• 回答数

    4

  • 浏览数

    300

快到碗里吧吧吧
首页 > 论文发表 > 石墨烯投稿期刊

4个回答 默认排序
  • 默认排序
  • 按时间排序

3未闻花名3

已采纳

因为是Nature这个杂志是世界上历史最悠久的自然文化杂志之一,在这个领域有着非常高的声望,可以说是自然领域的权威杂志。杂志的声望高,门槛高,对于文章的要求也随之就高。

242 评论

牛奶泡泡韵

中国“天才少年”曹原又发Nature了,这是他的第5篇,曾2次一天连发2篇Nature。2018年曹原曾一天连发2篇Nature,2020年5月7日,他再次一天连发2篇Nature,曹原因发现石墨烯超导角度,轰动国际学界,开辟了凝聚态物理研究的新领域,成为Nature杂志创刊149年来,以第一作者身份发表论文的最年轻中国学者。当年,《自然》发布的年度世界十大科学人物中,曹原位居榜首。在Nature发布文章为何难,下面具体分析:

一、《自然》上发表文章是非常光荣的。《自然》上的文章会经常会被引用。这有助于晋升、获得资助和获得其它主流媒体的关注。所以科学家们在《自然》或《科学》上发表文章的竞争非常激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、与作者无关的科学家来检查和评判文章的内容是否正确有效。作者要对评审做出的提问与质疑给予处理,如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章,从而不能发表。

二、科学的发展基本发端于西方。几百年来西方科学在全球也一直占据着主导地位。像《科学》、《自然》、《细胞》、《柳叶刀》等,全球有影响力的杂志期刊都在西方,而全球一流的科学家也都在西方,包括评判科学发展的评价体系也是由西方提出并打造出来的。科学是同行评价体系,如果一个顶尖的研究脱离了同行的评价体系,其成果和地位就很难在业界认可。 所以说,如果你能在nature上面发表文章的话,说明你在这一领域有非常深的认识,研究和了解,并且能够在这个领域创造属于自己的价值,推动这一领域的研究和发展。

三、要想在Nature 上发表文章,首先要对自己领域最近10年的文章进行分类。以氧化物燃料电池领域为例,在2002-2012年区间总共有8篇文章发表在这两个杂志上。如果你研究的小领域没有文章在NS或者Nature的子刊上,那说明杂志编辑认为你的领域不具有很广的关注度。同时,要分析是些什么样的突破发表在NS上。比如在这8篇文章,有6篇文章直接与燃料电池的阳极材料有关。这说明如果你能在阳极的研究中有所突破,存在在NS上发表的可能性。再进一步分析其细节,你会发现更多的规律。 当然,并不是说你知道这些趋势,你一定能够在这样上面有所突破,但是能够给你一个非常具有指引性的思路。

287 评论

白白桃花

近年来,限域空间纳米流体传质领域取得显著进展,特别是一维碳纳米管以及二维纳米结构组成尺寸均一的纳米及次纳米尺度离子通道,孔隙内部微观结构和表面化学特性更为可控,是制备高功率纳米流体离子导体的理想材料结构体系。受自然界独特的微观结构的启发,将二维材料通过简单的湿法纺丝重新组装成具有纳米尺度间隙的纤维结构。重组后形成的二维材料层与层之间的限域空间可以充当分子和离子运输的二维通道。Ti 3 C 2 T x 作为二维材料MXene中发展最成熟的材料之一,具有很多与氧化石墨烯结构类似的薄层二维结构,丰富的表面官能团以及极性溶剂高分散等特性,还具有氧化石墨烯不具备的高导电性,是制备高导电纳米流体纤维的理想材料。但是由于Ti 3 C 2 T x 较大的长径比以及柔性片层结构,在湿法纺丝过程中片层易褶皱、堆叠,造成结构缺陷,显著降低纤维力学、导电特性,阻碍离子在纤维结构内部传导,从而制约了Ti 3 C 2 T x 纤维在传感、储能、制动等多功能方面的应用 探索 。

Ti 3 C 2 T x 分散液在外界剪切力作用下,可形成定向液晶结构,可借助湿法纺丝过程形成二维片层的取向排布结构。 苏州大学 邵元龙教授团队 借助这一原理,控制湿法纺丝过程的喷丝口断面结构以及牵伸速率,诱导Ti 3 C 2 T x 片层形成取向结构,并通过Mg 2+ 离子交联作用,最终制备得到具有高取向度结构的Ti 3 C 2 T x 纤维,实现力学性能,导电性能,离子传导性能以及电化学性能的提升。相关工作以“Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation”发表在《 ACS Nano 》上。

这项研究工作中Ti 3 C 2 T x 纤维取向度大幅度的提高主要依赖于 喷丝口的设计以及牵伸过程 。 受 流体定向 纺丝过程的启发 ,作者设计不同的喷丝口来探究Ti 3 C 2 T x 片层在流动过程中的排列情况。当处于液晶态的Ti 3 C 2 T x 纤维经过 高度纵横比的扁平状流体通道时,受到的剪切力在横向上显著增强;在水平剪切力引导下, Ti 3 C 2 T x 片层沿着纤维轴向定向排列。与圆状通道相比,扁平状流体通道有效解决了了剪切力梯度变化问题,减少了纤维中片层褶皱,孔洞等缺陷。为了提升纤维的取向度,作者对所制备的Ti 3 C 2 T x 初生凝胶纤维进行 牵伸处理 ,经过 牵伸后的纤维内部片层排列更加紧密,消除了片层间不规则的孔隙 ,这种取向结构将加速电子传输,减少电荷转移电阻和电能损失,经过WAXS测试纤维的 取向度高达0.86 。与此同时,作者采用 离子交联 进一步提升Ti 3 C 2 T x 纤维的力学性能。镁离子进入层间后与Ti 3 C 2 T x 片层 表面含氧官能团产生静电相互作用,减弱片层间双电层的厚度,增强层与层之间相互作用力 。经过交联之后的纤维力学强度高达 118MPa ,电导率提升到7200 S cm –1 ,实现优异的电子传导。通过红外热成像仪对纤维导热性能进行测试,发现 Ti 3 C 2 T x 纤维在低功率下能够快速升温到108 。

Ti 3 C 2 T x 取向纤维的离子传导及电化学特性

高定向的Ti 3 C 2 T x 纤维在保持高机械性能和电子传导的同时,还能够实现优异的离子传导。与无序片层组装成的纤维相比, 定向纤维内部片层能够互相连接构成连续的层状通道 ,离子在其中的传输路径更短,传输速率更高 。当电解质被限制在纳米通道中时,电解质会表现出截然不同的性质。在比德拜长度更窄的纳米流体通道中,内壁上的表面电荷排斥单极离子并吸引反离子。这种单极离子传输可以使离子电导率提高几个数量级在1mM盐浓度下,高度定向的Ti 3 C 2 T x 纤维表现出9.7 10 4 S cm 1 高离子电导率。有效的离子输运电导率还可以促进离子在Ti 3 C 2 T x 薄片表面的快速输运,形成电双层,提高功率密度和速率能力。定向Ti 3 C 2 T x 薄片可以与密集填充的薄片形成受限的纳米流态离子传输通道,在这种电解质离子约束场景下,局部库仑有序排列被打破,层状受限孔可以有效地用于电荷存储。对Ti 3 C 2 T x 片层进行定向,同时使层状孔适应电解质离子的大小,这是一种很有前途的策略,可以最大限度地提高比电容,高达1360 F cm 3 。

小结

作者通过微流体通道控制二维片层材料取向排列,构筑快速离子传输通道;采用离子交联进一步提升纤维各项性能,从而制备出优异的Ti 3 C 2 T x 纳米流体取向纤维,有望在人工纤维组织、生物传感器分析和神经电子学中得到广泛的应用。

团队介绍:

邵元龙 ,苏州大学能源学院特聘教授,博导,北京石墨烯研究院石墨烯生物质纤维课题组组长。2016年获得东华大学材料加工工程专业博士学位,博士导师为李耀刚教授和王宏志教授,期间于2013-2015年于美国加州大学洛杉矶分校Richard B. Kaner教授课题组博士联合培养。2016-2018年剑桥大学石墨烯中心从事博士后研究,合作导师为Andrea C. Ferrari教授和Clare P. Grey教授。2018-2019年于沙特阿卜杜拉国王 科技 大学任职研究科学家,合作导师为Vincent C. Tung教授。2019年9月,加入苏州大学能源学院,任特聘教授。迄今以第一作者、通讯作者在 Nat. Rev. Mater. , Nat. Commun. (2篇), Adv. Mater., Energy Environ. Sci., Adv. Energy Mater., ACS Nano (2篇) ,Adv. Funct. Mater., Mater. Horiz. (2篇)等国际知名学术期刊发表SCI论文26篇,他引4300余次,7篇被ESI收录为高被引论文(Top 1%),2篇被ESI收录为热点论文(Top 0.1%)主持国家自然科学基金,江苏省自然科学基金青年基金,国家重点实验室开放课题等多项科研项目。担任国际期刊《Frontiers in Chemistry》(影响因子3.782,中科院SCI化学2区)“Advanced Materials for Supercapacitors”专刊客座编辑。

李硕 ,2019年9月至今为苏州大学能源学院与材料创新研究院硕士研究生,导师为邵元龙教授。主要从事功能纤维器件相关研究。入学以来以第一作者在ACS Nano杂志上发表论文;荣获苏州大学研究生学业奖学金二、三等奖。

【课题组招聘】

招聘石墨烯及复合纤维方向博士后2-3名

招聘需求

1. 年龄原则上不超过 35 岁, 身心 健康 ,具有较高的思想道德素养、良好的团队合作精神和奉献精神;具有一定材料、化学领域的研究基础;有较强的英文阅读和写作能力;

2. 博士后要求具有国内外高校或者科研院所的材料、化学、物理等专业博士;

3. 具有纤维纺丝、柔性可穿戴器件、理论计算等相关研究背景人员,优先录取。

应聘材料:

1. 个人简历,包括基本信息、学习和科研经历、已有成果;

2. 代表论文电子版;

工作待遇

按照苏州大学统招博士后发放相关待遇,具体如下:

(一) 统招博士后人员聘期内的总薪酬由基本年薪和奖补金两部分构成。绩效评估优秀者的总薪酬为 100 万元,绩效评估良好者的总薪酬为 80 万元,绩效评估合格者的总薪酬为 60 万元。

1.基本年薪:20 万元(去除学校承担的 社会 保险和公积金之后的税前收入),按月发放。

2.奖补金:根据绩效评估结果按年度发放。

(二)对表现优异的博士后,合作导师将追加基本年薪,相关追加部分不计入 聘期内总薪酬,额外发放。

(三)提供 0.1 万元/月的租房补贴(不计入总薪酬)。

(四)在站期间获得国家博士后创新人才支持计划、博士后国际交流计划引进项目、博士后国际交流计划派出项目、香江学者计划、澳门青年学者计划、中德博士后交流项目等项目资助的,所获得的资助补贴不计入学校的总薪酬,另外叠加发放。

(五)在站期间获得的科研成果可按照学校规定享受学校科研成果奖励。

(六)在站期间可根据学校专业技术职务评聘相关规定参加专业技术职务任职资格评审。

(七)绩效评估优秀者,可优先推荐应聘校内教学科研岗位。

有意向者请将个人简历,以及代表作等相关信息发送到邮箱: 。

投稿模板:

单篇报道: 上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!

系统报道: 加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦

105 评论

jiuxing2015

每个人的生命都会经历不同的成长阶段,在20多岁的年纪里,正是享受美好人生的时光。大多数人的年轻岁月,有收获,有失去,有彷徨,也有惊喜,但是,总有一些人超脱正常人的范畴,做出令绝大多数人一生都无法企及的成就。

例如,在22岁时被世界顶级科学杂志《自然》评选为“2018年度十大科学”之首的天才少年曹原。他是一位95后,他也是一个长相普通的年轻人,然而,他的传奇经历却令人惊艳赞叹。

曹原

1996年,曹原在素有天府之国美誉的成都出生,三岁时,他跟随父母举家搬迁至深圳。那个时候的深圳,已经被浓烈的电子氛围所包围着,人们常说90年代的深圳有三多:钱多、人多、电子产品多。自从曹原记事起,他的周围就充满了电子产品。

别的孩子在这座城市接触到的是各种精美的玩具,曹原在这座城市,能够找到却是各种电子产品的元件和线路。小时候,他最喜欢做的事,就是在那些老旧的电子市场淘回来一大堆老物件,将这些东西拆了又装,尤其是里面的电子线路,一直是他的最爱。

实验室

这样的生活氛围与兴趣爱好,为曹原改写世界科学未来进程,埋下了伏笔。2007年,11岁的曹原被选拔入深圳耀华实验学校读书。在整个广东省而言,深圳耀华自成立之初就有着“天才学校”的美誉,凡是能够进入这所中学读书的少年,都有着异于常人的天赋才华。从这所学校出来的差生,只能够读深圳大学;平常学生的初级目标是清华北大;能让耀华中学的优秀学生奋力拼搏的学习目标,都是世界顶尖大学牛津、斯坦福等学校。

曹原

即便这所高校中的学生都是优中选优的尖子生,曹原仍然在同届学生中脱颖而出。所有的课程,他一听就会;他对于课本知识的理解,远超出于老师的教学大纲。下课的闲余时间,曹原利用同龄孩子玩游戏、追明星的时间,进行着一个人的电子元件试验。善解人意的父母为了支持曹原的爱好,专门为曹原在家中搭建了一个实验室,一些小型实验的拆线、安装,曹原一个人就能在家中的实验室完成。

曹原中学照片

曹原这种过人的学习天赋,受到了学校校长的重视,为了让曹原得到最优秀的教育资源,学校为他组建了一支专门的教学团队,帮助曹原迅速学习初中和高中课程的同时,还专门对曹原的创新探究精神进行了培养。仅用了三年的时间,14岁的曹原已经完成了初高中的所有课程,并于2010年参加高考,当年,曹原以669分的高考成绩考入了中国科学技术大学少年班学院。创立于1978年的中科大少年班,从来不缺乏所谓的“神童、天才”,但是曹原的出现,依然让这个传说中的少年班增加了一个传说级的人物。

左一为曹原

曹原成为了老师和同学眼中公认的“大神”,但是,这位大神少年从来没有恃才傲物过,明明已经占到了同龄人科技圈的顶端,曹原仍然用沉稳低调的步伐,完成了自己大学本科的学业。读大学期间,他主动到曾长淦教授的实验室学习,在老师的指导下,他勤勤恳恳地进行石墨烯等方面的理论研究。

2012年,曹原被学校派为首批国际交流生,前往密歇根大学进行学习;2013年,他斩获顶尖海外交流奖学金,并获得了前往牛津大学进行为期两个月科学试验;2014年,曹原在获得学院最高荣誉奖学金的同时,为了继续深造自己的科研理论,他前往美国麻省理工大继续学习。

曹原本科毕业

这个在中国一鸣惊人的天才少年,在这个被称为全球顶尖学术天堂的地方,又将绽放出怎样的光芒?在麻省理工学习期间,他用了4年的时间潜心于研究石墨烯的超导性。其实早在国内读书期间,曹原就已经提出过如何改变材料性质达到超导状态的问题,多年以后,他仍然在坚持这个问题的研究,并且得到了震惊物理界的答案。2017年,曹原在该所学校攻读博士期间,他根据理论推测出:叠加在一起的两层石墨烯会发生巨变,从而能够实现超导体性能。然而,对曹原的这个推测,物理学界的许多大佬嗤之以鼻。

麻省理工学院

他们认为,一个年仅22岁的中国准博士生,竟然仅凭借自己的推测理论,就想要解开“电力物理界的黑暗时代”存在了30年悬而未解的问题,这是天方夜谭。面对这种质疑声与嘲笑,曹原没有丝毫退缩,他信心满满地进行两层石墨烯材料特定叠加实验,即便是在得出正确实验结果之时,曹原仍然花费了6个月的时间,为他确立石墨烯传导理论准备足够多的支撑资料与论文。

就在2018年的3月5日,曹原将自己与石墨烯超导理论有关的两篇论文投稿给《自然》杂志编辑部后,他的论文令全球科学界震动万分。一个名不见经传的年轻少年,竟然凭借一己之力打破了困扰物理学界107年的难题,并让石墨烯超导领域取得了极大突破。

2018《自然》杂志封面

同年,《自然》杂志10大人物封面评选中,整个封面图片竟然是采用石墨烯的碳环结构与数字“10”作为基础设计而成。这本世界顶级学术期刊杂志,迎来了最年轻的中国学者,肯定了曹原对于这个全新物理研究领域的贡献。从此以后,曹原不仅是中国物理学家的骄傲,全球各界物理学家也都知道他的名字。

从那个时候到今天,仍然有无数的顶级大学和科研机构向曹原伸出橄榄枝,甚至希望他能够以教授的身份任职。对于全球顶尖物理机构和大学的邀请,曹原做出了这样的答复:“我学成以后要回到中国的。”他是中国少年,他有着中国少年的雄心壮志,他为当下青年树立了榜样,这样的优秀人,才能够称之为“全民偶像”。

曹原理论成就

284 评论

相关问答

  • 石墨烯投稿期刊排行榜

    是的,石墨烯是一种非常特别的材质。也具有着一定的常温超导能力。

    MrStoneLiu 5人参与回答 2023-12-07
  • 石墨烯制备期刊投稿

    每个人的生命都会经历不同的成长阶段,在20多岁的年纪里,正是享受美好人生的时光。大多数人的年轻岁月,有收获,有失去,有彷徨,也有惊喜,但是,总有一些人超脱正常人

    虎妞1989 6人参与回答 2023-12-11
  • 石墨烯投稿期刊推荐

    成果简介 高容量硅 (Si) 被公认为高性能锂离子电池 (LIB) 的潜在负极材料。但是,放电/充电过程中的大体积膨胀阻碍了其面积容量。 本文,上海交通大学微纳

    咩~咩~羊 2人参与回答 2023-12-09
  • 石墨烯制备期刊投稿格式

    可以试试RSC advances、jmc,如果文章有新意,建议投carbon

    兴业腾达装饰 4人参与回答 2023-12-06
  • 石墨烯制备期刊投稿要求

    制备石墨烯最常见的思路是先氧化石墨,然后利用超声、高温等手段使得石墨一层一层剥开(当然也许是几层),最终还原。工业上今年尚未有批量生产,能见到的都是企业、研究所

    蜜儿桃子1 5人参与回答 2023-12-08