• 回答数

    3

  • 浏览数

    244

守護天使109
首页 > 论文发表 > 德国机器人论文发表

3个回答 默认排序
  • 默认排序
  • 按时间排序

小琳子雄霸天下

已采纳

编辑 邓函云

Sebastian Thrun,德国发明家、企业家、教育家和计算机科学家。Thrun曾担任卡内基梅隆大学副教授、斯坦福大学计算机科学系与佐治亚理工学院的兼职教授,致力于机器人、人工智能、教育、人机交互和医疗设备的研究,发表了约380篇科学类论文和11本著作。

在商业领域中,Thrun也创立了很多知名项目,在担任谷歌的副总裁兼研究员期间,创立了谷歌的自动驾驶 汽车 团队、谷歌X和谷歌眼镜等。他还是全球知名慕课企业Udacity的董事长兼联合创始人、Kitty Hawk 公司的首席执行官。

他赢得了许多奖项:

从小镇走出的机器人天才

Thrun于1967年出生于国际知名的刃具制造中心德国索林根(属于西德)。出生在“二战”后“婴儿潮”时期的 Thrun,与其他同时代的德国青年一样,走在反对种族歧视、妇女解放运动以及反帝国主义的最前线,具有与生俱来的叛逆精神。

与其他同时代青年一样,Thrun也想让周围的人都听从自己的命令,但是他发现自己周围的人难以听从自己,他陷入了深深的挫败感。不久,Thrun发现计算机会听从他的命令,会对编写的程序做出预期的反应,他开始痴迷于为TI-57计算机编程。

TI-57计算机除了减轻了Thrun青少年时期的挫败感之外,也无意中让他踏入了计算机科学领域。由于长期钻研计算机编程,熟练的编程技巧让学生时代的 Thrun出尽了风头,他设计机器人,赢得各项科学竞赛并在电视上露面。

1988年,21岁的Thrun同时获得希尔德斯海姆大学的计算机科学、经济学和医学三个学士学位。1993年,他获得了波恩大学计算机科学硕士学位并留校继续攻读博士。

博士期间,Thrun 开发了许多自主机器人系统,并在导师Armin引导下启动了研究地图学习与高速导航的“犀牛项目”。Thrun在计算科学领域所展现出的科研能力让他在1995年顺利获得博士学位。

打造多个成功的机器人项目

早在20世纪末,计算机领域的发展如火如荼,而美国作为当时世界上 科技 最发达的国家,吸引了世界各地的优秀青年学者。

刚获得博士学位的Thrun也加入了这些优秀青年之中,加入了美国卡内基梅隆大学计算机科学系研究团队,但远渡重洋的他并没有停止对“犀牛项目”的研究工作:

化身谷歌“无人驾驶 汽车 ”之父

Thrun长期致力于对机器人的实践 探索 。在内心深处,他始终记得最好的朋友死于一场车祸,因此想研发出一辆能够自动驾驶的 汽车 ,给予驾驶者更高的安全保障。在2003年成为斯坦福大学副教授后,Thrun开始重点从事机器人 汽车 的研发工作。2004年,Thrun被任命为斯坦福人工智能实验室主任。

当时,美国为了推动军事领域的自动驾驶技术发展,授权美国国防部高级研究计划局举办了无人驾驶挑战赛(DARPA Grand Challenge)。在观看了第一届DARPA挑战赛后,Thrun对DARPA挑战赛产生了浓厚的兴趣。

Thrun便带领他斯坦福的学生,将一辆“悍马”改造为自动驾驶 汽车 ,并命名为“Stanley”,报名参加了2005年第二届DARPA挑战赛,Stanley在自动驾驶状态下行驶了6个多小时,完成挑战赛夺得冠军。

2007年,Thrun带领团队再次参加DARPA挑战赛,他们研发出的机器人 汽车 “少年”在比赛中获得第二名的成绩。此次比赛中,Thrun最大的收获是结识了谷歌创始人Lawrence Page。两人同是斯坦福大学的校友,而且有很多相似的地方,他们迅速成为了好友。

2008年,在谷歌的邀请下,Thrun申请了学术休假,并带领他的学生加入谷歌,开始初步进行谷歌无人驾驶 汽车 研究工作,内部代号“Project Chauffeur”。2011年,Thrun放弃了他在斯坦福大学的职位加入谷歌,正式成为谷歌研究员。

他与谷歌创始人Lawrence Page和Sergey Brin共同建立起了一个秘密研究部门谷歌X。谷歌X在Thrun的领导下,创建了自动驾驶(Google Glass)项目,设计了“街景车”(Waymo)及Google Loon等多个项目。 Thrun本人被称为“无人车之父”。

谷歌也给予了Thrun教授非常高的评价: “作为谷歌X和无人驾驶 汽车 项目的联合创始人,Thrun极大地推动了计算机科学和机器人技术的发展,为无人驾驶技术的发展铺平了道路。”

投身慕课行业 创建Udacity

2011年,在加入谷歌的同时,Thrun教授看到了萨勒曼汗创立的可汗学院,从中感知到了慕课行业的巨大潜力,以及这种全新的教育模式传播知识的力量。因此,他与自己的学生共同创立了Udacity,一家营利性教育公司。

Udacity成立的初期,也是慕课热潮兴起的时期。当时,市场上已经存在大量的慕课企业和平台,包括Udemy、Cousera等慕课企业,以及类似Edx这种由麻省理工学院与哈佛大学创立的非营利性教育平台。因此,Udacity想从行业中突出,并不是一件容易的事情。

起初,Udacity定位为与大学合作提供在线 科技 课程的MOOC平台。在早期的发展中,与大学合作的模式取得了一定成效,Thrun教授的斯坦福课程《CS 373:机器人 汽车 编程》作为 Udacity 提供的首批课程之一,吸引了 190 个国家的 160,000 名学生,最小的10岁,最大的70岁。

后来,随着业务逐渐推进,他们发现这一模式太具挑战性,并且成本高昂。Udacity便转型为一家面向成人的职业学习平台,致力于以 科技 教育推动职业发展。Udacity联合 科技 公司,依据实际工作技能要求设计并制作出相应的课程。

2014年6月,Udacity发布了Nanodegrees和有IT人才需求的 科技 企业共同研发的课程,旨在为企业输送人才,同时帮助找寻更优工作机会的人提升其所需要的专业技能。成功的企业定位,让Udacity获得了资本市场的青睐。同年,Udacity便获得了3500万美元的融资,这让企业的业务得以进一步发展扩张。

很快,Thrun教授为了追寻更远大的目标,实现在全球普及教育的想法。2014年9月,他退出谷歌 X,专注担任Udacity联合创始人兼首席执行官。Thrun教授本人对这段经历深有感触,用他自己的话讲:“我没想到我会成为一家公司的在线讲师或首席执行官,一个想要使教育公平化的企业创始人。”

雄心勃勃的“无人飞车”计划

对于Thrun教授本人而言,创立Udacity仅仅是自己事业的一部分。当2019年Dalporto接任Udacity首席执行官时,Thrun已经做好了全身心投入“无人飞车”计划的打算。

在认识谷歌创始人Lawrence Page时,两人讨论了很多,他们在人工智能领域有很多相似的看法。因此,Lawrence Page除了邀请Thrun加入谷歌负责谷歌X项目,还在2010年与他共同创立Kitty Hawk公司,共同研究电动 汽车 。

从DARPA挑战赛举办以来,在Kitty Hawk公司成立之初,市场上已经涌现出许多科学家创立的自动驾驶公司,如Waymo、通用 汽车 (GM)Cruise、Aurora、Argo AI、Nuro、Zoox等,后来这些自动驾驶公司基本都成为行业内耳熟能详的大型 汽车 公司。但是,Kitty Hawk公司在默默推进一个更加富有创意的想法,研究飞行电动 汽车 。因此,这家公司一直秘密运行,直到2016年引发了一波电动垂直起降车辆的热潮,才进入大众视野。

2020年12月,美国已经接受了Volocopter的同步适航审定申请。Volocoter公司坚信,他们的飞行出租车将在 2023 年获得安全批准。同时,合作发展也成为飞行出租车企业快速打开市场的另一种方式。佛蒙特州的Beta公司将在2024年开始向UPS交付其飞机的货运版本,并在2024年向Blade城市空中交通提供乘客版。

与现有已经开始进行试点的飞行 汽车 不同的是,Kitty Hawk希望实现无人驾驶。Thrun教授认为,通过无人驾驶,飞行出租车将降低成本,使每英里的运营成本将降至1美元以下,会比乘坐优步要便宜。

未来,如果Kitty Hawk成功说服监管机构,允许无人飞行出租车上市,那这一行业将迎来翻天覆地的巨大变化。

总 结

Sebastian Thrun教授在科研与商业上都取得了巨大的成功,并且在多个领域都做到非常优秀的成绩,可以归因于以下几点:

1. 充满激情: 他曾告诉他在斯坦福大学的研究生:“不要担心你要选择什么工作, 因为你的工作选择了你。让你的工作来挑选你。找到你热爱的东西。”他自己也是如此,从无人车到慕课再到飞行出租车,Thrun教授对各项工作都保持着激情,从不担心挑战与困难。

2. 持与创新: 成功需要持之以恒,并且从失败中找到进步的方法,因为要进步总是要坚持工作,而在坚持的同时,还要思想开放,随时准备倾听。如果不在坚持的基础上创新,那只会重复错误。Thrun教授面对Udacity的困境时,没有轻言放弃,重新找准定位,最终取得成功。

3. 深耕专业领域: 无论是最早的谷歌无人车,还是后来创立的Udacity,以及之后的飞行出租车项目。Thrun教授始终围绕着自己研究多年的机器人专业开展工作,深耕专业领域,让自己的价值跟 社会 价值相契合,这是每一个创业人都需要懂得的道理。

参考信息来源:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

267 评论

美洋洋童装店

德国南部有一座名为哥达的小镇,这个小镇周围环绕着著名的图林根森林(Thuringian Forest)。从哥达镇向南20公里,有一个名为Bromacker的采石场,采石场的地层属于二叠纪时期,地层中保存了大量2.9亿多年前的古老生命遗迹。

1998年,古生物学家在Bromacker采石场发现了一具化石(编号:MNG 10181),化石保存的非常完整,四肢结构清晰可见。经过研究,古生物学家在《卡耐基自然 历史 博物馆快报》( Bulletin of the Carnegie Museum of Natural History )上发表了论文《来自德国中部早三叠世一新钝头龙类(钝头龙亚目)——柏氏山行龙》(A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of Central Germany)。山行龙的化石来自Tambach Formation,距今约2.9亿年前。

山行龙的属名“ Orobates ”来自希腊语中的“ Oros ”(意为“山脉”)和“ bates ”(意为“行走”),因为研究人员认为这种动物是在高地环境下活动的。山行龙的模式种名为柏氏山行龙( Orobates pabsti ),种名“ pabsti ”则是献给在研究采石场化石时做出杰出贡献的柏斯特(W. Pabst)。尽管从化石上看,山行龙很像是爬行动物,但是它所在的钝头龙亚目其实是两栖动物的一个分支。

根据完整的化石判断,山行龙的体长可达1米,体重约4公斤。山行龙的脑袋较短,嘴中长有粗大的牙齿,以纤维较粗的植物为食。山行龙的身体较宽,尾巴细长,皮肤类似今天的大鲵。从骨骼上看,山行龙的四肢强壮,四肢上长有五个粗大的指头。参考今天的两栖动物之后,古生物学家认为山行龙在陆地上应该像今天的大鲵一样爬行,腹部是完全贴着地面的,因此在陆地上的运动能力受到了极大的限制。

山行龙的化石非常完整,一起发现的还有它们的足迹化石。通过对于足迹化石的研究,古生物学家推翻了之前的推测,认为山行龙并不是腹部贴地爬行的,它们很可能具有直立的四肢结构。

正是由于足迹化石的发现,古生物学家开始重新考虑化石形成过程中岩层的变形和周围岩石保存的状态影响了化石原来的样子,这种影响是否妨碍了对山行龙解剖学的准确重建。通过三维重建,以微焦计算机断层扫描技术恢复山行龙碎片化的骨骼化石,进而评估其体重、重心和肩关节和髋关节的活动性。研究结果表明,山行龙很可能具有直立的四肢结构,而非之前推测的像大鲵一样贴着地面,其身体的重心位于髋关节和后肢上。

该研究发表在2015年9月的《 PLoS ONE 》杂志上,名为《对于基干羊膜动物柏氏山行龙(钝头龙类)的三维骨骼重建:重量、重心和关节流动性分析》(A Three-Dimensional Skeletal Reconstruction of the Stem Amniote Orobates pabsti (Diadectidae): Analyses of Body Mass, Centre of Mass Position, and Joint Mobility)。

古生物学家的研究已经表明山行龙具有四肢直立行走的步态,但是这种步态到底是如何运行的,又是如何留下相匹配的脚印的,细节依然成迷。为了揭开其中的奥秘,来自柏林洪堡大学的进化生物学家John Nyakatura与位于洛桑的瑞士联邦理工学院的机器人专家Kamilo Melo等人组成了研究团队,他们将古生物学、生物力学、计算机模拟、动物活体演示和仿生机器人结合起来,制造了一个山行龙仿生机器人,这个机器人名为“OroBOT”。

OroBOT看上去很粗糙,其实非常精密,它以山行龙的骨骼为基础研制,整条脊柱中有八个驱动关节,能够实现脊椎的自然弯曲,每条腿上有五个驱动器,能够模拟不同的运动形态。在试验之中,研究人员让OroBOT采用了多种步态行走,其中的四肢直立行走、尾巴不拖地的模式留下的脚印与足迹化石完美吻合,证明它们行走时像今天的凯门鳄一样。

关于OroBOT的相关研究发表在2019年1约的《自然》杂志上,论文名为《基底羊膜动物的逆向工程运动研究》(Reverse-engineering the locomotion of a stem amniote)。这项研究的意义在于证明了早期四足动物(两栖动物)直立行走的时间早于我们之前的研究,这种高级的直立行走模式在羊膜动物出现之前就已经存在了,而且山行龙所在的类群与羊膜动物有着很近的演化关系,所以羊膜动物直立行走并不是独立演化出来的,而是继承自两栖动物。

使用仿生机器人来复原和研究古生物是一项创举,这项研究本身证明早期陆生脊椎动物适应环境和运动演化的速度比我们预期要快得多,而仿生机器人与古生物学的结合在未来 探索 地球生命演化中会有更为广阔的应用前景。

参考资料:

1.Berman, D. Berman, D. S, Henrici, AC, Kissel, R., Sumida, SS, and Martens, T. S, Henrici, AC, Kissel, R., Sumida, SS, and Martens, T. (2004): A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of Central Germany. Bulletin of the Carnegie Museum of Natural History No 35: pp 1-37. abstract]

2.Nyakatura, John A.; Allen, Vivian R.; Lauströer, Jonas; Andikfar, Amir; Danczak, Marek; Ullrich, Hans-Jürgen; Hufenbach, Werner; Martens, Thomas; Fischer, Martin S. (10 September 2015). "A Three-Dimensional Skeletal Reconstruction of the Stem Amniote Orobates pabsti (Diadectidae): Analyses of Body Mass, Centre of Mass Position, and Joint Mobility". PLoS ONE. 10 (9): e0137284. doi:10.1371/journal.pone.0137284. PMC 4565719. PMID 26355297.

3.Berman, D.S.; Henrici, A.C. (September 2007). "First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany". Journal of Vertebrate Paleontology. 27 (3): 553–570. doi:10.1671/0272-4634(2007)27[553:FWTAOP]2.0.CO;2.

4.Nyakatura, John; Melo, Kamilo; Horvat, Tomislav; Karakasiliotis, Kostas; R. Allen, Vivian; Andikfar, Amir; Andrada, Emanuel; Arnold, Patrick; Lauströer, Jonas; R. Hutchinson, John; S. Fischer, Martin; J. Ijspeert, Auke (16 January 2019). "Reverse-engineering the locomotion of a stem amniote". Nature. 565. doi:10.1038/s41586-018-0851-2. eISSN 1476-4687.

5.Baker, Noah (16 January 2019). "Watch: Robot reveals how ancient reptile ancestor moved". Nature. Retrieved 18 January 2019.

图片 / 网络(侵删)

文字 / 江氏小盗龙(古生物 探索 )

排版 / 江氏小盗龙​​​​

286 评论

凌空抽筋

随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文

357 评论

相关问答

  • 机器人期刊投稿

    机器人技术与应用杂志投稿费用多少1月19日机器人技术与应用杂志投稿基本要求2-3个版面起发,算下来大概是3500-6000字符,投稿费用在1000-3000的样

    0密星猛龙0 3人参与回答 2023-12-09
  • 德国机器人论文发表

    编辑 邓函云 Sebastian Thrun,德国发明家、企业家、教育家和计算机科学家。Thrun曾担任卡内基梅隆大学副教授、斯坦福大学计算机科学系与佐治亚理工

    守護天使109 3人参与回答 2023-12-07
  • 机器人发表论文

    现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文

    又肥又馋的兔子 3人参与回答 2023-12-08
  • 机器人论文发表数

    论文自动降重:论文自动降重机器人是一款能够解决论文重复度高,自动降重的RPA机器人。

    六月之程 3人参与回答 2023-12-10
  • 机器人论文好发表

    《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工

    冬射未至 3人参与回答 2023-12-08