是一种能满足实时检测要求(FPS > 30)的高精度算法,如下图所示,所以受到广大工程应用人员的青睐, 在实际项目中有非常广泛的应用 ,值得初学者投入时间精力去学习、研究和应用。
YOLOv2有一些待改进点:
YOLOv3是在YOLOv2的待改进点上做了进一步的优化,包括:
从此其它人开始接手YOLO系列算法的改进工作,比较出名的有:
YOLO是“You Only Look Once”的简称,它虽然不是最精确的算法,但在精确度和速度之间选择的折中,效果也是相当不错。YOLOv3借鉴了YOLOv1和YOLOv2,虽然没有太多的创新点,但在保持YOLO家族速度的优势的同时,提升了检测精度,尤其对于小物体的检测能力。YOLOv3算法使用一个单独神经网络作用在图像上,将图像划分多个区域并且预测边界框和每个区域的概率。 YOLOv3仅使用卷积层,使其成为一个全卷积网络(FCN)。文章中,作者提出一个新的特征提取网络,Darknet-53。正如其名,它包含53个卷积层,每个后面跟随着batch normalization层和leaky ReLU层。没有池化层,使用步幅为2的卷积层替代池化层进行特征图的降采样过程,这样可以有效阻止由于池化层导致的低层级特征的损失。Darknet-53网络如下图左边所示。 输入是 。输出是带有识别类的边界框列表,每个边界框由 六个参数表示。如果 表示80个类别,那么每个边界框由85个数字表示。 在YOLO中,预测过程使用一个 卷积,所以输入是一个特征图。由于使用 卷积,因此预测图正好是特征图大小( 卷积只是用于改变通道数)。在YOLOv3中,此预测图是每个cell预测固定数量的边界框。 如上图所示,预测图的深度为75,假设预测图深度为 , 表示每个cell可以预测的边界框数量。这些 个边界框可以指定检测到一个物体。每个边界框有 个特征,分别描述中心点坐标和宽高(四个)和物体分数(一个)以及 个类置信度(上图中 )。YOLOv3每个cell预测三个边界框。 如果对象的中心(GT框中心)落在该cell感受野范围内,我们希望预测图的每个单元格都能通过其中一个边界框预测对象。其中只有一个边界框负责检测物体,首先我们需要确定此边界框属于哪个cell。 为了实现上面的想法,我们将原始图像分割为最后预测图维度大小的网格。如下图所示,输入图像维度为 ,步幅为32(最后的预测图降采样32倍),最后预测图维度为 ,所以我们将原始图像划分为 的网格。 直接预测框的宽高会导致训练时不稳定的梯度问题,因此,现在的很多目标检测方法使用log空间转换或者简单的偏移(offset)到称为锚框的预定义默认边界框。然后将这些变换应用到锚框以获得预测,YOLOv3具有三个锚框,可以预测每个单元格三个边界框。 锚框是边界框的先验,是使用k均值聚类在COCO数据集上计算的。我们将预测框的宽度和高度,以表示距聚类质心的偏移量。 以下公式描述了如何转换网络输出以获得边界框预测:这里 分别是我们预测的中心坐标、宽度和高度。 是网络的输出。 是网格从顶左部的坐标。 是锚框的维度(见下图)。 通过sigmoid函数进行中心坐标预测,强制将值限制在0和1之间。YOLO不是预测边界框中心的绝对坐标,它预测的是偏移量:相对于预测对象的网格单元的左上角;通过特征图cell归一化维度。 例如,考虑上面狗的图像。如果预测中心坐标是 ,意味着中心在 (因为红色框左上角坐标是 )。但是如果预测的坐标大于1,例如 ,意味着中心在 ,现在中心在红色框右边,但是我们只能使用红色框对对象预测负责,所以我们添加一个sidmoid函数强制限制在0和1之间。 通过对输出应用对数空间转换,然后与锚框相乘,可以预测边界框的尺寸(如上面的计算公式)。 物体分数表示一个边界框包含一个物体的概率,对于红色框和其周围的框几乎都为1,但边角的框可能几乎都为0。物体分数也通过一个sigmoid函数,表示概率值。 类置信度表示检测到的物体属于一个具体类的概率值,以前的YOLO版本使用softmax将类分数转化为类概率。在YOLOv3中作者决定使用sigmoid函数取代,原因是softmax假设类之间都是互斥的,例如属于“Person”就不能表示属于“Woman”,然而很多情况是这个物体既是“Person”也是“Woman”。 为了识别更多的物体,尤其小物体,YOLOv3使用三个不同尺度进行预测(不仅仅只使用 )。三个不同尺度步幅分别是32、16和8。这意味着,输入 图像,检测尺度分别为 、 和 (如下图或者更详细如图2所示)。 YOLOv3为每种下采样尺度设定3个先验框,总共聚类9个不同尺寸先验框。在COCO数据集上9个先验框分别是: 。下表是9个先验框分配情况: 我们的网络生成10647个锚框,而图像中只有一个狗,怎么将10647个框减少为1个呢?首先,我们通过物体分数过滤一些锚框,例如低于阈值(假设0.5)的锚框直接舍去;然后,使用NMS(非极大值抑制)解决多个锚框检测一个物体的问题(例如红色框的3个锚框检测一个框或者连续的cell检测相同的物体,产生冗余),NMS用于去除多个检测框。 具体使用以下步骤:抛弃分数低的框(意味着框对于检测一个类信心不大);当多个框重合度高且都检测同一个物体时只选择一个框(NMS)。 为了更方便理解,我们选用上面的汽车图像。首先,我们使用阈值进行过滤一部分锚框。模型有 个数,每个盒子由85个数字描述。将 分割为下面的形状:box_confidence: 表示 个cell,每个cell5个框,每个框有物体的置信度概率;boxes: 表示每个cell5个框,每个框的表示;box_class_probs: 表示每个cell5个框,每个框80个类检测概率。 即使通过类分数阈值过滤一部分锚框,还剩下很多重合的框。第二个过程叫NMS,里面有个IoU,如下图所示。 下图给出更加详细的输入输出情况: 文章原文: 论文原文: YOLOv3深入理解: keras实现YOLOv3博客: What new in YOLOv3?:
调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax
对于多尺度检测来说,采用多个尺度进行预测,具体形式是在网络预测的最后某些层进行上采样拼接的操作来达到;对于分辨率对预测的影响如下解释:
分辨率信息直接反映的就是构成object的像素的数量。一个object,像素数量越多,它对object的细节表现就越丰富越具体,也就是说分辨率信息越丰富。这也就是为什么大尺度feature map提供的是分辨率信息了。语义信息在目标检测中指的是让object区分于背景的信息,即语义信息是让你知道这个是object,其余是背景。在不同类别中语义信息并不需要很多细节信息,分辨率信息大,反而会降低语义信息,因此小尺度feature map在提供必要的分辨率信息下语义信息会提供的更好。(而对于小目标,小尺度feature map无法提供必要的分辨率信息,所以还需结合大尺度的feature map)
YOLO3更进一步采用了3个不同尺度的特征图来进行对象检测。能够检测的到更加细粒度的特征。 对于这三种检测的结果并不是同样的东西,这里的粗略理解是不同给的尺度检测不同大小的物体。
YOLO2已经开始采用K-means聚类得到先验框的尺寸,YOLO3延续了这种方法,为每种下采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。
在COCO数据集这9个先验框是:(10x13),(16x30),(33x23),(30x61),(62x45),(59x119),(116x90),(156x198),(373x326)。
logistic回归用于对anchor包围的部分进行一个目标性评分(objectness score),(用于NMS),即这块位置是目标的可能性有多大。
yolo_v3只会对1个prior进行操作,也就是那个最佳prior。而logistic回归就是用来从9个anchor priors中找到objectness score(目标存在可能性得分)最高的那一个。
yolo v3是2018年出来的,比SSD和retinanet都要晚,在map0.5这个指标上速度比SSD和retinanet快很多。在工业应用上面map0.5已经满足使用,并且yolo v3简介,文档丰富,还有tiny版本等一些列变种。最重要的是速度非常快,比SSD和retinanet都要快。
YOLOv3 的提出不是为了解决什么问题,整篇论文其实是技术报告。YOLOv3 在 YOLOv2 基础上做了一些小改进,文章篇幅不长,核心思想和 YOLOv2、YOLO9000差不多。
模型改进:
边界框预测:定位任务采用 anchor box 预测边界框的方法,YOLOv3 使用逻辑回归为每个边界框都预测了一个分数 objectness score,打分依据是预测框与物体的重叠度。如果某个框的重叠度比其他框都高,它的分数就是 1,忽略那些不是最好的框且重叠度大于某一阈值(0.5)的框。
YOLO是“You Only Look Once”的简称,它虽然不是最精确的算法,但在精确度和速度之间选择的折中,效果也是相当不错。YOLOv3借鉴了YOLOv1和YOLOv2,虽然没有太多的创新点,但在保持YOLO家族速度的优势的同时,提升了检测精度,尤其对于小物体的检测能力。YOLOv3算法使用一个单独神经网络作用在图像上,将图像划分多个区域并且预测边界框和每个区域的概率。 YOLOv3仅使用卷积层,使其成为一个全卷积网络(FCN)。文章中,作者提出一个新的特征提取网络,Darknet-53。正如其名,它包含53个卷积层,每个后面跟随着batch normalization层和leaky ReLU层。没有池化层,使用步幅为2的卷积层替代池化层进行特征图的降采样过程,这样可以有效阻止由于池化层导致的低层级特征的损失。Darknet-53网络如下图左边所示。 输入是 。输出是带有识别类的边界框列表,每个边界框由 六个参数表示。如果 表示80个类别,那么每个边界框由85个数字表示。 在YOLO中,预测过程使用一个 卷积,所以输入是一个特征图。由于使用 卷积,因此预测图正好是特征图大小( 卷积只是用于改变通道数)。在YOLOv3中,此预测图是每个cell预测固定数量的边界框。 如上图所示,预测图的深度为75,假设预测图深度为 , 表示每个cell可以预测的边界框数量。这些 个边界框可以指定检测到一个物体。每个边界框有 个特征,分别描述中心点坐标和宽高(四个)和物体分数(一个)以及 个类置信度(上图中 )。YOLOv3每个cell预测三个边界框。 如果对象的中心(GT框中心)落在该cell感受野范围内,我们希望预测图的每个单元格都能通过其中一个边界框预测对象。其中只有一个边界框负责检测物体,首先我们需要确定此边界框属于哪个cell。 为了实现上面的想法,我们将原始图像分割为最后预测图维度大小的网格。如下图所示,输入图像维度为 ,步幅为32(最后的预测图降采样32倍),最后预测图维度为 ,所以我们将原始图像划分为 的网格。 直接预测框的宽高会导致训练时不稳定的梯度问题,因此,现在的很多目标检测方法使用log空间转换或者简单的偏移(offset)到称为锚框的预定义默认边界框。然后将这些变换应用到锚框以获得预测,YOLOv3具有三个锚框,可以预测每个单元格三个边界框。 锚框是边界框的先验,是使用k均值聚类在COCO数据集上计算的。我们将预测框的宽度和高度,以表示距聚类质心的偏移量。 以下公式描述了如何转换网络输出以获得边界框预测:这里 分别是我们预测的中心坐标、宽度和高度。 是网络的输出。 是网格从顶左部的坐标。 是锚框的维度(见下图)。 通过sigmoid函数进行中心坐标预测,强制将值限制在0和1之间。YOLO不是预测边界框中心的绝对坐标,它预测的是偏移量:相对于预测对象的网格单元的左上角;通过特征图cell归一化维度。 例如,考虑上面狗的图像。如果预测中心坐标是 ,意味着中心在 (因为红色框左上角坐标是 )。但是如果预测的坐标大于1,例如 ,意味着中心在 ,现在中心在红色框右边,但是我们只能使用红色框对对象预测负责,所以我们添加一个sidmoid函数强制限制在0和1之间。 通过对输出应用对数空间转换,然后与锚框相乘,可以预测边界框的尺寸(如上面的计算公式)。 物体分数表示一个边界框包含一个物体的概率,对于红色框和其周围的框几乎都为1,但边角的框可能几乎都为0。物体分数也通过一个sigmoid函数,表示概率值。 类置信度表示检测到的物体属于一个具体类的概率值,以前的YOLO版本使用softmax将类分数转化为类概率。在YOLOv3中作者决定使用sigmoid函数取代,原因是softmax假设类之间都是互斥的,例如属于“Person”就不能表示属于“Woman”,然而很多情况是这个物体既是“Person”也是“Woman”。 为了识别更多的物体,尤其小物体,YOLOv3使用三个不同尺度进行预测(不仅仅只使用 )。三个不同尺度步幅分别是32、16和8。这意味着,输入 图像,检测尺度分别为 、 和 (如下图或者更详细如图2所示)。 YOLOv3为每种下采样尺度设定3个先验框,总共聚类9个不同尺寸先验框。在COCO数据集上9个先验框分别是: 。下表是9个先验框分配情况: 我们的网络生成10647个锚框,而图像中只有一个狗,怎么将10647个框减少为1个呢?首先,我们通过物体分数过滤一些锚框,例如低于阈值(假设0.5)的锚框直接舍去;然后,使用NMS(非极大值抑制)解决多个锚框检测一个物体的问题(例如红色框的3个锚框检测一个框或者连续的cell检测相同的物体,产生冗余),NMS用于去除多个检测框。 具体使用以下步骤:抛弃分数低的框(意味着框对于检测一个类信心不大);当多个框重合度高且都检测同一个物体时只选择一个框(NMS)。 为了更方便理解,我们选用上面的汽车图像。首先,我们使用阈值进行过滤一部分锚框。模型有 个数,每个盒子由85个数字描述。将 分割为下面的形状:box_confidence: 表示 个cell,每个cell5个框,每个框有物体的置信度概率;boxes: 表示每个cell5个框,每个框的表示;box_class_probs: 表示每个cell5个框,每个框80个类检测概率。 即使通过类分数阈值过滤一部分锚框,还剩下很多重合的框。第二个过程叫NMS,里面有个IoU,如下图所示。 下图给出更加详细的输入输出情况: 文章原文: 论文原文: YOLOv3深入理解: keras实现YOLOv3博客: What new in YOLOv3?: