Linear accelerometers measure how the vehicle is moving in space. Since it can move in three axes (up & down, left & right, forward & back), there is a linear accelerometer for each axis.
An inertial navigation system is a navigation aid that uses a computer and motion sensors to continuously track the position, orientation, and velocity (direction and speed of movement) of a vehicle without the need for external references. Other terms used to refer to inertial navigation systems or closely related devices include inertial guidance system, inertial reference platform, and many other variations.OverviewAn inertial navigation system includes at least a computer and a platform or module containing accelerometers, gyroscopes, or other motion-sensing devices. The INS is initially provided with its position and velocity from another source (a human operator, a GPS satellite receiver, etc.), and thereafter computes its own updated position and velocity by integrating information received from the motion sensors. The advantage of an INS is that it requires no external references in order to determine its position, orientation, or velocity once it has been initialized.An INS can detect a change in its geographic position (a move east or north, for example), a change in its velocity (speed and direction of movement), and a change in its orientation (rotation about an axis). It does this by measuring the linear and angular accelerations applied to the system. Since it requires no external reference (after initialization), it is immune to jamming and deception.Inertial-navigation systems are used in many different types of vehicles, including aircraft, submarines, spacecraft, and guided missiles. However, their cost and complexity does place constraints on the environments in which they are practical for use.Gyroscopes measure the angular velocity of the system in the inertial reference frame. By using the original orientation of the system in the inertial reference frame as the initial condition and integrating the angular velocity, the system's current orientation is known at all times. This can be thought of as the ability of a blindfolded passenger in a car to feel the car turn left and right or tilt up and down as the car ascends or descends hills. Based on this information alone, he knows what direction the car is facing but not how fast or slow it is moving, or whether it is sliding sideways.Accelerometers measure the linear acceleration of the system in the inertial reference frame, but in directions that can only be measured relative to the moving system (since the accelerometers are fixed to the system and rotate with the system, but are not aware of their own orientation). This can be thought of as the ability of a blindfolded passenger in a car to feel himself pressed back into his seat as the vehicle accelerates forward or pulled forward as it slows down; and feel himself pressed down into his seat as the vehicle accelerates up a hill or rise up out of his seat as the car passes over the crest of a hill and begins to descend. Based on this information alone, he knows how the vehicle is moving relative to itself, that is, whether it is going forward, backward, left, right, up (toward the car's ceiling), or down (toward the car's floor) measured relative to the car, but not the direction relative to the Earth, since he did not know what direction the car was facing relative to the Earth when he felt the accelerations.However, by tracking both the current angular velocity of the system and the current linear acceleration of the system measured relative to the moving system, it is possible to determine the linear acceleration of the system in the inertial reference frame. Performing integration on the inertial accelerations (using the original velocity as the initial conditions) using the correct kinematic equations yields the inertial velocities of the system, and integration again (using the original position as the initial condition) yields the inertial position. In our example, if the blindfolded passenger knew how the car was pointed and what its velocity was before he was blindfolded, and he is able to keep track of both how the car has turned and how it has accelerated and decelerated since, he can accurately know the current orientation, position, and velocity of the car at any time.All inertial navigation systems suffer from integration drift: Small errors in the measurement of acceleration and angular velocity are integrated into progressively larger errors in velocity, which is compounded into still greater errors in position. This is a problem that is inherent in every open loop control system. The inaccuracy of a good-quality navigational system is normally fewer than 0.6 nautical miles per hour in position and on the order of tenths of a degree per hour in orientation.Inertial navigation may also be used to supplement other navigation systems, providing a higher degree of accuracy than is possible with the use of any single navigation system. For example, if, in terrestrial use, the inertially tracked velocity is intermittently updated to zero by stopping, the position will remain precise for a much longer time, a so-called zero velocity update.Control theory in general and Kalman filtering in particular provide a theoretical framework for combining information from various sensors. One of the most common alternative sensors is a satellite navigation radio, such as GPS. By properly combining the information from an INS and the GPS system, the errors in position and velocity are stable GPS/INS.[edit] HistoryInertial navigation systems were originally developed for rockets. American rocket pioneer Robert Goddard experimented with rudimentary gyroscopic systems. Dr. Goddard's systems were of great interest to contemporary German pioneers including Wernher von Braun. The systems entered more widespread use with the advent of spacecraft, guided missiles, and commercial airliners.One example of a popular INS for commercial aircraft was the Delco Carousel, which provided partial automation of navigation in the days before complete flight management systems became commonplace. The Carousel allowed pilots to enter a series of waypoints, and then guided the aircraft from one waypoint to the next using an INS to determine aircraft position. Some aircraft were equipped with dual Carousels for safety.[edit] Inertial navigation systems in detail INSs have angular and linear accelerometers (for changes in position); some include a gyroscopic element (for maintaining an absolute angular reference).Angular accelerometers measure how the vehicle is rotating in space. Generally, there's at least one sensor for each of the three axes: pitch (nose up and down), yaw (nose left and right) and roll (clockwise or counter-clockwise from the cockpit).Linear accelerometers measure how the vehicle is moving in space. Since it can move in three axes (up & down, left & right, forward & back), there is a linear accelerometer for each axis.A computer continually calculates the vehicle's current position. First, for each of the six degrees of freedom (x,y,z and θ x, θ y and θ z), it integrates the sensed amount of acceleration over time to figure the current velocity. Then it integrates the velocity to figure the current position.Inertial guidance is difficult without computers. The desire to use inertial guidance in the Minuteman missile and Project Apollo drove early attempts to miniaturize computers.Inertial guidance systems are now usually combined with satellite navigation systems through a digital filtering system. The inertial system provides short term data, while the satellite system corrects accumulated errors of the inertial system.An inertial guidance system that will operate near the surface of the earth must incorporate Schuler tuning so that its platform will continue pointing towards the center of the earth as a vehicle moves from place to place.[edit] Basic schemes[edit] Gimballed gyrostabilized platformsSome systems place the linear accelerometers on a gimbaled gyrostabilized platform. The gimbals are a set of three rings, each with a pair of bearings initially at right angles. They let the platform twist about any rotational axis (or, rather, they let the platform keep the same orientation while the vehicle rotates around it). There are two gyroscopes (usually) on the platform.Two gyroscopes are used to cancel gyroscopic precession, the tendency of a gyroscope to twist at right angles to an input force. By mounting a pair of gyroscopes (of the same rotational inertia and spinning at the same speed) at right angles the precessions are cancelled, and the platform will resist twisting.This system allows a vehicle's roll, pitch, and yaw angles to be measured directly at the bearings of the gimbals. Relatively simple electronic circuits can be used to add up the linear accelerations, because the directions of the linear accelerometers do not change.The big disadvantage of this scheme is that it uses many expensive precision mechanical parts. It also has moving parts that can wear out or jam, and is vulnerable to gimbal lock. The primary guidance system of the Apollo spacecraft used a three-axis gyrostabilized platform, feeding data to the Apollo Guidance Computer. Maneuvers had to be carefully planned to avoid gimbal lock.[edit] Fluid-suspended gyrostabilized platformsGimbal lock constrains maneuvring, and it would be beneficial to eliminate the slip rings and bearings of the gimbals. Therefore, some systems use fluid bearings or a flotation chamber to mount a gyrostabilized platform. These systems can have very high precisions (e.g. Advanced Inertial Reference Sphere). Like all gyrostabilized platforms, this system runs well with relatively slow, low-power computers.The fluid bearings are pads with holes through which pressurized inert gas (such as Helium) or oil press against the spherical shell of the platform. The fluid bearings are very slippery, and the spherical platform can turn freely. There are usually four bearing pads, mounted in a tetrahedral arrangement to support the platform.In premium systems, the angular sensors are usually specialized transformer coils made in a strip on a flexible printed circuit board. Several coil strips are mounted on great circles around the spherical shell of the gyrostabilized platform. Electronics outside the platform uses similar strip-shaped transformers to read the varying magnetic fields produced by the transformers wrapped around the spherical platform. Whenever a magnetic field changes shape, or moves, it will cut the wires of the coils on the external transformer strips. The cutting generates an electric current in the external strip-shaped coils, and electronics can measure that current to derive angles.Cheap systems sometimes use bar codes to sense orientations, and use solar cells or a single transformer to power the platform. Some small missiles have powered the platform with light from a window or optic fibers to the motor. A research topic is to suspend the platform with pressure from exhaust gases. Data is returned to the outside world via the transformers, or sometimes LEDs communicating with external photodiodes.[edit] Strapdown systemsLightweight digital computers permit the system to eliminate the gimbals, creating "strapdown" systems, so called because their sensors are simply strapped to the vehicle. This reduces the cost, eliminates gimbal lock, removes the need for some calibrations, and increases the reliability by eliminating some of the moving parts. Angular rate sensors called "rate gyros" measure how the angular velocity of the vehicle changes.A strapdown system has a dynamic measurement range several hundred times that required by a gimbaled system. That is, it must integrate the vehicle's attitude changes in pitch, roll and yaw, as well as gross movements. Gimballed systems could usually do well with update rates of 50 to 60 updates per second. However, strapdown systems normally update about 2000 times per second. The higher rate is needed to keep the maximum angular measurement within a practical range for real rate gyros: about 4 milliradians. Most rate gyros are now laser interferometers.The data updating algorithms ("direction cosines" or "quaternions") involved are too complex to be accurately performed except by digital electronics. However, digital computers are now so inexpensive and fast that rate gyro systems can now be practically used and mass-produced. The Apollo lunar module used a strapdown system in its backup Abort Guidance System (AGS).Strapdown systems are nowadays commonly used in commercial and tactical applications (arcraft, missiles, etc). However they are still not widespread in applications where superb accuracy is required (like submarine navigation or strategic ICBM guidance).[edit] Motion-based alignmentThe orientation of a gyroscope system can sometimes also be inferred simply from its position history (e.g., GPS). This is, in particular, the case with planes and cars, where the velocity vector usually implies the orientation of the vehicle body.For example, Honeywell's Align in Motion[1] is an initialization process where the initialization occurs while the aircraft is moving, in the air or on the ground. This is accomplished using GPS and an inertial reasonableness test, thereby allowing commercial data integrity requirements to be met. This process has been FAA certified to recover pure INS performance equivalent to stationary align procedures for civilian flight times up to 18 hours. It avoids the need for gyroscope batteries on aircraft.[edit] Vibrating gyrosLess-expensive navigation systems, intended for use in automobiles, may use a Vibrating structure gyroscope to detect changes in heading, and the odometer pickup to measure distance covered along the vehicle's track. This type of system is much less accurate than a higher-end INS, but it is adequate for the typical automobile application where GPS is the primary navigation system, and dead reckoning is only needed to fill gaps in GPS coverage when buildings or terrain block the satellite signals.[edit] Hemispherical Resonator Gyros ("Brandy Snifter Gyros")If a standing wave is induced in a globular resonant cavity (i.e. a brandy snifter), and then the snifter is tilted, the waves tend to continue oscillating in the same plane of movement - they don't fully tilt with the snifter. This trick is used to measure angles. Instead of brandy snifters, the system uses hollow globes machined from piezoelectric materials such as quartz. The electrodes to start and sense the waves are evaporated directly onto the quartz.This system has almost no moving parts, and is very accurate. However it is still relatively expensive due to the cost of the precision ground and polished hollow quartz spheres.Although successful systems were constructed, and an HRG's kinematics appear capable of greater accuracy, they never really caught on. Laser gyros were just more popular.The classic system is the Delco 130Y Hemispherical Resonator Gyro, developed about 1986. See also [1] for a picture of an HRG resonator.[edit] Quartz rate sensorsThis system is usually integrated on a silicon chip. It has two mass-balanced quartz tuning forks, arranged "handle-to-handle" so forces cancel. Aluminum electrodes evaporated onto the forks and the underlying chip both drive and sense the motion. The system is both manufacturable and inexpensive. Since quartz is dimensionally stable, the system can be accurate.As the forks are twisted about the axis of the handle, the vibration of the tines tends to continue in the same plane of motion. This motion has to be resisted by electrostatic forces from the electrodes under the tines. By measuring the difference in capacitance between the two tines of a fork, the system can determine the rate of angular motion.Current state of the art non-military technology (2005) can build small solid state sensors that can measure human body movements. These devices have no moving parts, and weigh about 50 grams.Solid state devices using the same physical principles are used to stabilize images taken with small cameras or camcorders. These can be extremely small (≈5 mm) and are built with MEMS (Microelectromechanical Systems) technologies.[edit] MHD sensorSensors based on magnetohydrodynamic principles can be used to measure angular velocities and are described in "MHD sensor".[edit] Laser gyrosLaser gyroscopes were supposed to eliminate the bearings in the gyroscopes, and thus the last bastion of precision machining and moving parts.A laser gyro splits a beam of laser light into two beams in opposite directions through narrow tunnels in a closed optical circular path around the perimeter of a triangular block of temperature stable cervit glass block with reflecting mirrors placed in each corner. When the gyro is rotating at some angular rate, the distance traveled by each beam becomes different - the shorter path being opposite to the rotation. The phase-shift between the two beams can be measured by an interferometer, and is proportional to the rate of rotation (Sagnac effect).In practice, at low rotation rates the output frequency can drop to zero after the result of "Back scattering" causing the beams to synchronise and lock together. This is known as a "lock-in, or laser-lock." The result is that there is no change in the interference pattern, and therefore no measurement change.To unlock the counter-rotating light beams, laser gyros either have independent light paths for the two directions (usually in fiber optic gyros), or the laser gyro is mounted on a piezo-electric dither motor that rapidly vibrates the laser ring back and forth about its input axis through the lock-in region to decouple the light waves.The shaker is the most accurate, because both light beams use exactly the same path. Thus laser gyros retain moving parts, but they do not move as far.[edit] Pendular accelerometers Principle of open loop accelerometer. Acceleration in the upward direction causes the mass to deflect downward.The basic, open-loop accelerometer consists of a mass attached to a spring. The mass is constrained to move only in-line with the spring. Acceleration causes deflection of the mass and the offset distance is measured. The acceleration is derived from the values of deflection distance, mass, and the spring constant. The system must also be damped to avoid oscillation. A closed-loop accelerometer achieves higher performance by using a feedback loop to cancel the deflection, thus keeping the mass nearly stationary. Whenever the mass deflects, the feedback loop causes an electric coil to apply an equally negative force on the mass, cancelling the motion. Acceleration is derived from the amount of negative force applied. Because the mass barely moves, the non-linearities of the spring and damping system are greatly reduced. In addition, this accelerometer provides for increased bandwidth past the natural frequency of the sensing element.Both types of accelerometers have been manufactured as integrated micromachinery on silicon chips.
1、 多小波分析及其在信号滤波中的应用,电子学报.2002年3月 第3期,谢荣生孙枫、郝燕玲2、 船用捷联惯导系统比力转换的研究,中国惯性技术学报,2000年9月 第3期,谢荣生、孙枫3、 一种用于图像认证的无失真半易损电子水印系统,电子技术应用,2002年3月 第3期,谢荣生、郝燕玲、孙枫、杨树国4、 基于旋转矢量误差估计模型的捷联姿态解算方法,哈尔滨工程大学学报,2000年6月 第3期,谢荣生、孙枫5、 基于小波分析的船用捷联陀螺信号滤波方法,哈尔滨工程大学学报,2001年4月 第2期,谢荣生、孙枫、郝燕玲、杨树国6、 基于多小波噪声方差阈值的信号滤波方法,哈尔滨工程大学学报,2002年4月 第2期,谢荣生、李汉杰、孙枫、杨树国7、 多小波零树图像编码方法研究,计算机工程与应用,2002年8月 第15期,谢荣生、郝燕玲、张京娟、杨树国8、 混沌二维置换网络的设计及其在图像数字水印隐藏中的应用,全国第三届信息隐藏学术研讨会论文集,2001年9月,谢荣生、秦红磊、郝燕玲、杨树国9、 一种新的多小波零树图像编码方法,哈尔滨商业大学学报,2001年 第3期,谢荣生、徐耀群、郝燕玲、洪艳10、 一种高精度的捷联姿态解算方法及其仿真,计算机仿真,2001年9月 第5期,谢荣生、孙枫11、 基于模板匹配的抗几何攻击图像数字水印, 哈尔滨工程大学学报,2002年6月 第3期,谢荣生,刘承香,郝燕玲12、 小波域多通道图像数字水印嵌入方法, 哈尔滨商业大学学报:自然科学版,2002年10月 第5期,谢荣生、徐耀群、赵建东、林刚
有。据查询江苏科技大学粮食学院王柯副教授简介信息可知其在在国内外学术期刊上发表论文20余篇,其中包括食品与发酵工业,食品与生物技术等。江苏省,简称“苏”,是中华人民共和国省级行政区,省会南京,位于长江三角洲地区,中国大陆东部沿海。
在青年报给搜到的如何避免学术不端行为 2007-02-14 方舟子 学术研究是由人来做的,像人类的其他行为一样,学术研究会出现种种错误。这些错误大体上可以分为三类:一类是限于客观条件而发生的错误。这类错误难以避免,也难以觉察,随着科学的进步才被揭示出来的,犯错误的科研人员没有责任,不该受到谴责。一类是由于马虎、疏忽而发生的失误。这类错误本来可以避免,是不应该发生的,但是犯错者并无恶意,是无心造成的,属于“诚实的失误”。犯错者应该为其失误受到批评、承担责任,但是是属于工作态度问题,并没有违背学术道德。还有一类是学术不端行为。这类错误本来也可以避免,但是肇事者有意让它发生了,存在主观恶意,违背了学术道德,应该受到舆论谴责和行政处罚,乃至被追究法律责任。 学术不端行为是指违反学术规范、学术道德的行为,国际上一般用来指捏造数据(fabrication)、窜改数据(falsification)和剽窃(plagiarism)三种行为。但是一稿多投、侵占学术成果、伪造学术履历等行为也可包括进去。学术不端行为在世界各国、各个历史时期都曾经发生过,但是像中国当前这样如此泛滥,严重到被称为学术腐败的地步,却是罕见的。这不仅表现在违反者众多、发生频繁,各个科研机构都时有发现,而且表现在涉及了从院士、教授、副教授、讲师到研究生、本科生的各个层面。由于中国高校缺乏学术规范、学术道德方面的教育,学生在学习、研究过程中发生不端行为,经常是由于对学术规范、学术道德缺乏了解,认识不足造成的。因此,对学生——特别是研究生——进行学术规范、学术道德教育,防患于未然,是遏制学术腐败、保证中国学术研究能够健康发展的一个重要措施。 不同研究领域的学术规范、学术道德有共同的特点,但是在某些细节上也存在差异。本文主要针对的是理工科领域,特别是生物医学领域的学术规范和学术道德问题。 数据的处理 研究结果应该建立在确凿的实验、试验、观察或调查数据的基础上,因此论文中的数据必须是真实可靠的,不能有丝毫的虚假。研究人员应该忠实地记录和保存原始数据,不能捏造和窜改。虽然在论文中由于篇幅限制、写作格式等原因,而无法全面展示原始数据,但是一旦有其他研究人员对论文中的数据提出疑问,或希望做进一步了解,论文作者应该能够向质疑者、询问者提供原始数据。因此,在论文发表之后,有关的实验记录、原始数据仍然必须继续保留一段时间,一般至少要保存5年,而如果论文结果受到了质疑,就应该无限期地保存原始数据以便接受审核。 如果研究人员没有做过某个实验、试验、观察或调查,却谎称做过,无中生有地编造数据,这就构成了最严重的学术不端行为之一——捏造数据。如果确实做过某个实验、试验、观察或调查,也获得了一些数据,但是对数据进行了窜改或故意误报,这虽然不像捏造数据那么严重,但是同样是一种不可接受的不端行为。常见的窜改数据行为包括:去掉不利的数据,只保留有利的数据;添加有利的数据;夸大实验重复次数(例如只做过一次实验,却声称是3次重复实验的结果);夸大实验动物或试验患者的数量;对照片记录进行修饰。 近年来人们已习惯用图像软件对图像数据进行处理绘制论文插图,因此又出现了窜改数据的新形式。例如,由于原图的阳性结果不清晰,就用图像软件添加结果。如果没有窜改原始数据,只是通过调节对比度等方式让图像更清晰,这是可以的,但是如果添加或删减像素,则是不可以的。 论文的撰写 在撰写论文时,首先要避免剽窃(或抄袭,在本文中,我们对剽窃和抄袭二词的使用不做区分)。剽窃是指在使用他人的观点或语句时没有做恰当的说明。 许多人对剽窃的认识存在两个误区。第一个误区是,认为只有剽窃他人的观点(包括实验数据、结果)才算剽窃,而照抄别人的语句则不算剽窃。例如,有些人认为,只要实验数据是自己做的,那么套用别人论文中的句子来描述实验结果就不算剽窃。也有人认为,只有照抄他人论文的结果、讨论部分才算剽窃,而照抄他人论文的引言部分则不算剽窃。这些认识都是错误的。即使是自己的实验数据,在描述实验结果时也必须用自己的语言描述,而不能套用他人的语句。引言部分在介绍前人的成果时,也不能直接照抄他人的语句。 第二个误区是,只要注明了文献出处,就可以直接照抄他人的语句。在论文的引言或综述文章中介绍他人的成果时,不能照抄他人论文或综述中的表述,而必须用自己的语言进行复述。如果是照抄他人的表述,则必须用引号把照抄的部分引起来,以表示是直接引用。否则的话,即使注明了出处,也会被认为构成文字上的剽窃。虽然对科研论文来说,剽窃文字的严重性比不上剽窃实验数据和结果,但是同样是一种剽窃行为。 在看待剽窃的问题上,也要防止采用过分严格的标准。这需要注意3种情形:一、必须对别人的观点注明出处的一般是指那些比较新颖、比较前沿的观点,如果不做说明就有可能被误会为是论文作者的原创。对于已经成为学术界的常识、即使不做说明也不会对提出者的归属产生误会的观点,则可以不注明出处,例如在提及自然选择学说时,没有必要特地注明出自达尔文《物种起源》,在提及DNA双螺旋结构模型时,没有必要特地注明出自沃森、克里克的论文。二、有可能构成语句方面的剽窃的是那些有特异性、有一定的长度的语句,由不同的人来书写会有不同的表述,不可能独立地碰巧写出雷同的句子。如果语句太短、太常见(例如只有一两句日常用语),或者表述非常格式化,例如对实验材料和方法的描述,不同的人书写的结果都差不多,那么就不存在剽窃的问题。三、科普文章和学术论文的标准不完全相同。因为科普文章一般是在介绍他人的成果,即使未做明确说明也不会被读者误会为是作者自己的成果,因此没有必要一一注明观点的出处。科普文章必须着重防止的是表述方面的剽窃,必须用自己的语言进行介绍。 在论文中引用他人已经正式发表的成果,无须获得原作者的同意。但是如果要引用他人未正式发表的成果(例如通过私人通信或学术会议的交流而获悉的成果),那么必须征得原作者的书面许可。 在论文注解中应该表明物质利益关系,写明论文工作所获得的资助情况。特别是如果是由某家相关企业资助的研究项目,更不应该隐瞒资金来源。 论文的署名 只有对论文的工作作出了实质贡献的人才能够做为论文的作者。论文的第一作者是对该论文的工作作出了最直接的、最主要的贡献的研究者,一般是指做了论文中的大部分或全部实验的人。论文的通讯作者是就该论文负责与期刊和外界联系的人,一般是论文课题的领导人,为论文工作确定了总的研究方向,并且在研究过程中,在理论上或技术上对其他作者进行了具体指导。在多数情况下,通讯作者是第一作者的导师或上司,但是也可以是第一作者的其他合作者或第一作者本人。论文的其他作者应该是对论文工作作出了一部分实质贡献的人,例如参与了部分实验工作。 在确定论文的署名时,要注意不要遗漏了对论文工作作出实质贡献的人,否则就有侵吞他人的学术成果的嫌疑。但是也不要让没有作出实质贡献的人挂名。第一作者的导师、上司或赞助者并不等于天然就是论文的通讯作者,如果他们没有对论文工作进行过具体指导,也不宜担任论文的通讯作者或其他作者。论文的合作者应该是对论文工作作出了实质贡献的人,如果只是曾经对论文工作提出过某些非实质性的建议,或者只是在某方面提供过帮助,例如提供某种实验试剂,允许使用实验仪器,或帮助润色论文的写作,那么也不宜在论文中挂名,而应该在论文的致谢中表示谢意。有的国际学术期刊(例如英国《自然》)鼓励投稿者在论文尾注中具体说明各个作者对论文所作的贡献。 论文一般由第一作者或通讯作者撰写初稿,然后向共同作者征求意见。论文的任何结论都必须是所有的作者一致同意的,如果某个作者有不同意见,他有权利退出署名,撤下与其有关的那部分结果。在论文投稿之前,所有的作者都应该知情并签名表示同意。不应该在某个人不知情的情况下就把他列为共同作者。 一篇论文一般只有一名第一作者和一名通讯作者。如果有两个人的贡献确实难以分出主次,可以以注明两人的贡献相等的方式表明该论文有两名第一作者。但是一篇论文有多于两名的第一作者,或有多于一名的通讯作者,都是不正常的现象,会让人猜疑是为了增加一篇论文在评价工作中的使用价值所做的安排。 论文的署名是一种荣耀,也是一种责任。如果在论文发表后被发现存在造假、剽窃等问题,共同作者也要承担相应的责任,不应该以不知情做为借口,试图推卸一切责任。造假者、剽窃者固然要承担最主要的责任,但是共同作者也要承担连带责任。因此,不要轻易在自己不了解的论文上署名。 论文的发表 在有同行评议的学术期刊上发表论文,是发布学术成果的正常渠道。重要的学术成果应该拿到国际学术期刊上发表,接受国际同行的评议。 一篇论文只能投给一家期刊,只有在确知被退稿后,才能改投其他期刊。许多学术期刊都明文禁止一稿多投或重复发表。一稿多投浪费了编辑和审稿人的时间,重复发表则占用了期刊宝贵的版面,并且有可能出现知识产权的纠纷(许多期刊都要求作者全部或部分地把论文的版权转交给期刊)。如果一组数据已经在某篇论文中发表过,就不宜在新的论文中继续做为新数据来使用,否则也会被当成重复发表。如果在新论文中需要用到已发表论文的数据,应该采用引用的方式,注明文献出处。 先在国内期刊上发表中文论文,再在国际期刊上发表同一内容的英文论文,这种做法严格来说也是重复发表,但是由于有助于促进国际交流,所以也没有必要深究。但是不宜先发表英文论文,再翻译成中文重复发表。 在论文发表之前,不宜向新闻媒体宣布论文所报告的成果。一些国际学术期刊(例如英国《自然》)都规定不应把论文结果事先透露给新闻媒体,否则有可能导致被退稿。 研究者对未发表的成果拥有特权,有权不让他人了解、使用该成果。期刊编辑、审稿人不能利用职务之便向他人透露或自己使用受审论文提供的新信息。但是研究成果一旦写成论文发表,就失去了特权,他人有权做恰当的引用和进一步了解该成果的细节。国家资助的成果发表后应该与同行共享。 学术履历的撰写 学术履历的目的是为了让他人能够客观准确地了解、评价你的受教育经历和学术成就,因此应该只陈述事实,不要自己做主观评价,更不要拔高、捏造学历和成果。 国内习惯于把还在攻读博士学位的研究生提前称为博士,但是在正式介绍和学术履历中,不应该把还未获得博士学位的博士研究生写成博士。在履历中应该写明自己获得的各种学位的时间,如果还未获得的,可注明预计获得的时间。 由于美国医学教育属于研究生教育,美国医学院毕业生一般都获得医学博士学位(M.D.),毕业后可以从事博士后研究,这就导致国内医学院毕业生虽然只有学士、硕士学位,也可以以从事博士后研究的名义到美国实验室工作。这是由于中美两国的教育体制不同造成的“误会”。这种特殊的“博士后”不应该因此就在学术履历中声称自己有博士后研究经历,因为很显然,一个没有博士学位的人是不可能做博士后研究的。 在介绍自己在国外的学习、研究经历时,不应该利用中英表述的差异,通过“翻译技巧”来拔高自己在国外的学术地位和学术成就。例如,不应该把博士后研究人员(Postdoctoral Research Fellow)翻译成“研究员”,让人误以为是和国内研究员一样与教授平级的职称;不应该把在国外获得的研究资助称为获“奖”,虽然这类研究资助的名称中有时会用到award一词,但是与由于学术成就而获得的奖励(prize)是不同的。 在论文表中列举自己做为共同作者的论文时应该保留论文原有的排名顺序,不应该为了突出自己而改变论文排名顺序。采用黑体字或画线的方式让自己的名字突出则是可以的。如果一篇论文的共同作者人数较多,不能全部列出,那么应该在列出的最后一名作者后面注明etc,让读者清楚地知道后面还有其他作者未列出来。有的人只把作者名字列到自己为止,又不注明etc,让读者误以为他是论文的通讯作者(按惯例通讯作者是最后一名作者),这是一种误导行为。 在论文表中应该只包括发表在经同行评议的学术期刊上的论文。不应该把发表在会议增刊上的会议摘要(Poster,Meeting Abstract)也列进去充数。如果要列出会议摘要,应该单独列出,或者清清楚楚地注明属于会议摘要。 在列出发表的学术专著时,应该清楚地写明自己的贡献。如果自己只是专著的主编,应该注明“编”或“Ed.”,不要让读者误以为是专著的作者。如果自己只是参与写作专著中的某个章节,也应该注明该章节,而不要让读者误以为是整本专著的作者。 学术不端行为的危害 学术不端行为败坏科学界的声誉,阻碍科学进步。学术的意义是求真,探求真理本来应该是每个学者的崇高职责,诚实也应该是治学的最基本的态度。人类的活动很难找出还有哪一种像学术这样强调真实,学者也因之受到公众的敬仰,甚至被视为社会的良心。如果科学界的声誉由于学术不端行为的频发而受到严重损害,败坏了科学研究在公众心目中的形象,那么必然会阻碍科学的进步,因为做科学研究是需要全社会的支持的,需要有科研资金的提供,需要有一个比较好的科研环境的。没有了这些因素,科学就很难发展。 学术不端行为也直接损害了公共利益。科学研究在很大程度上都在使用国家资金,学术造假就是在浪费纳税人的钱。有的学术造假是和经济腐败相勾结的,是为了推销假药、假产品的,那么就是在消费者的钱,危害消费者的身体健康。 学术不端行为违反学术规范,在科研资源、学术地位方面造成不正当竞争。如果靠剽窃、捏造数据、捏造学术履历就能制造出学术成果、获得学术声誉、占据比较高的学术地位,那么脚踏实地认认真真搞科研的人,是竞争不过造假者的。而且学术造假还对同行造成了误导。如果有人相信了虚假的学术成果,试图在其基础上做进一步的研究,必然是浪费了时间、资金和精力,甚至影响到学位的获得和职务的升迁。受造假者最直接危害的往往是同一实验室、同一研究领域的人。 因此,人人都有权利维护学术规范、学术道德,维护学术规范、学术道德也是在保护自己的利益。
在解决大学生如何发表的问题之前,我们首先应该知道大学生论文是什么,我相信大家都知道论文,但是什么是大学生论文,字面意思是大学生写的论文,并不是重点。严谨的手段:大学生运用所学知识对某一问题进行分析判断,提出有特色的观点或结论,编辑成文字。这是大学生论文包括论文毕业生和作业在内的大学生论文,有很多种,可以发表也可以不发表。不是所有大学生的论文都需要出版,最明显的一个是论文毕业生,他们不需要出版。到目前为止,他们还没有被收录在各种期刊网上,经指导老师批准后就可以毕业了那么,大学生如何发表论文呢?本文从论文质量和刊物选择两个方面阐述了一些需要特别注意的问题。1.论文的质量一个好的论文是杂志就业的前提,也是论文使用的基础。即使一部质量差的论文是靠运气出版的,也很难派上用场,或者正好相反,所以,论文的质量是论文的关键因为教育和经验的原因,大学生在这方面不占优势是不可避免的。我的建议是充分准备材料,充分选词造句,充分利用自己的逻辑思维能力。大学生有一个优点:他们年轻,年轻人敢想敢做,有创造力,意见不受限制,能够创新;此外,大学生有充足的时间和大量的信息。学院的图书馆和网络资源不受限制。这些资源在论文和大四学生,的其他国家是没有的,所以我们应该充分利用它们。此外,你可以去指导老师,把你完成的论文交给导师。大部分导师都愿意帮助学生,指导老师非常愿意为态度谦虚、学习欲望强烈的学生提供学术帮助。有了指导老师的检查,论文找不到任何地方。论文,用心去做,不要为了出版论文,而编造论文不要抄袭,多花点时间,精心制作,不要急于求成。这是我给大学生的建议。2.出版物的选择论文,完成后,我建议我们学校的期刊是首选。一般来说,我们学校的大学学报和学院学报优先考虑学生。但这只是普通期刊的实践,核心期刊没有这样的实践。因此,有针对性地选择期刊是必要的。一般来说,论文,一个大学生,只适合出版自己专业的省级期刊或者国家级期刊,不要乱投。
本科生可以发表的期刊很多,《魅力中国》《长江丛刊》《改革与开放》《价值工程》发表要先确定1、期刊收录网站(知网、万方、维普、龙源)一般情况下知网收录的价格高于其他的,是因为知网整改后都要2版-3版起发,万方维普的大多数还是1版起发。
文章字符数,一般1版字符数在2500左右,2版的话字符大概在3800~4000左右,如果文章中有图表,需要看排版所占的字符数来计算版面,一般小图是300-600字符左右。期刊的级别(价格):省级、国家级普刊<学报和第一批第二批学术期刊<高端刊、核心、地方目录期刊(也有部分是免费的)
发表首先要根据单位的要求先确定好要发的杂志,然后根据杂志的要求来写作,必须保证原创,抄袭率不过关首先就被刷下来了,望文章都能顺利发表成功
在论文投稿和发表过程中,常见的学术不端行为有以下几种:
1、抄袭:抄袭是指未经授权或引用他人成果的情况下,将其作为自己的研究结果、方法、数据等进行呈现。抄袭行为严重侵犯了他人的知识产权和学术声誉,同时也违反了学术道德。
2、数据造假:数据造假是指人为篡改或伪造实验数据、结果、图片等,以获得所需的研究结论或论文发表资格。
3、不当引用:不当引用包括对文献的误读或故意曲解,或使用来源不可靠或无法核实的资料来支持自己的观点。
4、潜规则:潜规则是指不公开的、隐性的规定或原则,通常存在于某些专业领域、机构或群体中,并可以影响学术的评价、发表、奖励等方面。
为避免这些学术不端行为,应该采取以下措施:
1、注重学术诚信:要坚守学术诚信,树立自己的学术道德意识,避免各种不端行为。
2、加强引用管理:严格按照引用规范和标准进行引用,确保所引用的来源真实、可靠、有据可查。
3、提高自我素质:提高自己的学术素质和水平,增强独立思考和创新能力,使自己更具有学术竞争力。
4、熟悉相关规定:了解并遵守学术期刊和出版社的发表规定,避免违反相关规定而被退稿或影响自身的学术声誉。
5、加强交流讨论:加强与同行的交流和讨论,共同探讨问题,互相监督和提醒,有效地防止学术不端行为的发生。
总之,要保持学术诚信,在学术研究和论文发表过程中,要注重严格遵守引用规范和标准,提高自己的学术素质和水平,了解相关规定,加强交流讨论,从而避免学术不端行为的出现。
肯定很水的,英国自从二战以后,整个的实力已经下降起,教育水平也必定会下降的,去英国学习一年制硕士,不过就是为了有出国经历,拿张文凭罢了,其含金量自认为不如国内的研究生
一、英国留学博士申请条件博士申请对学历的要求不像国内。英国的博士可以读完硕士再申请,也可以跳过硕士申请。如果读完本科就申请的话,那必须是本科成绩非常优秀,并且具有很强的研究能力。在申请博士时,学校不仅会查看你的硕士成绩,也会检查本科成绩。可能是因为英国更愿意相信3-4年的本科给学生的影响更深远,并且也最能检查一个人是否具备研究能力。英国的博士对成绩的要求一般是本科均分80+(等同于GPA:3.0以上,或英国2等1以上),硕士均分80+(等同于GPA:3.0以上,或英国Merit)。当然如果申G5的话,需要均分都在85+。二、英国留学博士申请材料1、根据不同学校不同专业,学生要根据博士导师的研究方向写2000词左右的研究计划,不同专业对于研究计划有特殊的要求。研究计划要符合学校要求的标准。可以参阅文献。2、除了研究计划之外一个有竞争力的雅思也是申请的必备条件。3、有力的PS,和推荐信也是必不可少的材料。推荐人绝对不是职称越高越好,推荐信和PS都有字数限制,如果找校长或者更高职称的老师来做推荐人,要在推荐信里解释如何相识?在哪方面的学术研究对学生进行指导?从哪些方面认识到学生很优秀等等。4、套磁信。通过跟博士导师套磁为自己争取名额,这是申请的重中之重。5、各类论文发表及奖项证书6、本科及硕士成绩单
可以使用留学志愿参考系统,输入GPA,专业,语言成绩,意向国家等,可以对自己目前的情况评估下院校--。系统会自动匹配数据库中情况与你类似的同学案例,看系统中有多少与你情况相似的学生成功申请了哪个学校或者那些专业,为自己的留学方案提供参考。 也可以按照留学目标来查询,看看你的目标院校和专业都哪些背景(语言成绩多少分、学校背景如何、什么专业、GPA多少等)的学生申请了,也从而对比自身情况,制定大致的目标和方向。
从学习年限上来看,一年期间学生并不能够取得什么科研成果。但是只是有了出国经历,这并不能够锻炼一个学生的科研水平,确实有一点没有含金量的感觉。
1,中介服务态度好。2,中介的资源丰富,机会更多3,审稿和邮寄都会优先考虑4,为你节省不少时间5,包过的
论点的基本要求是:作者的主张看法和观点;论据基本要求是:事实论据(名人事例)和道理论据(有权威性的名言,格言,诗句和俗句);论证的基本要求是:对比说理、比喻说理和引证法。写议论文要考虑论点,考虑用什么作论据来证明它,怎样来论证,然后得出结论。它可以是先提出一个总论点,然后分别进行论述,分析各个分论点,最后得出结论;也可以先引述一个故事,一段对话,或描写一个场面,再一层一层地从事实分析出道理,归纳引申出一个新的结论。这种写法叫总分式,是中学生经常采用的一种作文方式。也可以在文章开头先提出一个人们关心的疑问,然后一一作答,逐层深入,这是答难式的写法。还要以是作者有意把两个不同事物以对立的方式提出来加以比较、对照,然后得出结论,这是对比式写法,通过对比更突显作者的观点。
什么样的论文容易成功发表?自然是创新的有研究价值的论文了。我们也都知道原始创新性的文章,对现有的理论或工作有全面、深入理解的文章,在前人理论成果上作出部分改进、对改进进行模拟验证或将其应用于实际解决实际问题的文章。 对于论文的创作中要注意论文资料的选取,论文的资料信息要先符合相关论文的研究方向专业。对于所引用的资料信息也需要自己进行一定的分析和实验并且要表明注释等。而对于资料的查找来说可以通过图书研究、网络信息查询等方面来进行。 论文的观点选取是上述论文资料查找和整理总结的前提,为此大家一定要注意对这个方面的选取。论文的观点最好是自己所熟知的领域,自己研究和撰写起来都比较顺手的方面。 上述这些是对于论文容易成功发表的一个前提,接下来还学要对论文撰写中的格式规范了解掌握,关于这一点大家可以阅读自己要投稿的刊物或是向月期刊咨询网进行询问,这样你所了解的规范格式对于论文的撰写发表起到关键的作用。 当然了对于论文的投稿刊物来说通过上一点就知道了选择刊物的重点之处,我们还需要对刊物的等级、刊物的征收时间、刊物的费用也进行了解等。对于论文发表也才能得心应手。
论文期刊如何快速成功发表?1了解学术期刊的定位和风格,关注拟投刊物发稿历史文、理、工、医各学科的相关学术刊物都有着严格的专业论文选择定位与风格特征;即使同一学科领域的不同学术期刊,也因具体研究方向的不同,有着内容定位、论文风格、行文格式等特征上的差异;尤其是高级别的学术刊物,有着更为细致、显着的学术倾向与行文特点。投稿者应对拟投稿的学术期刊进行更多的关注与研究,认真深入地阅读拟投期刊已发表的论文,了解拟投期刊的学科领域、行文风格、来稿偏好,以及在选取论文时是否有其他特别的要求和限制。每一个学术刊物都有独特的专业领域与学术视角,以及特色化的办刊方针和宗旨,其学术受众群也较为固定。投稿者在投稿前应对拟投刊物的办刊宗旨、读者群有所了解,对刊物的发行出版周期、具体栏目分类及其刊登的论文类别要求有一个较为清晰的认识。投稿者要对自己撰写的学术论文适合于发表在哪类期刊及其哪些栏目,有一个较为明确的自我认识。投递论文时可以撰写一份对投稿期刊认识、自身论文价值的简单文字说明,并注明拟投栏目名称,以便于编辑人员及时准确地处理稿件,从而增加投稿成功的概率。投稿者应对拟投刊物的发稿历史和动态保持较为密切的关注,因此平时需要增加对拟投刊物己发论文的阅读量,认真阅读近年来拟投刊物刊登过的学术价值较为显着的论文,特别是那些与白身论文研究领域和课题相关的已刊论文,因为这些论文都体现了这一课题研究领域最新的学术倾向和研究成果。投稿者掌握和了解这些研究动向,并对照自身所研究的学术问题,考察是否有前人已对这一问题进行过解读、探讨,并呈现出怎样的研究现状,还存在着哪些不足,从而利于投稿者从更加新颖的角度修改自身的学术论文,也才能提升投稿成功的概率。2对自身学术水平有充分认识,把握好投稿时机学术期刊种类繁多,同类期刊的办刊水平、在学界的学术地位和刊物级别差异较大。投稿者应对自己的学术水平与所探讨的问题有着清醒的自我认识,尽量选择与自身撰写论文的学术水平相当的刊物,这样才能增加编辑录用论文的可能性。学术成果较为浅薄、研究视野较为局限的学术论文,并不适合投向级别较高、较为权威的学术刊物;而学术成果鲜明、视角独特新颖并具备学术前沿研究意识的论文,则应该尝试向级别较高、较为权威的学术刊物投稿。投稿者应当明确自身论文质量与学术刊物级别的相关匹配度,按照实际情况,进行投稿刊物的选择,才能增加学术论文被录用的概率。