首页 > 职称论文知识库 > 在acm发表论文很牛吗

在acm发表论文很牛吗

发布时间:

在acm发表论文很牛吗

计算机科学班(ACM班)的取名源于一个国际科学教育计算机组织——ACM(Association of Computing Machinery),计算机领域最高奖——图灵奖是由该组织设立和颁发的。这寓意ACM班旨在培养计算机科学家。ACM班创办于2002年,隶属于计算机科学与技术专业,该专业(学科)2007年获“计算机科学与技术”国家重点一级学科,2009年进入世界百强。本专业曾5次获国家级教学成果奖,曾在ACM国际大学生程序竞赛中获三次世界冠军,成为全球第三个获得“三冠王”的高校。ACM班崇尚“先做人、后做学问,在做学问中学做人”的教育理念,创新教育教学改革措施。第一,推行“思想-方法-实践”的素质教育体系,培养学生大志与责任、自主学习能力,形成研究型教学模式和课程体系。第二,实施“实验室-课堂-社会”的科研训练机制,培养学生的研究、实践、协调沟通等综合能力。第三,实行淘汰制和本硕连读制,激发学生学习的积极性和主动性。第四,与微软、IBM等国际知名企业联合培养,拓宽学生视野。十年来,ACM班学生以第一作者身份在NIPS、WWW、SIGIR、SIGMOD、SIGKDD、ICML、AAAI等重要的国际会议和期刊上发表了40余篇论文,并获最佳学生论文1篇,国际影响力不断提升。2011年,ACM班已作为“上海交通大学基础学科拔尖学生培养试验计划”中的计算机科学班纳入致远学院。该班将与由图灵奖获得者、康奈尔大学教授John Hopcroft领衔的国际知名教授组成讲席教授团共同执教与指导,及推荐其攻读博士学位,实施“上海交通大学-国际知名大学-微软亚洲研究院”联合培养。

含金量高。acm省赛的含金量很高,跟pat、ccf等比起来还要高。国际大学生程序设计竞赛(ICPC)是由国际计算机协会(ACM)主办的,一项旨在展示大学生创新能力、团队精神和在压力下编写程序、分析和解决问题能力的年度竞赛。ACM国际大学生程序设计竞赛已经发展成为全球最具影响力的大学生程序设计竞赛。

额~童鞋,搞ACM如果以保研找工作为目标的话,估计你是搞不好的,另外这个ACM的金牌也不是那么容易拿的,能拿区域赛金牌的,估计也不会在乎保不保研了,百度腾讯Google估计就直接签走了,再不济的也是个金山,阿里巴巴什么的,一年10W没啥问题,但是你要想清楚,ACM这条路不是很好走,一旦你四年里没拿什么像样的名次出来……那你自己掂量着办吧~ACM说实话比较苦,完全是靠兴趣才能坚持下去

交大的ACM的确很厉害

在sci发表论文很牛

考研一般是这样同等分数的条件下会优先考虑发过SCI,如果分数差距大 发过也意义不大。

对于本科生来说,就算IF再低,也算牛的了!很多硕士都发不了SCI

超级厉害的!很多博士发表一篇SCI论文才能毕业。而一个本科生能发表SCI,基本保研肯定没有问题的。

靠!那不止是厉害,那是厉害PLUS了。一般的大学教授能发表一篇SCI都不容易,很多博士发表一篇SCI论文才能毕业。而一个本科生能发表SCI,基本是大神级别了。保研肯定没有问题的。但是大多数人还是洗洗睡吧,没有这个学霸基因。如果你想发表SCI期刊,你可以去淘淘论文网上学习下SCI论文发表知识。

发表acl论文很牛吗

2017年 10 月 11 日,阿里巴巴达摩院正式成立,马云的一句 “ 活得要比阿里巴巴长”,让外界对它的未来发展,有了更 “意味深长” 的期待。

在近三年多的时间里,达摩院在人工智能学术科研与应用上齐头并进,无论在国际学术顶会以及各类竞赛上,还是在推动学术成果的商业化落地上,都交出了亮眼的成绩单,这也反过来吸引着人工智能领域的顶尖研究者们都汇聚于此。

对于这些顶尖研究者们目前正在开展的研究工作,想必大家都充满了探知欲!

7月9日(晚)19:30-21:00 ,AI科技评论就将联合阿里达摩院,外加阿里集团在学术科研上同样“坚挺”的存在——阿里安全,给大家呈上一场 “ACL 2020 系列论文解读·阿里巴巴专场” 直播!

届时,来自阿里达摩院机器智能技术团队和阿里安全安全智能团队的 6 位高级算法专家、算法工程师以及研究型实习生们,将分别聚焦于多任务学习、少样本文本分类、 任务型对话、神经机器翻译、知识蒸馏、跨域分词标注等NLP 细分领域,为大家带来一场论文解读盛宴!

本次分享的嘉宾具体都有谁呢?下面一一揭晓:****分享主题: SpanMlt:一种基于跨度的用于属性词和观点词配对抽取的多任务学习框架 ****分享嘉宾:黄龙涛

分享内容:

属性词和观点词抽取,是细粒度的基于属性的情感分析(ABSA)的两个关键问题。属性-观点词对( aspect-opinion pairs)可以为消费者和观点挖掘系统提供相关产品或服务的全局配置文件。但是,传统方法无法在没有给定属性词和观点词的情况下,直接输出属性-观点词对。尽管研究者最近提出了一些共提取方法来联合提取属性词和观点词,但是并不能配对抽取两者。为此,本文提出了一种端到端方法来解决属性词和观点词的配对抽取(PAOTE)任务。此外,本文从联合词和关系抽取的角度而非此前大多数工作中执行的序列标注方法的角度,来处理该问题。我们提出了一个基于共享跨度的多任务学习框架,其中在跨度边界的监督下提取词。同时,使用跨度表示法来联合识别配对关系。大量实验表明,我们的模型始终优于 SOTA 方法。

分享内容:

现有的工作往往使用元学习(meta learning)的方法,通过在一系列meta-task中切换来获得少样本学习的能力,但是在task间的切换会带来遗忘的问题,因此考虑使用记忆机制来辅助meta learning的训练。在本工作中,我们将监督学习得到的分类参数作为meta learning的全局记忆,并提出了动态记忆路由算法,基于dynamic routing的方式将全局记忆信息融入到meta task的训练和预测阶段。此外,动态记忆路由算法还可以使用query信息来增强归纳类别表示的能力,对口语场景下的语言多样性表达有更好的泛化性能。在中英文场景少样本分类任务数据集上,均取得了STOA的结果。

分享主题:多领域对话动作和回复联合生成****分享嘉宾:田俊峰

分享内容: 在任务型对话中,产生流畅且信息丰富的回复至关重要。现有pipeline方法通常先预测多个对话动作,然后使用它们的全局表示来辅助回复生成。这种方法有两个缺陷:第一,在预测对话动作时,多领域的固有结构被忽略了;其次,在生成回复时没有考虑到对话动作和回复之间的语义联系。为了解决这些问题,我们提出了一种同时生成对话动作和回复的神经联合生成模型。与以往的方法不同,我们的对话动作生成模块可以保留多领域对话动作的层次结构,同时我们的回复生成模块可以动态地关注到相关的对话动作。在训练时,我们采用不确定性损失函数来自适应地调整两个任务的权重。在大规模MultiWOZ数据集上进行了评估,实验结果表明,我们的模型在自动评估和人工评估上都比SOTA模型有很好的提升。****分享主题:神经机器翻译的多尺度协同深度模型******分享嘉宾:魏相鹏**

近年来,神经机器翻译(NMT)方法凭借其出色的翻译性能在大量应用场景中取代了基于统计的机器翻译方法。目前,制约NMT模型性能的因素主要包括模型的特征表达能力和数据规模。因此,我们提出一种基于多尺度协作(MSC)机制的深度神经机器翻译模型,以提高模型对底层(具象化)和高层(抽象化)特征的建模能力。

实验证明,(1) 多尺度协作机制有助于构建极深的NMT模型的同时带来性能上的提升,(2) 基于MSC机制的深度NMT模型能够更好地翻译语义结构复杂的自然语言句子。

****分享主题:多语种序列标注的结构级知识蒸馏******分享嘉宾:王新宇**

多语言序列标注是一项使用单一统一模型预测多语言标签序列的任务。与依赖于多个单语模型相比,使用多语言模型具有模型规模小、在线服务容易和对低资源语言通用的优点。然而,由于模型容量的限制,目前的多语种模型仍然远远低于单独的单语模型。本文提出将多个单语言模型(teachers)的结构知识提取到统一的多语言模型(student)中,以缩小单语言模型与统一的多语言模型之间的差距。我们提出了两种基于结构层次信息的知识挖掘方法:

****分享主题:跨域中文分词的远程标注与对抗耦合训练******分享嘉宾:丁宁**

完全监督神经方法在中文分词(CWS)的任务上取得了重大进展。但是,如果由于域间的分布差异和集外词(OOV)问题导致域迁移,则监督模型的性能始终一直大幅下降。为了实时缓解此问题,本文将跨域中文分词的远程标注和对抗性训练直观地结合在一起。

7月9日,6位来自阿里的分享嘉宾,与大家不见不散!

ACL 2020原定于2020年7月5日至10日在美国华盛顿西雅图举行,因新冠肺炎疫情改为线上会议。为促进学术交流,方便国内师生提早了解自然语言处理(NLP)前沿研究,AI 科技评论将推出「ACL 实验室系列论文解读」内容,同时欢迎更多实验室参与分享,敬请期待!

ACL大会由国际计算语言学协会主办,是自然语言处理与计算语言学领域最高级别的学术会议。

前面写了对话系统中的SLU之领域 分类/意图识别 、 槽填充 、 上下文LU和结构化LU 以及 NLG ,DST是对话管理(DM)的一部分,而DM是任务型对话中至关重要的一部分。说个 非严格的对比 :如果把对话系统比作计算机的话,SLU相当于输入,NLG相当于输出设备,而DM相当于CPU(运算器+控制器)。

对话系统按功能来划分的话,分为闲聊型、任务型、知识问答型和推荐型。在不同类型的聊天系统中,DM也不尽相同。

闲聊型对话中的DM就是对上下文进行序列建模、对候选回复进行评分、排序和筛选等,以便于NLG阶段生成更好的回复;

任务型对话中的DM就是在NLU(领域分类和意图识别、槽填充)的基础上,进行对话状态的追踪(DST)以及对话策略的学习(DPL,下次分享),以便于DPL阶段策略的学习以及NLG阶段澄清需求、引导用户、询问、确认、对话结束语等。

知识问答型对话中的DM就是在问句的类型识别与分类的基础上,进行文本的检索以及知识库的匹配,以便于NLG阶段生成用户想要的文本片段或知识库实体。

推荐型对话系统中的DM就是进行用户兴趣的匹配以及推荐内容评分、排序和筛选等,以便于NLG阶段生成更好的给用户推荐的内容。

什么是对话状态?其实状态St就是一种 包含0时刻到t时刻的对话历史、用户目标、意图和槽值对的数据结构 ,这种数据结构可以给DPL阶段提供学习策略(比如定机票时,是询问出发地还是确定订单?)继而完成NLG阶段的回复。

对话状态追踪(DST)的作用: 根据领域(domain)/意图(intention) 、曹植对(slot-value pairs)、之前的状态以及之前系统的Action等来追踪当前状态 。他的 输入是Un(n时刻的意图和槽值对,也叫用户Action)、An-1(n-1时刻的系统Action)和Sn-1(n-1时刻的状态),输出是Sn(n时刻的状态) 。 这里用户Action和系统Action不同,且需要注意

S = {Gn,Un,Hn},Gn是用户目标、Un同上、Hn是聊天的历史,Hn= {U0, A0, U1, A1, ... , U −1, A −1},S =f(S −1,A −1,U )。

DST涉及到两方面内容: 状态表示、状态追踪 。另外为了解决领域数据不足的问题,DST还有很多迁移学习(Transfer Learning)方面的工作。比如基于特征的迁移学习、基于模型的迁移学习等。

为了在抽象的建模的基础上加深理解,看个小例子:

通过前面的建模和实例化,不难看出对话状态数跟意图和槽值对的数成 指数关系 ,维护所有状态的一个分布非常非常浪费资源,因此需要比较好的状态表示法来减少状态维护的资源开销(相当于特定任务下,更合理的数据结构设计,好的数据结构带来的直接影响就是算法开销变小)。

常见的状态表示法包括两种:

Hidden Information State Model (HIS)

这种方法就是:使用 状态分组 和 状态分割 减少跟踪复杂度。其实就是类似于二分查找、剪枝。

Bayesian Update of Dialogue States (BUDS)

这种方法就是:假设不同槽值的转移概率是相互独立的,或者具有非常简单的依赖关系。这样就将状态数从意图和槽值数的 指数 减少到了 线性 。

下面简单对比下两种不同状态表示法的优缺点:

讲到DST就不得不讲DSTC,DSTC是 Dialog System Technology Challenge ,主要包括6个Challenge。DSTC对DST的作用就相当于目标函数对机器学习任务的作用,真正起到了评估DST技术以及促进DST技术发展的作用。之所以在DST前先说DSTC是因为后面的很多DST的方法是在某个DSTC(大多是DSTC2、DSTC3、DSTC4、DSTC5)上做的。

先来看看DST的形象化

再来看看我总结的DST的方法汇总,注意我没有整理基于规则的DST( 基于规则的方法虽然可以较好利用先验知识从而可以较好解决冷启动等问题,但是需要太多人工、非常不灵活、扩展性和移植性很差、不能同时追踪多种状态 )。

下面分别介绍一下对话系统中的不同DST技术。

论文: ( Lee, SIGDIAL 2013 )( Kim et al., 2014 )

从BUDS中对不同槽值的转移概率是相互独立的假设(是不是很像马尔可夫假设?)以及St的预测需要Un、An-1和Sn-1(转移概率和发射概率),是不是想到了HMM和CRF?没错,前期的基于统计的DST就是用了很多CRF。 n = (S −1, A −1, U )。

Lee, SIGDIAL 2013 的主要思想如下:

Kim et al., 2014 的主要思想如下:

论文: ( Mrkšić et al., ACL 2015 )( Henderson et al., 2013 )( Henderson et al., 2014 )( Zilka el al., 2015 )

关于神经网络的介绍、神经网络的好处和坏处,不再赘述,已经烂大街。基于神经网络的很多方法是在DSTC上做的,这里选取了几篇有针对性的经典论文简单介绍下。

Mrkšić et al., ACL 2015 是ACL2015的一篇论文,它是用RNN进行多领域的对话状态追踪,主要贡献是证明:利用多个领域的数据来训练一个通用的状态追踪模型比利用单领域数据训练追踪模型效果要好。

Henderson et al., 2013 是利用DNN来解决DSTC,它把DST当分类问题,输入时间窗口内对话轮次提取的特征,输出slot值的概率分布。该方法不太容易过拟合,领域迁移性很好。模型结构图如下:

Henderson et al., 2014 ,基于DRNN和无监督的自适应的对话状态鲁棒性跟踪,从论文名字就能看出因为使用DRNN和无监督的自适应导致DST 鲁棒性很好 。

先来看看特征提取的办法:主要提取f,fs,fv三种特征,f是针对原始输入提取,fs和fv是对原始输入中的词做Tag替换得到 泛化特征 。

再来看下模型结构:对slot训练一个模型,利用无监督的自适应学习,将模型泛化到新的domain以便于提高模型的泛化能力。

Zilka el al., 2015 ,基于增量LSTM在DSTC2做对话状态追踪,具体思想如下:

( Williams 2013 )( Mrkšic, ACL 2015 )

目前对话系统数据较少,我比较看好迁移学习在任务型对话中的应用,尤其是DST这种较复杂的任务。

Williams 2013 ,这是通过 多领域学习与泛化 来做对话状态追踪,比较好的解决了数据目标领域数据不足的问题。

Mrkšic, ACL 2015 ,这是ACL 2015的一篇paper,基于RNN做多领域的对话状态追踪,主要贡献是证明:利用多个领域的数据来训练一个通用的状态追踪模型比利用单领域数据训练追踪模型效果要好。顺便说一句,这篇论文涵盖了很多任务型对话领域比较高产的学者。

Shietal., 2016 ,基于 多通道卷积神经网络 做 跨语言 的对话状态跟踪。为每一个slot训练一个多通道CNN(中文character CNN、中文word CNN、英文word CNN),然后跨语言做对话状态追踪,我个人很喜欢这篇paper,也非常推荐大家好好读读这篇paper。

先来看看方法的整体结构:

再来看看多通道CNN的结构图:

最后看看输入之前的预处理:

( Mrkšić et al., ACL 2017 )

这是发表于ACL 2017的一篇论文,个人觉得水平很高。

先来看一下基于word2vec的表示学习模型,本文提出两种架构:NBT-DNN、NBT+CNN,结构图如下:

再来看看整个模型的结构图,它包含语义解码和上下文建模两部分:语义解码:判断槽值对是否出现在当前query;上下文建模:解析上一轮系统Act,系统询问(tq)+ 系统确认(ts+tv)。

模型还有一部分:二元决策器,用来判定当前轮的槽值对的状态。本文的状态更新机制采用简单的基于规则的状态更新机制。

另外,ACL 2018在本文的基础上提出完全NBT( Fully NBT) ,主要变动是修改基于规则的状态更新机制,把更新机制融合到模型来做 联合训练 。具体更新状态的机制包括One-Step Markovian Update( 一步马尔科夫更新,使用两个矩阵学习当前状态和前一时刻状态间的更新关系和系数)和Constrained Markovian Update(约束马尔科夫更新,利用对角线和非对角线来构建前一种方法中的矩阵,对角线学习当前状态和前一时刻状态间的关系,非对角线学习不同value间如何相互影响)。总之,这个工作扩展的比较细致。

其实还有很多种对话状态追踪的方法,比如基于贝叶斯网络做DST、基于POMDP(部分可观测马尔可夫决策过程)做DST等,因为时间相对比较久远,这里不再赘述。

以上介绍了多种对话系统中的DST技术,下面简单总结下它们的优势和劣势。

任何一项技术想要取得进步,那么他的评测方法是至关重要的(就相当于目标函数之于机器学习算法),所以我列出一些关于DST的评估。遗憾的是,目前DST的评估我感觉并不成熟,这也是制约DST发展的一个重要原因,如果谁能想出更好的评估方法或整理出一个业内公认的高质量数据集,那么一定会在DST(甚至是对话系统)领域有一席之地,引用量也会蹭蹭的上涨。

6.1.Dialog State Tracking Challenge (DSTC)

Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016, Hori et al. 2017

6.2. State Representation:

6.2.1 HIS

Steve Young, Jost Schatzmann, Karl Weilhammer, and Hui Ye. The hidden information state approach to dialog management.

6.2.2 BUDS

Blaise Thomson, Jost Schatzmann, and Steve Young. Bayesian update of dialogue state for robust dialogue systems.

6.3.DST

6.3.1 CRF

Sungjin Lee. Structured discriminative model for dialog state tracking. In Proceedings of the SIGDIAL 2013 Conference. Lee, SIGDIAL 2013

Seokhwan Kim and Rafael E Banchs. Sequential labeling for tracking dynamic dialog states. Kim et al., 2014

6.3.2 NN-Based DST

Multi-domain Dialog State Tracking using Recurrent Neural Network, Mrkšić et al., ACL 2015

Deep Neural Network Approach for the Dialog State Tracking Challenge, Henderson et al., 2013

Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation, Henderson et al., 2014

Incremental lstm-based dialog state tracker, Zilka el al., 2015 .

6.3.3 Neural Belief Tracker

Neural Belief Tracker: Data-Driven Dialogue State Tracking , Mrkšić et al., ACL 2017

6.3.4 Multichannel Tracker

A Multichannel Convolutional Neural Network For Cross-language Dialog State Tracking, Shi et al., 2016

6.3.5 Transfer learning for DST

6.3.5.1 Feature based transfer for DST

Jason Williams. Multi-domain learning and generalization in dialog state tracking . In Proceedings of SIGDIAL. Williams 2013

Hang Ren, Weiqun Xu, and Yonghong Yan. Markovian discriminative modeling for cross-domain dialog state tracking .

6.3.5.2 Model based transfer for DST

Nikola Mrkšic, Diarmuid O Séaghdha, Blaise Thomson,Milica Gaši ́c, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young. Multi- domain dialog state tracking using recurrent neural networks . Mrkšic, ACL 2015

发表prl论文很牛吗

PRL那是相当牛逼啊!这么说吧,如果是博士,他这三篇加起来应该可以搞个“全国百优”了。

下丘脑的TRH能促进PRL的分泌。吸吮乳头的刺激引起传入神经冲动,经脊髓上传至下丘脑,使PRF神经元发生兴奋,PRF释放增多,促使腺垂体分泌PRL增加,这是一个典型的神经内分泌反射。

PRL参与应激反应。 在应激状态下,血中PRL浓度升高,而且往往与ACTH和GH浓度的增高一出现,刺激停止数小时后才逐渐恢复到正常水平。看来,PRL可能与ACTH及GH一样,是应激反应中腺垂体分泌的三大激素之一。

腺垂体PRL的分泌受下丘脑PRF与PIF的双重控制,前者促进PRL分泌,而执行者则抑制其分泌。多巴胺通过下丘脑或直接对腺垂体PRL分泌有抑制作用。

物理类的老大了bikebi(站内联系TA)是非常牛啊,哪个专业mopsite(站内联系TA)热能动力, 做颗粒震动分离的。人比人,比死人啊 呵呵。炫耀自己在中国文化中是不对的,但是引入一个第三方借着来炫耀,那就很自然而然。beiguo(站内联系TA)不少科学家因为在这上面发表的论文拿了诺贝尔物理学奖,你说牛不……要论物理领域专业性,比SN都还牛……SHY31(站内联系TA)特别是现在PRL 砍了一半的发行量 要中真的是 超级牛极高的物理意义 创新意义你同学能发基本保他飞黄腾达了tower598(站内联系TA)敬仰啊,真高啊:rol:souron(站内联系TA)除了NSP,JACS是化学第一期刊,PRL算物理第一期刊除了NSP,JACS是化学第一期刊,PRL算物理第一期刊这么说没啥问题吧 对搞物理的学者看来,最多学贼学的,数学的值得对对话, 其它的学科都是些只有小意思的应用而而已, 不能登大雅之堂的。 生物,医学,化学等现实生活中很重要, 搞的人多,文章期刊都多,IF 看起来就大, 其实学问门槛很低 (如同流行歌) 。虽然说得有点过分,但基本就是事实。duxiushan6(站内联系TA)按市俗价值算,等于两篇左右jacs 一片pnas,0。?呛

PRL(Physical Review Letters)(物理评论快报)的简称,为美国物理学会主办的高水平的学术期刊,影响因子高达7.328(2010年数据),在物理学领域几乎是最权威的杂志,除去综合性的期刊Science和Nature,以及刊载综述文献的Reviews of Modern Physics,以及像nanoletter、JHEP等具体学科的期刊之外,PRL是物理类影响因子最高的学科内综合性期刊。

发表sci论文很牛吗

sci发表论文也是一件很正常的事情,论文是代表一个人的学术能力,还有一个人学理能力的一个代表。美国《科学引文索引》(ScienceCitationIndex,简称SCI)于1957年由美国科学信息研究所(InstituteforScientificInformation,简称ISI)在美国费城创办,是由美国科学信息研究所(ISI)1961年创办出版的引文数据库。SCI(科学引文索引)、EI(工程索引)、ISTP(科技会议录索引)是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具,其中以SCI最为重要。SCI创办人为尤金·加菲尔德(EugeneGarfield,September16,1925~2017)。

大学生发sci很厉害。

SCI是美国《科学引文索引》的英文简称,其全称为:Science Citation Index,创刊于1961年,它是根据现代情报学家加菲尔德(Engene Garfield)1953年提出的引文思想而创立的。时至今日加菲尔德仍是SCI主编之一。

SCI是由ISI(Institute for Scientific Information Inc.)美国科学情报所出版。现为双月刊,ISI除了出版SCI外,还有联机型据SCISEARCH。ISTP(Index to Scientific &Technical Proceeding)也由其出版。

SCI是一部国际性索引,包括有:自然科学、生物、医学、农业、技术和行为科学等,主要侧重基础科学。

sci的科学影响:

科学引文索引以布拉德福文献离散律理论、以加菲尔德引文分析理论为主要基础,通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、个人的科研产出绩效,来反映其在国际上的学术水平。因此,SCI是目前国际上被公认的最具权威的科技文献检索工具。

科学引文索引以其独特的引证途径和综合全面的科学数据,通过大量的引文进行统计,然后得出某期刊某论文在某学科内的影响因子、被引频次、即时指数等量化指标来对期刊、论文等进行排行,被引频次高,说明该论文在它所研究的领域里产生了巨大的影响。

  • 索引序列
  • 在acm发表论文很牛吗
  • 在sci发表论文很牛
  • 发表acl论文很牛吗
  • 发表prl论文很牛吗
  • 发表sci论文很牛吗
  • 返回顶部