首页 > 职称论文知识库 > yolov5论文发表

yolov5论文发表

发布时间:

yolov5论文发表

改进yolov5能发小论文。

主做目标检测的,正好最近在用yolov5,说点个人看法吧,不一定对。

首先yolo系列发展到现在,思想已经很成熟了,像具体的改进,其实4和5也有很多异曲同工的地方,无论是backbone还是neck。

目前很多改进yolov5发论文的,一些是在backone上做轻量化处理,一些是加入注意力机制,一些是改进neck,或者调整head,还有改损失函数或者nms过程的。

主要是因为yolo本身的思想已经很成熟了,在这个框架下的确很难做出些通用性的创新和提升。至于把各种成熟的模块塞进去发论文,这种仁者见仁智者见智吧。个人感觉还是结合某个方向改进yolo,会有方向一些。毕竟不同的数据集和尺度上,同样的改进有时候效果也是不同的。

Yolov5 目标检测的损失函数由三部分组成,分别是矩形框预测损失函数、置信度预测损失函数以及类别预测损失函数,在上节中分析了目标检测损失函数GIoU 的缺陷及其改进,使用 CIoU 以及带有调节因子的二元交叉熵函数替代原网络的损失函数。

实验验证此次改进,与原算法结果对比如下表所示。根据上表数据可以看到,针对本文的损失函数的改进在实验时得到了 92.1%的准确率,提升了 0.5%,可以证明对损失函数的改进可以对目标检测的性能提升提供很大帮助。

上半年的DETR掀起了基于Transformer的CV论文浪潮,不少人调侃留给Transformer攻克的CV方向不多了,比如检测、分割、深度估计、车道线检测等领域均被"染指"。同在上半年,还有YOLOv4、YOLOv5等不错的工作。下半年的好工作也不少,比如本文介绍的刚开源的Deformable-DETR,还有近期发布的Sparse R-CNN和DeFCN等工作。

yolov5论文发表了吗

上半年的DETR掀起了基于Transformer的CV论文浪潮,不少人调侃留给Transformer攻克的CV方向不多了,比如检测、分割、深度估计、车道线检测等领域均被"染指"。同在上半年,还有YOLOv4、YOLOv5等不错的工作。下半年的好工作也不少,比如本文介绍的刚开源的Deformable-DETR,还有近期发布的Sparse R-CNN和DeFCN等工作。

1 简介

针对无人机捕获场景的目标检测是最近比较流行的一项任务。由于无人机在不同高度飞行,目标尺度变化较大,这样给模型的优化也带来了很大的负担。此外,在无人机进行高速低空飞行时,也会带来密集目标的运动模糊问题。

图1 小目标与密集问题

为了解决上述2个问题,本文提出了 TPH-YOLOv5 。 TPH-YOLOv5 在YOLOv5的基础上增加了一个prediction heads 来检测不同尺度的目标。然后通过探索Self-Attention的预测潜力使用了Transformer Prediction Heads(TPH)代替原来的prediction heads。同时作者还集成了卷积块Attention模型(CBAM)来寻找密集场景下的注意力区域。

为了进一步改进 TPH-YOLOv5 ,作者还提供了大量有用的策略,如数据增强、多尺度测试、多模型集成和使用额外的分类器。

在VisDrone2021数据集上的大量实验表明,TPH-YOLOv5在无人机捕获场景上具有良好的性能和可解释性。在DET-test-challenge数据集上,TPH-YOLOv5的AP结果为39.18%,比之前的SOTA方法(DPNetV3)提高了1.81%。在VisDrone Challenge 2021中,TPH-YOLOv5与YOLOv5相比提高了约7%。

本文的贡献如下:

2 前人工作总结 2.1 Data Augmentation

数据增强的意义主要是扩展数据集,使模型对不同环境下获得的图像具有较高的鲁棒性。

Photometric和geometric被研究人员广泛使用。对于Photometric主要是对图像的色相、饱和度和值进行了调整。在处理geometric时主要是添加随机缩放、裁剪、平移、剪切和旋转。

除了上述的全局像素增强方法外,还有一些比较独特的数据增强方法。一些研究者提出了将多幅图像结合在一起进行数据增强的方法,如MixUp、CutMix和Mosaic。

MixUp从训练图像中随机选取2个样本进行随机加权求和,样本的标签也对应于加权求和。不同于通常使用零像素mask遮挡图像的遮挡工作,CutMix使用另一个图像的区域覆盖被遮挡的区域。Mosaic是CutMix的改进版。拼接4幅图像,极大地丰富了被检测物体的背景。此外,batch normalization计算每层上4张不同图像的激活统计量。

在TPH-YOLOv5的工作中主要是结合了MixUp、Mosaic以及传统方法进行的数据增强。

2.2 Multi-Model Ensemble Method

我们都知道深度学习模型是一种非线性方法。它们提供了更大的灵活性,并可以根据训练数据量的比例进行扩展。这种灵活性的一个缺点是,它们通过随机训练算法进行学习,这意味着它们对训练数据的细节非常敏感,每次训练时可能会得到一组不同的权重,从而导致不同的预测。 这给模型带来了一个高方差 。

减少模型方差的一个成功方法是训练多个模型而不是单一模型,并结合这些模型的预测。

针对不同的目标检测模型,有3种不同的ensemble boxes方法:非最大抑制(NMS)、Soft-NMS、Weighted Boxes Fusion(WBF)。

在NMS方法中,如果boxes的overlap, Intersection Over Union(IoU)大于某个阈值,则认为它们属于同一个对象。对于每个目标NMS只留下一个置信度最高的box删除其他box。因此,box过滤过程依赖于这个单一IoU阈值的选择,这对模型性能有很大的影响。

Soft-NMS是对NMS进行轻微的修改,使得Soft-NMS在标准基准数据集(如PASCAL VOC和MS COCO)上比传统NMS有了明显的改进。它根据IoU值对相邻边界box的置信度设置衰减函数,而不是完全将其置信度评分设为0并将其删除。

WBF的工作原理与NMS不同。NMS和Soft-NMS都排除了一些框,而WBF将所有框合并形成最终结果。因此,它可以解决模型中所有不准确的预测。本文使用WBF对最终模型进行集成,其性能明显优于NMS。

2.3 Object Detection

基于CNN的物体检测器可分为多种类型:

一些检测器是专门为无人机捕获的图像设计的,如RRNet、PENet、CenterNet等。但从组件的角度来看,它们通常由2部分组成,一是基于CNN的主干,用于图像特征提取,另一部分是检测头,用于预测目标的类和Box。

此外,近年来发展起来的目标检测器往往在backbone和head之间插入一些层,人们通常称这部分为检测器的Neck。接下来分别对这3种结构进行详细介绍:

Backbone

常用的Backbone包括VGG、ResNet、DenseNet、MobileNet、EfficientNet、CSPDarknet53、Swin-Transformer等,均不是自己设计的网络。因为这些网络已经证明它们在分类和其他问题上有很强的特征提取能力。但研究人员也将微调Backbone,使其更适合特定的垂直任务。

Neck

Neck的设计是为了更好地利用Backbone提取的特征。对Backbone提取的特征图进行不同阶段的再处理和合理使用。通常,一个Neck由几个自底向上的路径和几个自顶向下的路径组成。Neck是目标检测框架中的关键环节。最早的Neck是使用上下取样块。该方法的特点是没有特征层聚合操作,如SSD,直接跟随头部后的多层次特征图。

常用的Neck聚合块有:FPN、PANet、NAS-FPN、BiFPN、ASFF、SAM。这些方法的共性是反复使用各种上下采样、拼接、点和或点积来设计聚合策略。Neck也有一些额外的块,如SPP, ASPP, RFB, CBAM。

Head

作为一个分类网络,Backbone无法完成定位任务,Head负责通过Backbone提取的特征图检测目标的位置和类别。

Head一般分为2种:One-Stage检测器和Two-Stage检测器。

两级检测器一直是目标检测领域的主导方法,其中最具代表性的是RCNN系列。与Two-Stage检测器相比One-Stage检测器同时预测box和目标的类别。One-Stage检测器的速度优势明显,但精度较低。对于One-Stage检测器,最具代表性的型号是YOLO系列、SSD和RetaNet。

3TPH-YOLOv53.1 Overview of YOLOv5

YOLOv5有4种不同的配置,包括YOLOv5s,YOLOv5m, YOLOv5l和YOLOv5x。一般情况下,YOLOv5分别使用CSPDarknet53+SPP为Backbone,PANet为Neck, YOLO检测Head。为了进一步优化整个架构。由于它是最显著和最方便的One-Stage检测器,作者选择它作为Baseline。

图2 THP-YOLOv5整体架构

当使用VisDrone2021数据集训练模型时,使用数据增强策略(Mosaic和MixUp)发现YOLOv5x的结果远远好于YOLOv5s、YOLOv5m和YOLOv5l, AP值的差距大于1.5%。虽然YOLOv5x模型的训练计算成本比其他3种模型都要高,但仍然选择使用YOLOv5x来追求最好的检测性能。此外,根据无人机捕获图像的特点,对常用的photometric和geometric参数进行了调整。

3.2 TPH-YOLOv5

TPH-YOLOv5的框架如图3所示。修改了原来的YOLOv5,使其专一于VisDrone2021数据集:

图3 TPH-YOLOv5模型结构 微小物体的预测头

作者统计了VisDrone2021数据集,发现它包含了很多非常小的目标,所以增加了一个用于微小物体检测的预测头。结合其他3个预测头,4头结构可以缓解剧烈的目标尺度变化带来的负面影响。如图3所示,添加的预测头(Head 1)是由low-level、高分辨率的feature map生成的,对微小物体更加敏感。增加检测头后,虽然增加了计算和存储成本,但对微小物体的检测性能得到了很大的提高。

Transformer encoder block

图4 Transformer Block

用Transformer encoder块替换了YOLOv5原版中的一些卷积块和CSP bottleneck blocks。其结构如图4所示。与CSPDarknet53中原有的bottleneck blocks相比,作者认为Transformer encoder block可以捕获全局信息和丰富的上下文信息。

每个Transformer encoder block包含2个子层。第1子层为multi-head attention layer,第2子层(MLP)为全连接层。每个子层之间使用残差连接。Transformer encoder block增加了捕获不同局部信息的能力。它还可以利用自注意力机制来挖掘特征表征潜能。在VisDrone2021数据集中,Transformer encoder block在高密度闭塞对象上有更好的性能。

基于YOLOv5,作者只在头部部分应用Transformer encoder block形成transformer Prediction head(TPH)和backbone端。因为网络末端的特征图分辨率较低。将TPH应用于低分辨率特征图可以降低计算和存储成本。此外,当放大输入图像的分辨率时可选择去除早期层的一些TPH块,以使训练过程可用。

Convolutional block attention module (CBAM)

CBAM是一个简单但有效的注意力模块。它是一个轻量级模块,可以即插即用到CNN架构中,并且可以以端到端方式进行训练。给定一个特征映射,CBAM将沿着通道和空间两个独立维度依次推断出注意力映射,然后将注意力映射与输入特征映射相乘,以执行自适应特征细化。

图5 CBAM注意力机制

CBAM模块的结构如图5所示。通过本文的实验,在不同的分类和检测数据集上将CBAM集成到不同的模型中,模型的性能得到了很大的提高,证明了该模块的有效性。

在无人机捕获的图像中,大覆盖区域总是包含令人困惑的地理元素。使用CBAM可以提取注意区域,以帮助TPH-YOLOv5抵制令人困惑的信息,并关注有用的目标对象。

Self-trained classifier

用TPH-YOLOv5对VisDrone2021数据集进行训练后,对test-dev数据集进行测试,然后通过可视化失败案例分析结果,得出TPH-YOLOv5定位能力较好,分类能力较差的结论。作者进一步探索如图6所示的混淆矩阵,观察到一些硬类别,如三轮车和遮阳三轮车的精度非常低。

图6 检测混淆矩阵

因此,作者提出了一个Self-trained classifier。首先,通过裁剪ground-truth边界框并将每个图像patch的大小调整为64 64来构建训练集。然后选择ResNet18作为分类器网络。实验结果表明,在这个Self-trained classifier的帮助下,所提方法对AP值提高了约0.8%~1.0%。

4实验与结论

最终在test-set-challenge上取得了39.18的好成绩,远远高于VisDrone2020的最高成绩37.37。

图9 检测结果图

YOLOV5可以说是图像处理技术,但更准确来说是一种单阶段目标检测算法,机器视觉任务,常见的有分类、检测、分割。而YOLO正是检测中的佼佼者,在工业界,YOLO兼顾精度和速度,往往是大家的首选。

延伸:YOLO将对象检测重新定义为一个回归问题。能够将单个卷积神经网络应用于整个图像,把图像分成网格,并预测每个网格的类概率和边界框。YOLO非常快,由于检测问题是一个回归问题,所以不需要复杂的管道。YOLO比“R-CNN”快1000倍,比“Fast R-CNN”快100倍,YOLOV5是YOLO最新的版本。

若帮助到您,求采纳~

yolov5论文发表在哪个平台

1 简介

针对无人机捕获场景的目标检测是最近比较流行的一项任务。由于无人机在不同高度飞行,目标尺度变化较大,这样给模型的优化也带来了很大的负担。此外,在无人机进行高速低空飞行时,也会带来密集目标的运动模糊问题。

图1 小目标与密集问题

为了解决上述2个问题,本文提出了 TPH-YOLOv5 。 TPH-YOLOv5 在YOLOv5的基础上增加了一个prediction heads 来检测不同尺度的目标。然后通过探索Self-Attention的预测潜力使用了Transformer Prediction Heads(TPH)代替原来的prediction heads。同时作者还集成了卷积块Attention模型(CBAM)来寻找密集场景下的注意力区域。

为了进一步改进 TPH-YOLOv5 ,作者还提供了大量有用的策略,如数据增强、多尺度测试、多模型集成和使用额外的分类器。

在VisDrone2021数据集上的大量实验表明,TPH-YOLOv5在无人机捕获场景上具有良好的性能和可解释性。在DET-test-challenge数据集上,TPH-YOLOv5的AP结果为39.18%,比之前的SOTA方法(DPNetV3)提高了1.81%。在VisDrone Challenge 2021中,TPH-YOLOv5与YOLOv5相比提高了约7%。

本文的贡献如下:

2 前人工作总结 2.1 Data Augmentation

数据增强的意义主要是扩展数据集,使模型对不同环境下获得的图像具有较高的鲁棒性。

Photometric和geometric被研究人员广泛使用。对于Photometric主要是对图像的色相、饱和度和值进行了调整。在处理geometric时主要是添加随机缩放、裁剪、平移、剪切和旋转。

除了上述的全局像素增强方法外,还有一些比较独特的数据增强方法。一些研究者提出了将多幅图像结合在一起进行数据增强的方法,如MixUp、CutMix和Mosaic。

MixUp从训练图像中随机选取2个样本进行随机加权求和,样本的标签也对应于加权求和。不同于通常使用零像素mask遮挡图像的遮挡工作,CutMix使用另一个图像的区域覆盖被遮挡的区域。Mosaic是CutMix的改进版。拼接4幅图像,极大地丰富了被检测物体的背景。此外,batch normalization计算每层上4张不同图像的激活统计量。

在TPH-YOLOv5的工作中主要是结合了MixUp、Mosaic以及传统方法进行的数据增强。

2.2 Multi-Model Ensemble Method

我们都知道深度学习模型是一种非线性方法。它们提供了更大的灵活性,并可以根据训练数据量的比例进行扩展。这种灵活性的一个缺点是,它们通过随机训练算法进行学习,这意味着它们对训练数据的细节非常敏感,每次训练时可能会得到一组不同的权重,从而导致不同的预测。 这给模型带来了一个高方差 。

减少模型方差的一个成功方法是训练多个模型而不是单一模型,并结合这些模型的预测。

针对不同的目标检测模型,有3种不同的ensemble boxes方法:非最大抑制(NMS)、Soft-NMS、Weighted Boxes Fusion(WBF)。

在NMS方法中,如果boxes的overlap, Intersection Over Union(IoU)大于某个阈值,则认为它们属于同一个对象。对于每个目标NMS只留下一个置信度最高的box删除其他box。因此,box过滤过程依赖于这个单一IoU阈值的选择,这对模型性能有很大的影响。

Soft-NMS是对NMS进行轻微的修改,使得Soft-NMS在标准基准数据集(如PASCAL VOC和MS COCO)上比传统NMS有了明显的改进。它根据IoU值对相邻边界box的置信度设置衰减函数,而不是完全将其置信度评分设为0并将其删除。

WBF的工作原理与NMS不同。NMS和Soft-NMS都排除了一些框,而WBF将所有框合并形成最终结果。因此,它可以解决模型中所有不准确的预测。本文使用WBF对最终模型进行集成,其性能明显优于NMS。

2.3 Object Detection

基于CNN的物体检测器可分为多种类型:

一些检测器是专门为无人机捕获的图像设计的,如RRNet、PENet、CenterNet等。但从组件的角度来看,它们通常由2部分组成,一是基于CNN的主干,用于图像特征提取,另一部分是检测头,用于预测目标的类和Box。

此外,近年来发展起来的目标检测器往往在backbone和head之间插入一些层,人们通常称这部分为检测器的Neck。接下来分别对这3种结构进行详细介绍:

Backbone

常用的Backbone包括VGG、ResNet、DenseNet、MobileNet、EfficientNet、CSPDarknet53、Swin-Transformer等,均不是自己设计的网络。因为这些网络已经证明它们在分类和其他问题上有很强的特征提取能力。但研究人员也将微调Backbone,使其更适合特定的垂直任务。

Neck

Neck的设计是为了更好地利用Backbone提取的特征。对Backbone提取的特征图进行不同阶段的再处理和合理使用。通常,一个Neck由几个自底向上的路径和几个自顶向下的路径组成。Neck是目标检测框架中的关键环节。最早的Neck是使用上下取样块。该方法的特点是没有特征层聚合操作,如SSD,直接跟随头部后的多层次特征图。

常用的Neck聚合块有:FPN、PANet、NAS-FPN、BiFPN、ASFF、SAM。这些方法的共性是反复使用各种上下采样、拼接、点和或点积来设计聚合策略。Neck也有一些额外的块,如SPP, ASPP, RFB, CBAM。

Head

作为一个分类网络,Backbone无法完成定位任务,Head负责通过Backbone提取的特征图检测目标的位置和类别。

Head一般分为2种:One-Stage检测器和Two-Stage检测器。

两级检测器一直是目标检测领域的主导方法,其中最具代表性的是RCNN系列。与Two-Stage检测器相比One-Stage检测器同时预测box和目标的类别。One-Stage检测器的速度优势明显,但精度较低。对于One-Stage检测器,最具代表性的型号是YOLO系列、SSD和RetaNet。

3TPH-YOLOv53.1 Overview of YOLOv5

YOLOv5有4种不同的配置,包括YOLOv5s,YOLOv5m, YOLOv5l和YOLOv5x。一般情况下,YOLOv5分别使用CSPDarknet53+SPP为Backbone,PANet为Neck, YOLO检测Head。为了进一步优化整个架构。由于它是最显著和最方便的One-Stage检测器,作者选择它作为Baseline。

图2 THP-YOLOv5整体架构

当使用VisDrone2021数据集训练模型时,使用数据增强策略(Mosaic和MixUp)发现YOLOv5x的结果远远好于YOLOv5s、YOLOv5m和YOLOv5l, AP值的差距大于1.5%。虽然YOLOv5x模型的训练计算成本比其他3种模型都要高,但仍然选择使用YOLOv5x来追求最好的检测性能。此外,根据无人机捕获图像的特点,对常用的photometric和geometric参数进行了调整。

3.2 TPH-YOLOv5

TPH-YOLOv5的框架如图3所示。修改了原来的YOLOv5,使其专一于VisDrone2021数据集:

图3 TPH-YOLOv5模型结构 微小物体的预测头

作者统计了VisDrone2021数据集,发现它包含了很多非常小的目标,所以增加了一个用于微小物体检测的预测头。结合其他3个预测头,4头结构可以缓解剧烈的目标尺度变化带来的负面影响。如图3所示,添加的预测头(Head 1)是由low-level、高分辨率的feature map生成的,对微小物体更加敏感。增加检测头后,虽然增加了计算和存储成本,但对微小物体的检测性能得到了很大的提高。

Transformer encoder block

图4 Transformer Block

用Transformer encoder块替换了YOLOv5原版中的一些卷积块和CSP bottleneck blocks。其结构如图4所示。与CSPDarknet53中原有的bottleneck blocks相比,作者认为Transformer encoder block可以捕获全局信息和丰富的上下文信息。

每个Transformer encoder block包含2个子层。第1子层为multi-head attention layer,第2子层(MLP)为全连接层。每个子层之间使用残差连接。Transformer encoder block增加了捕获不同局部信息的能力。它还可以利用自注意力机制来挖掘特征表征潜能。在VisDrone2021数据集中,Transformer encoder block在高密度闭塞对象上有更好的性能。

基于YOLOv5,作者只在头部部分应用Transformer encoder block形成transformer Prediction head(TPH)和backbone端。因为网络末端的特征图分辨率较低。将TPH应用于低分辨率特征图可以降低计算和存储成本。此外,当放大输入图像的分辨率时可选择去除早期层的一些TPH块,以使训练过程可用。

Convolutional block attention module (CBAM)

CBAM是一个简单但有效的注意力模块。它是一个轻量级模块,可以即插即用到CNN架构中,并且可以以端到端方式进行训练。给定一个特征映射,CBAM将沿着通道和空间两个独立维度依次推断出注意力映射,然后将注意力映射与输入特征映射相乘,以执行自适应特征细化。

图5 CBAM注意力机制

CBAM模块的结构如图5所示。通过本文的实验,在不同的分类和检测数据集上将CBAM集成到不同的模型中,模型的性能得到了很大的提高,证明了该模块的有效性。

在无人机捕获的图像中,大覆盖区域总是包含令人困惑的地理元素。使用CBAM可以提取注意区域,以帮助TPH-YOLOv5抵制令人困惑的信息,并关注有用的目标对象。

Self-trained classifier

用TPH-YOLOv5对VisDrone2021数据集进行训练后,对test-dev数据集进行测试,然后通过可视化失败案例分析结果,得出TPH-YOLOv5定位能力较好,分类能力较差的结论。作者进一步探索如图6所示的混淆矩阵,观察到一些硬类别,如三轮车和遮阳三轮车的精度非常低。

图6 检测混淆矩阵

因此,作者提出了一个Self-trained classifier。首先,通过裁剪ground-truth边界框并将每个图像patch的大小调整为64 64来构建训练集。然后选择ResNet18作为分类器网络。实验结果表明,在这个Self-trained classifier的帮助下,所提方法对AP值提高了约0.8%~1.0%。

4实验与结论

最终在test-set-challenge上取得了39.18的好成绩,远远高于VisDrone2020的最高成绩37.37。

图9 检测结果图

对于YOLOv5的命名发布这么大的争议的原因是:Ultralytics公司在开源YOLOv5的代码时,未发布经过同行评议的YOLOv5论文。主要原因就是YOLOv5的license是GPL协议(GPL3.0),而Kaggle不允许使用GPL协议的项目参赛。那么今天就来普及一下这些开源软件协议。软件开源是许多软件企业需要关注的问题,不同的开源软件协议,对应不同的源代码使用限制。只有了解这些开源软件协议,才能更好地使用和回馈开源软件,否则就有可能触犯法律。

论文发表发表论文

怎么样发表论文

1、想要发表论文,事先要做的就是写好一篇查重率合格,且具备一定价值的论文,论文查重率的具体要求,要根据想要发表的期刊来定,若为普通期刊,则查重率在20%或是30%左右即可,若是核心期刊,则查重率一般要在10%以内。

2、在期刊上发表论文,主要途径就是投稿,最好是通过一些比较熟悉和了解的渠道进行投稿,因为这样通过的概率会更高一些,审批也会比较快,发表的时间也能够往前安排。

3、如果是缺乏有关渠道的,可以向有经验的同学或是学长学姐咨询,也可以向有关的老师询问,一般也能够得到一些可靠的方式方法。

4、对于社内投稿,即在官网投稿系统或邮箱投稿,或者是在知网投稿系统投稿,它对于所有类型的期刊都是合适的,缺乏有关渠道的,也可以通过这种方式进行投稿。

5、还有一类投稿,是社内会公布联系方式,或是在线系统投稿,但是这一类投稿的要求会比较高,对于缺乏经验的投稿人来说,也有可能遇到假冒或是的,因此选择这类投稿方式的,建议事先进行必要的验证,确定无误后在进行投稿。

6、可供大家选择的投稿、发表论文的方式其实有不少,但大家也要对各类方式、途径进行甄别对比,还有非常重要的一点是:不得一稿多投。

以下是发表论文或期刊的方法:

一、写作

首先要写好一篇论文,选题要与专业、研究方向密切相关,论文的格式要规范,应包括题目、作者(姓名、单位、邮编及简介)内容摘要、关键词、正文等;论文篇幅不宜过长,因为期刊版面的字符数是固定的,字符数越多,版面增加,相应的费用就会越高;最后还要注意控制重复率,一般期刊要5%-20%以下才合格录用。

二、选刊

选择一本合适的期刊进行投稿,是成功发表论文极其关键的一步,要遵循几个原则,即

1、 国家新闻出版署能查到的正规期刊;

2、知网、万方、维普、龙源四大数据库之一正常收录的期刊;

3、符合学校、单位要求的期刊;

最后还要考虑论文是否符合期刊的收稿范围,避免因为文章方向不合适出现拒稿的情况。

三、投稿

投稿的途径有两种,一种是通过杂志社邮箱,官网或者在线系统投稿。(注意:数据库和期刊的目录页上面的联系方式才是准确的),虽然这种方式完全不用担心,但缺点是审稿时间较长,沟通不及时,无法了解期刊最新出刊时间,费用,收稿要求等等。

第二种就是找代理投稿 。这个方法也是现在大多数人用的要给方法,为什么会这样的,我只能说谁用谁知道。这个是最简单最省事儿的。以前我就是找的一个文化公司安排文章,服务没得说,只需要提供文章,剩余的事情全由他们搞定。

中介投稿也是有很多优势的

1、刊物比较丰富和全面,各类的刊物都有,可以根据作者的要求快速推荐推荐合适的刊物。

2、 期刊信息非常的全名,从刊物的收稿栏目,出刊时间,版面字符数要求,期刊级别、出刊周期、审核标准、是否可以开社内发票、刊号邮发代号、电子刊号、是否可以查稿、封面以及影响因子区间

3、他们基本上是和杂志社或是承包商直接对接的,沟通速度比较的迅速。

4、查稿后付款。这点已经算是标配了,绝大多数的刊物都是可以查稿后付款的,而且查稿电话是数据库可以查询到的哦 。

5、 最要是不收定金和知道一个刊物的审稿要求和难度。

发表论文发表论文

期刊上发表论文,适合有文章需要发表、但是对投稿一头雾水无从下手的作者,无论是准备自投还是找中介代发,话不多说,下面干货。发表论文的整个流程,简单概括就是:定稿-选择期刊-审核-通过/返修-支付费用-定版-排版校对-印刷-出刊邮寄-上传数据库接下来按照步骤详细说说每个发表环节以及注意事项。定稿:其实就是写论文,这个我也不是专业的,所以不多说,仅从发表的角度简单说几句。1.关于论文主题:如果你的文章是准备用来发表的,尤其是准备投稿普刊,那么有些选题千万不要碰,比如港ao台、疫情、涉党涉政、宗教、神学、封jian迷xin、校园bao力等等,不要问为什么,这类主题写了大概率发表不出去!即便有收的,审核也严格,论文内容不能有不适合刊登的点。总之,发表论文不要只知道埋头苦写,动笔之前先去问问某个主题能不能发、好不好发,不能发、不好发就尽量不要写。2.关于语言逻辑:普刊在大家眼里通常就是要求低,但是要求低不等于没有要求!!文章内容如何就不说了,最起码得是篇论文吧,不能语病、错字一堆,不能毫无逻辑、前言不搭后语,不能让人不知所云,不能过于口语化......所以论文写好后建议自己先通读一遍,如果自己看不出毛病,就找同学、同事、朋友随便谁帮你看看,毕竟一篇连语言基本功都有问题的论文,即便内容写得再好,又有谁愿意看?3.关于起发字符、重复率:现在基本所有正规学术期刊都是5000字符左右/3版起发,能够2版起发的很少,即便遇到了也建议发3版,因为2版的文章后续存在被要求整改的可能。至于重复率,每个期刊的要求不一样,从10%到30%都有,有的期刊审核的时候会查重,有的则文责自负(即万一后续数据库抽查发现重复率过高而导致论文被下架,作者自己负责),这种的就建议自己提前查下,那些杂志社会查重的,如果对自己论文没把握的(特别是复制较多的),也建议提前查下,之前遇到个作者论文审核的时候查重结果直接七八十,这种就很尴尬了,这让编辑怎么想?选择期刊:我个人认为这是发表论文最重要的一个环节,这个说起来很简单,做起来其实很难,很耗费精力和时间。选择期刊分为两步——第一步,大家务必要先弄清楚自己对期刊的要求,尤其是因为评职称、评奖学金、保研等这些原因需要发表论文的,一定要先去看看学校、单位对期刊的具体要求是什么,比如期刊等级,是要普刊、学报还是核心?是不是非知网收录的期刊不可?最晚什么时候需要提交评审材料

如何发表论文如下:

论文发表,一个是可以直接投稿杂志社,一个是可以通过论文代理机构。

费用方面,杂志社肯定要比代理便宜。因为,杂志社只是收取非常小部分的版面费。而代理方面,收取的比较多。

时间方面,杂志社的编辑一般很少自己采集稿件。毕竟,每个编辑其实都会跟很多代理合作。他们会直接从代理方面得到稿件,并且从中抽取部分好处费。代理手中的稿件比较多,所以杂志社的编辑们一般都非常乐于跟他们合作。

关键是,自己也能从中得到额外的收入,何乐而不为。 审稿方面,杂志社不是所有的稿件都给你发。当然,作为代理方,也不可能所有的稿件都能承诺给你发。但是,只要代理方面承诺可以发。那么,就百分之百可以发表了。

毕竟,只要是气候成熟的代理,都会固定的和一些杂志社编辑有长期合作。这样,就会无形中生成一种关系户的效果。

所以,审稿方面,找代理确实要比杂志社容易多。 也就是说,杂志社便宜是便宜,但是没有时间保证,审稿麻烦切周期长。而,代理方面,贵也贵不到哪儿去,审稿速度快,时间短。现在需要发表论文的作者,时间方面大多都比较紧迫,而且论文方面也都比较麻烦。

项目:

校外:可以去的地方有大公司的研究机构(如MSRA IBM CRL等),有中科研的各个著名院所等。

校内:一种途径是参与校内著名实验室每年定期的暑期实习,比如电信学员的网安实验室,比如材料学院的微纳中心等,一种途径 是自己联系在科研上比如活跃的老师(此如自己的任课老师,

指导老师:找一个好的指导老师很重要,他的作用=好的科研指导+好的科研推荐信+挂高质量论文的机会+给美国教授内推的机会

在日常生活中,无论是评职称还是大学生毕业都离不开发表论文.在公开发行的学术期刊上发表论文,成为职称评选硬性条件之一,可以说发表论文,在职称评审中占据非常重要的作用.下面学术堂就来简单的说一下如何凭借个人经验发表论文.发表论文首先需要写一篇好的论文,论文不光主题鲜明,论点创新,还应该结构严谨,层次分明.与此同时,还应该注意论文标准格式、文句通顺,确保论文通过审核.发表论文流程主要包括以下几方面.根据杂志办刊盘方向以及办刊宗旨,确定要发表的刊物.然后投稿到杂志社邮箱,杂志社审稿录用排版印刷,到最后出版发行.如果稿件有问题会出现两种情况出现退稿与返修.返修的稿件要求整理好发回杂志社.觉得注意的是杂志社审稿在一周到一年不等根据杂志社实际情况来定排班时间在一周左右交稿三天左右印刷七到十天左右发行时间为一周左右.在进行发表期刊论文的过程中,要根据自己的实际情况选择合理的时间进行发表.个人如何发表论文.1、发表论文的重要性.不同的人发表论文的作用也不同:(1)评职称(晋升职称):研究生 毕业需要;教师 、医护人员 、科研院所的人员、企业员工 等 晋升高一级的职称时,发表期刊论文是作为一项必须的参考指标.(2)申报基金、课题 :教育、科技、卫生系统 每年申报的国家自然科学基金项目、其它各种基金项目、各种研究课题时,发表论文 是作为 基金或课题 完成的一种研究成果的结论性展示.(3)世界性基础领域的研究,比如在医学、数字、物理、化学、生命科学 等领域开展的基础性研究,公开发表论文 是对最新科技 科学研究成果、研究方法的一种展示和报道.以推动整个社会的科技进步等.(4)提升自身竞争力:本科生和研究生在校期间发表具有一定水准的论文,有助于提升个人学术素养,进入社会,也可能会有更高的起点.2、发布论文的流程.(1)确定自己的研究课题,验证其写作价值,如果具有一定价值,就着手开始筹备论文,第一次发表论文,可以多向前辈请教,多查阅一些资料文献,在前人的基础上寻找突破口,选题立意要新颖实用,不要为了写论文而写论文.(2)论文经过多次修改完善以后,接下来我们就可以准备发表论文,发表论文第一步就是要选择对应的期刊,如果稿件投向不合适的期刊可能会遭遇退稿和不公正评判.如何选择合适的期刊?在知网或其他数据库中检索本篇论文相关领域的期刊,查看期刊级别以及刊物号等,确保其为正规期刊,然后阅读其刊登发表过的论文,看自己的论文是否适合在这些期刊上发表,从中挑出2-3个期刊作为备选,进一步了解这些刊物的审稿周期、投稿费用、投稿要求等,从中选出将要投稿的1个期刊,联系期刊编辑将自己的稿件投递过去,然后等待审稿人员的回复.

  • 索引序列
  • yolov5论文发表
  • yolov5论文发表了吗
  • yolov5论文发表在哪个平台
  • 论文发表发表论文
  • 发表论文发表论文
  • 返回顶部