首页 > 职称论文知识库 > 发表凝聚态物理论文期刊

发表凝聚态物理论文期刊

发布时间:

凝聚态物理论文发表

在高中时期,我曾听老师介绍过曹原,这是典型的“别人家的小孩”。2010年,高考总分为理科669分,考入中国科学技术大学少年班;2012年,他被选为首批交流生赴密歇根大学学习;2014年获得中科大本科生最高荣誉奖--郭沫若奖学金;在2018年,一连发表两篇重磅石墨烯论文以第一作者在《自然》上而且在2018年12月18日,荣登《自然》2018年度影响世界的十大科学人物榜首等等一系列辉煌的成就。这可真是太赞了!

为他是个天才呀。很难想象会有这么优秀的人,他就是父母口中的别人家的孩子,相信他肯定也付出了很多的努力。

博士好不好毕业可以看看工大每个学院的毕业要求都不太一样,但是都会有论文的要求,我汇总了几个学院的内容,大家可以参考:数学学科:至少两篇SCI论文物理学学科:光学、凝聚态物理、分子与原子物理研究方向:在物理领域的国际刊物SCI检索源期刊上发表1-3篇论文,发表论文的影响因子之和大于3.0,粒子物理与原子核物理研究方向:在SCI检索源期刊上发表1-3篇论文,发表论文的影响因子之和大于1.5。发表的论文总数在4篇以上激光雷达技术等应用研究方向:在SCI检索源期刊和EI检索源期刊上发表至少2篇论文,其中至少有1篇在SCI检索源期刊发表仪器科学与技术学科发表的与本博士论文创新点密切相关的学术论文应满足以下三项基本要求之一:(1)在本学科领域权威国际学术刊物上发表一篇学术论文,并包括SCI影响因子高于附录1-1所列刊物的相关学科的学术刊物)。(2)在SCI、EI检索的本学科领域重要国际学术刊物或权威国际学术年会论文集,或国内SCI、EI源刊物(不包括大学学报)上发表两篇学术论文,其中至少一篇发表在重要国际学术刊物上。(3)在国内SCI、EI源刊物或本学科领域权威国际学术年会论文集上发表的学术论文总数不少于3篇,其中至少有1篇发表在刊物上,且至少有1篇用外文撰写。

首先曹原的天赋是毋庸置疑的,并且他付出了一般人付出不了的时间在研究某一个方面。1996年,曹原出生于四川成都。在小时候他就喜欢捣鼓各种奇奇怪怪的东西。曹原在两年内就完成了他的初中和高中课程。 2010年正是他14岁时,被选如最杰出的“严济慈物理人才班”,这里的课程主要是培养学生扎实的物理基础。即使在天才青年班,曹原依然十分优秀。他经常会问一些奇怪的问题,并与教授讨论。18岁时获得了中国科学技术大学的本科学位,之后前往美国的麻省理工学院进行深造。2018年,22岁的曹原因发现石墨烯超导角度轰动国际学界,开辟了凝聚态物理研究的新领域,成为Nature杂志创刊149年来以第一作者身份发表论文的最年轻中国学者。2018年,曹原曾一天连发2篇Nature。2020年5月7日,他再次一天连发2篇Nature。 本次在Nature杂志上发论文已经是曹原的第五篇了。

世界上还有很多未知的领域,等待着人们去探索,但是往往普通人是发现不了这些的,一般都是科学家进行研究之后得出的结论,有时候甚至是猜想。所以要在未知的领域探索出一星半点是很难的。曹原从小开始就喜欢拆东西然后看里面的构造,甚至自己搭建了一个化学实验室,在里面做各种实验。这些都离不开他的好奇心,好奇心驱使着他学习更多的知识,当他学习到更深层次的知识就发现原来自己知道的只是冰山一角。

在普通人眼里,科研毫无疑问是枯燥的。2017年,曹原再做实验过程中偶然发现石墨烯具备非常规的超导电性,这让他很惊讶,这个发现勾起了他浓厚的兴趣。 之后的日子里,曹原为了这个“不起眼”的现象花费了不计其数个日夜,难以想象他要做多少次实验,查多少次资料。除了热爱真的找不出一个词来形容这么令人敬佩的行为。

发表凝聚态物理论文期刊

因为他真的拥有很强的天赋,所以的话他能够发出如此多优秀的论文。

这是因为他是一个非常有才华的人,而且他在写作这方面也非常的优秀,而且他也是一个非常低调的人,看待很多事物都非常的透彻。

物理学核心期刊有:1.物理学报2.光学学报3.高能物理与核物理4.光子学报5.中国激光6.物理7.原子与分子物理学报8.半导体学报 9.光谱学与光谱分析 10.强激光与粒子束 11.量子电子学报 12.物理学进展 13.声学学报 14.红外与毫米波学报 15.发光学报 16.核技术 17.大学物理 18.金属学报 19.低温物理学报 20.无机材料学报 21.高压物理学报 22.材料研究学报 23.波谱学杂志 24.量子光学学报 25.化学物理学报 26.计算物理 27.人工晶体学报 28.光学技术 29.原子核物理评论

因为他从小就很聪明,很爱思考,再加上良好的家庭氛围和家庭条件,以及他自身对学习的兴趣和以及对学习的钻研,自然就厉害了

凝聚态物理发表论文难度

别读了。我觉得凝固态的前景不怎么样。想到大学去,正式编制的那种,几年前的要求就是博士了。现在水涨船高,难度更大。去高中或是初中教书,本科学历完全就够了。而且收入会比大学的讲师高。想进研究所,难度也很大的。当然,你的导师非常牛的话,情况可能会好点。呵呵,祝你好运!

应该说是特别难的吧,因为这上面对于文章的审核是非常严格的,很少有论文能够通过。

天才曹原发了五篇nature。2018年3月5日,《自然》连刊两文报道石墨烯超导重大发现。值得关注的是,本次两篇Nature论文的第一作者、麻省理工学院博士生曹原来自中国。这名中科大少年班的毕业生、美国麻省理工学院的博士生发现:当两层平行石墨烯堆成约1.1°的微妙角度,就会产生神奇的超导效应。这一发现轰动国际学界,直接开辟了凝聚态物理的一块的新领域。有无数学者试图重复、拓展他的研究。2020年5月6日,曹原再次背靠背连发两篇Nature,在魔角石墨烯取得系列新进展。其中一篇Nature,曹原是第一作者兼共同通讯作者;另一篇Nature,曹原为共同第一作者。2021年2月1日,曹原又发《Nature》,这是他发在这家全球顶尖学术期刊上的第5篇论文。

在《自然》上发表文章是非常光荣的,《自然》上的文章会经常会被引用。这有助于晋升、获得资助和获得其它主流媒体的关注。所以科学家们在《自然》或《科学》上发表文章的竞争非常激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、与作者无关的科学家来检查和评判文章的内容是否正确有效。作者要对评审做出的提问与质疑给予处理,如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章,从而不能发表。

而现代科学的发展,基本发端于西方,几百年来西方科学在全球也一直占据着主导地位。像《科学》、《自然》、《细胞》、《柳叶刀》等,全球有影响力的杂志期刊都在西方,而全球一流的科学家也都在西方,包括评判科学发展的评价体系也是由西方提出并打造出来的。科学是同行评价体系,如果一个顶尖的研究脱离了同行的评价体系,其成果和地位就很难在业界认可。

所以说,如果你能在nature上面发表文章的话,说明你在这一领域有非常深的认识,研究和了解,并且能够在这个领域创造属于自己的价值,推动这一领域的研究和发展。

挺难的,本身这个平台并不是任何人都可以随随便便的,一定要是对整个科学研究有了重大贡献才可以。

凝聚态物理研究生发表论文

因为他真的拥有很强的天赋,所以的话他能够发出如此多优秀的论文。

完全不知道是什么······不好意思

曹原是美国麻省理工学院博士生,获得许多成就:1. 曹原发现让石墨烯实现零电阻导电的方法,能源利用率与能源运输效率大幅提高。2.2020年5月6日,分别以第一作者兼共同通讯作者、共同第一作者的身份在最新一期Nature连发两篇论文。3.2021年2月1日,在《自然》杂志上发表《Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene》论文。

他14岁就考上了中科大少年班,在2018年的同一天发表了两篇Nature,又在2020年的同一天发表了两篇Nature,特别厉害。

发表凝聚态论文

因为是Nature这个杂志是世界上历史最悠久的自然文化杂志之一,在这个领域有着非常高的声望,可以说是自然领域的权威杂志。杂志的声望高,门槛高,对于文章的要求也随之就高。

近日,华人物理学家在量子物理领域取得了重大突破。来自芝加哥大学与山西大学的研究人员,首次通过 原子 玻色-爱因斯坦凝聚体产生了具有固有角动量的 分子 玻色-爱因斯坦凝聚体。在这种方法下,数千个分子 共享同一个量子态 ,步履一致地翩翩起舞。该成果突破了学界攻坚数十年的技术难题,具有巨大的基础应用价值,有科学家将其称誉为“量子工程的绘图纸”。

论文于2021年4月28日发表在nature上,通讯作者为芝加哥大学金政教授;第一单位为芝加哥大学,第二单位为山西大学;

玻色-爱因斯坦凝聚态 (Bose-Einstein Condensation,BEC)是爱因斯坦在1924年预言的一种物质形态,是一种十分神奇的物态。BEC要求在理想气体中将玻色所提出的光子量子统计规律推广到原子层面,且只发生在 全同玻色子 之中。所谓"全同"不仅指这些玻色子的内禀属性一样(如具有相同质量,相同数量的电荷等),它还要求原子内部的能态也一样。当温度十分低、每个粒子的德布罗意波长足够长的时候,这些粒子的物质波分布会发生重叠,粒子会开始“彼此不分”。因此,处在BEC状态的原子云,其每个原子都将按照相同的方式同步运动,因此可将它们视作一个巨大的单一原子,用同一个波函数来描述其状态,这就是所谓的 共享同一量子态 。

在 历史 上,科学家们首先通过稀薄碱金属气体实现了爱因斯坦的这一推论,在原子层面制备出了BEC。但是,由于分子具有复杂的转动自由度和丰富的内部结构,制备分子BEC难度要大得多。目前制备分子BEC的思路有二:一是采用激光冷却技术冷却分子,但这需要设置比制备原子BEC时更复杂的冷却光束,而且分子更多的能级结构也带来了更多的损耗通道,因此对分子稳定性提出了较高的要求。科学家们已经沿着这一思路进行了许多巧妙的尝试。

金政教授

另一条思路是利用超冷原子配对形成超冷分子,这需要运用Feshbach共振技术。原子态和分子态通常有不同的能量,利用磁场和磁矩的相互作用可以移动它们的能级。当磁场调节到特定的强度(称为共振点)时,原子态与分子态能量相同,可以发生显著的耦合,从而使一部分原子转化为分子。

本次研究采取的是第二种思路。 研究人员首先制备了准二维的原子BEC,其温度为10纳开(仅比绝对零度高一亿分之一度),然后令扫描磁场强度经过19.87高斯这一Feshbach共振点,在该过程中约有15%的原子形成了分子(数量约6000个)。势阱的几何形状和低温有效减少了非弹性损失,是分子BEC成功制备的关键因素之一。金政教授还设计了一些方法增加这些分子BEC的稳定性:“分子通常会向各个方向移动,如果放任不管,其稳定性就会很低。因此我们限制了分子,令其处于一个二维平面,只能朝两个方向运动。” 该研究最终首次实现了原子BEC向分子BEC的转化,这些得到的分子行动几乎完全一致,秩序井然。

分子BEC的图像

这组行动“整齐划一”的分子,令金政教授十分兴奋,他表示他在学生时代就以此作为目标。更有科学家称誉分子BEC就类似于量子工程的绘图纸,其基础应用价值不言而喻。金政教授说:“这是一个理想的起点。比如,假设你要构建存储信息的量子系统,那么在订制、记录信息之前,首先需要的是一个干净的书写平台。”

分子BEC的背景与前景

超冷原子分子物理成为物理热门已有几十年。1986年,朱棣文与William D. Phillips成功捕捉、冷却中性原子,为原子物理开启了新的纪元。这项成就与Claude Cohen-Tannoudji作出的理论贡献一起,被授予了1997年的诺贝尔物理奖。1995年,科学家将具有玻色子性质的原子进一步冷却,首次观察到了原子玻色-爱因斯坦凝聚体。这是一项里程碑式的发现,主导该实验的Eric A. Cornell、Carl E. Wieman与Wolfgang Ketterle则因此获得了2001年的诺贝尔物理奖。五年之间摘获两项诺贝尔奖,这样的成绩已足以令超冷原子分子物理在学界站稳脚跟。

几十年来,超冷原子技术已经取得了长足发展。由于冷原子体系没有杂质和缺陷的特性及其非常灵活的调控能力,过去十几年,冷原子量子模拟、量子信息等方向已经取得了巨大的成功,特别是冷原子和光晶格的完美结合,大大地加深了人们们对量子强相互作用体系的理解。物理学家甚至在空间站和火箭上产生BEC;把BEC放进光学晶格,模拟晶体的性质;用BEC模拟宇宙学现象和弯曲时空的物理。

但是,原子间的相互作用通常是很弱且短程的范德华作用,这些特性带来了一些限制, 很多凝聚态体系中非常重要的问题,目前在超冷原子体系中还很难实现。这正是一些科学家们不再满足于超冷原子,转而向分子层面的分子量子气体(Molecular quantum gases)发起挑战的原因。

相较原子,分子拥有较原子更丰富的内部能级构型,在很多领域的应用前景都非常广阔。首先,对于分子的实验研究可以扩展对于量子体系的操控和精密测量,利用其丰富的内部结构,可以检验诸如基本常数对称性和宇称标准模型的各种扩展等很基本的物理问题;再则,极性分子气体能够提供一类新的量子多体系统,它具有很强的各向异性的偶极相互作用,并且可以很容易地通过外电场来调节相互作用;第三,简并分子气体还使得研究极低温的化学反应成为可能。

概括而言,传统研究领域如光频标、量子信息、物质波干涉仪和量子简并特性等,新的研究方向如分子间的可控相互作用、电场诱导的电偶极距、手性分子光谱和超冷化学等,都是分子量子气体的用武之地。而本次研究成果无疑带有敲门砖的性质,为后续研究给予启发。我们能够看到,华人物理学家朱棣文曾经在该领域作出巨大贡献,并得到了诺奖的肯定;而今天,华人科学家再度凭借卓越智慧,为世界科学发展锦上添花。

是,是因为他之前就发表过这样的文章,然后也在物理方面非常的有成就,而且他的这些著作也获得了很多人的认可。

为他是个天才呀。很难想象会有这么优秀的人,他就是父母口中的别人家的孩子,相信他肯定也付出了很多的努力。

  • 索引序列
  • 凝聚态物理论文发表
  • 发表凝聚态物理论文期刊
  • 凝聚态物理发表论文难度
  • 凝聚态物理研究生发表论文
  • 发表凝聚态论文
  • 返回顶部