• 回答数

    6

  • 浏览数

    220

我想文文静静
首页 > 论文发表 > 沙俄出口结构分析论文发表

6个回答 默认排序
  • 默认排序
  • 按时间排序

春雨蒙蒙a2015

已采纳

如果沙特最终打输了这一场石油,这样的话,那么对于他们的经济发展可以说是非常重大的打击。毕竟他们一直是靠着石油这种东西赚钱的,他们也很少有别的能够赚钱的途径了。

110 评论

早秋2013

沙特国内经济主要依靠石油开采,其他工业很少,一旦油战失败,会造成国内经济崩溃。

357 评论

氷之世界

1.孔子一辈子勤于学习,知识渊博,后人尊称他为圣人。其实他本人还是很诚实,很谦虚的。他曾说过:“三人行,必有我师焉。” 2.蔺相如因为“完璧归赵”有功而被封为上卿,位在廉颇之上。廉颇很不服气,扬言要当面羞辱蔺相如。蔺相如得知后,尽量回避、容让,不与廉颇发生冲突。蔺相如的门客以为他畏惧廉颇,然而蔺相如说:“秦国不敢侵略我们赵国,是因为有我和廉将军。我对廉将军容忍、退让,是把国家的危难放在前面,把个人的私仇放在后面啊!”这话被廉颇听到,就有了廉颇“负荆请罪”的故事。 3.三峡工程大江截流成功,谁对三峡工程的贡献最大?著名的水利工程学家潘家铮这样回答外国记者的提问:"那些反对三峡过程的人对三峡工程的贡献最大."反对者的存在,可让保持清醒理智的头脑,做事更周全;可激发你接受挑战的勇气,迸发出生命的潜能.这不是简单的宽容,这宽容如硎,磨砺着你意志,磨亮了你生命的锋芒. 4.屈原遭放逐愤而赋离骚 5.司马迁受宫刑愤而成史记

139 评论

新羊年新气象

盖文王区而演周易 仲尼萼而作春秋 屈原放逐 乃赋离骚 左秋失明 厥有国语 孙子宾脚 兵法修列 不违迁属 世转吕榄

267 评论

zhuliangli

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c=4.8 K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在4.8 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc=4.6 K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为2.46 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc=0.66 K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)0.5Mn1.25[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel H.M. J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel H.M. Proc. R.A. Welch Found. Chem. Res.1967;11:144还在常温区,如[Fe(Htrz)4 Wickman H.H. ,Trozzolo A.M. ,Williams H.J. ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller J.S. ,Calabrese J.C. ,Epstein A.J. ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 ManriquezJ.M. ,Yee G.T. ,Mclean R.S. ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong Z.J. ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,Eng.Series, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler W.D. ,Babel D.Z. ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 MillerJ.S. ,EpsteinA.J.Angew. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,NovakM.A. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand P.M. ,Khemani K.C. ,Koch A. ,et al. Science,1991;254:301四、展 望16 MillerJ.S. ,ZhangJ.H. ,Reiff W.M. ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 MillerJ.S. ,CalabressJ.C. ,DixonD.A. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,LongS.M. ,MillerJ.S. Phys.Lett.A,1993;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 MillerJ.S. Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

258 评论

金鳞平面设计

个性禀赋 1. 弱点 第二次世界大战期间,美国陆军反间谍队的高级教官伯尼•费德曼,在一次战地值勤中不幸被德国军虏获。鉴于费德曼的特殊身份,为了从他嘴里掏出所需要的情报,德国审讯员施出了种种手段:严刑拷钉,心理压力,耍弄诡计,给以厚遇。然均未奏效,以至于德国审讯员无奈地道:费德曼大概愿意我们折腾他,这样给他机会成为英雄。但这位铁打硬汉,最终却被出卖了——出卖他的人不是别人,正是他自己的弱点。 原来德国人后来把他送入德国一所培养领导间谍的干部学校去,并让他每天陪同一个教官上课。这位教官不知是有意还是无意,每次讲给学员的东西大都是错误的。起初,费德曼极力忍耐,冷笑置之。有一天他实在忍无可忍,便情不自禁地批驳了德国人一通,并谈了美英机关一些工-作的内幕,还向德国人提了一些应该怎样搞清通讯网的建议。自然,这些正是德国人希望知道的。 费德曼的悲剧,在于他不容亵渎的职业神圣感和其强烈的敬业精神。德国人正是利用了这一点,将欲取之,乃先诱之,刺激得他“一时技痒”,在维护他的职业尊严中落入对方的圈套。 分析:费德曼的职业神圣感和其强烈的敬业精神,本是优点,但优点有时却会成为别人攻击的弱点。德国人正是抓住这一点,达到了自己的目的。 ★用人者,取人之长,辟人之短;教人者,成人之长,去人之短也(清•魏源) ★责其所难,则其易者不劳而正;补其所短,则其长者不功而遂----(资治通鉴) ★不以小恶掩大善,不以众短弃一长(宋•朱熹) ★小善不足以掩众恶,小疵不足以妨大美 ★取人之长,补己之短 话题:“优点与弱点”“最大的敌人是自己” 2.身陷囹圄志不移 尼可洛•帕格尼尼是意大利小提琴家、作曲家,被人称为“独弦琴上练出来的小提琴家”。 他的艺术道路坎坷不平。他生于一小商人家庭,据说,曾因为政治犯罪坐了20年牢。但即使是身陷囹圄,他也不曾灰心,而是坚持狱中学习。他在狱窗边,用一把只剩下一根弦的提琴,坚持苦练,几十年如一日,终于在演奏技巧方面达到了出神入化的境地。他的创作和演奏,奔放不羁,富于激情,对同时代的浪漫派作曲家有较大的影响。 分析:身陷囹圄而能最终成才,一方面要有坚强的信念和毅力,另一方面,也有对生命的渴望和对艺术的执著。 话题:“永不放弃”“信念与毅力” 3.只有状元学生没有状元先生 卢嘉锡是我国著名化学家,他在20世纪30年代曾兼任福建省立夏中学数学教师。当时,有个学生故意拿了一道登在外国杂志上悬赏解答的数学题目为难卢嘉锡,但他并不介意,只是说:“我留着做做看,看能否解答出来。”经过一天多的精密计算,卢嘉锡把题答了出来。他向那位学生详细地介绍了解题的方法和具体过程,那个学生从心底佩服卢嘉锡的博学多才。卢嘉锡诚恳地对那位学生说:“我们闽南有句老话,叫做‘只有状元学生,没有状元先生’。我现在虽然是你的先生,但还有许多东西自己也不懂,要进一步学习。” 分析:“知之为知之,不知为不知,是知也。”永远不要以为自己知道一切,否则你就是无 知。 九牛一毫莫自夸,骄傲自满必翻车。历览古今多少事,成由谦逊败由奢。——陈毅 ★不满足是向上的车轮。——鲁迅 ★一个骄傲的人,结果总是在骄傲里毁灭了自己。——莎士比亚 ★凡过于把幸运之事归功于自己的聪明和智谋的人多半是结局很不幸的。——培根 ★谦虚是不可缺少的品德。——孟德斯鸠 话题:‘‘知与不知”‘‘谦虚” 4.黄金百斤,不如季布一诺 季布,汉朝人,他以真诚守信著称于世。时人谚云:“得黄金百斤,不如得季布一诺。”意思是说,季布的一句话,比金子还要贵重。后来,季布跟随项羽战败,为刘邦通缉,不少人都出来保护他,使他安全地渡过了难关。最后,季布凭着诚信,还受到汉王朝的重用。 分析:只有诚信待人者,才能被别人诚信相待。 ★生命不可能从谎言中开出灿烂的鲜花——海涅 ★惟诚可以破天下之伪,惟实可以破天下之虚——蔡锷 ★言不信者,行不果——墨子 ★人背信则名不达——刘向 ★虚伪的真诚,比魔鬼更可怕——泰戈尔 话题:“诚信与人生”“互助”“诚信的价值” 5.巴金背书 著名作家巴金十二三岁时,就背会几部书了,其中包括《古文观止》。后来他谈到自己的散文创作时说:“现在有200多篇文章储蓄在我的脑子里面了。虽然我对其中的任何一篇都没有好好地研究过,但是这么具体的东西至少可以使我明白所谓‘文章’究竟是怎么一回事,可以使我明白文章并非神秘不可思议,它也是有条有理、顺着我们思路连上来的。” 分析:“熟读唐诗三百首,不会吟诗也会吟。”不要奇怪为什么看书多的人文章就是高人一筹,巴金老人已经告诉我们答案了。 话题:“读书与作文”“积累的重要” 道德修养 1.海啸故事 泰国普吉岛流传着一个女孩的故事。当海啸来临之际,10岁的英国女孩蒂利首先发现了海天交汇之处的白色巨浪,她一下联想到地理课本上关于巨浪的知识——就在圣诞节前,她还在思考老师布置的关于巨浪的讨论题目。意识到灾难即将降临的她,立即说服了父母,并和他们一起动员海滩上的游客撤离。当百余名游客刚刚抵达高地时,海啸便无情地吞没了这片海滩。 分析:蒂利的故事宛如一朵奇葩,为这场不幸的灾难增添了一丝亮色。感谢蒂利,她让我们看到了什么是真正的素质教育,知识如何才能转化为行动,并产生力量;感谢蒂利的父母,只有在一个平等、民主、和谐的家庭氛围中,父母才能有耐心,才能充分尊重孩子的想法和意见,而不是简单粗暴地予以压制;感谢蒂利一家,当灾难来临之际,他们并不是只想着自己的安危,而是积极主动地帮助他人脱离危险。蒂利的故事让我们看到了学校教育、家庭教育与社会教育的有机统一,及其巨人威力。当我们整天为未成年人教育忧心忡忡时,蒂利的故事似乎可以给我们更多的感悟。 话题:“观察与思考”“素质教育” 2. 把最坏的日子捱过去 凡•高在成为画家之前,曾到一个矿区当牧师。有一次他和工人一起下井,在升降机里,他陷入巨大的恐惧之中。颤巍巍的铁索轧轧作响,箱板在左右摇晃,所有的人都默不作声,听凭这机器把他们运进一个深不见底的黑洞,这是一种进地狱的感觉。事后,凡•高问一个神态自若的老工人:“你们是不是习惯了,不再感到恐惧了?”这位坐了几十年升降机的老工人答道:“不,我们永远不习惯,永远感到害怕,只不过我们学会了克制。” 分析:有些生活,你永远也不会习惯,但只要你活着,这样的日子你还得一天一天过下去,所以你就得学会克制,学会忍耐。面对日子,把最坏的都捱过去,剩下的也就是好的了。 话题:“学会克制”“习惯” 3.牛玉琴的“绿色奇迹” 1993年的一天,联合国粮食组织将“拉奥博士奖”郑重授予中国的一位农村妇女牛玉琴,这一年全世界只有三人获此殊荣。1995年,中国评出十大杰出女性,牛玉琴名列前茅。 陕北农民牛玉琴的丈夫张加旺于1983年承包了一片沙荒地,决心将其变为绿洲。不久他因癌症死去,牛玉琴便带着三个儿子继续苦干。他们付出难以想象的艰难,终于使1.7万亩沙荒地披上了绿装。成功后,她又遵照丈夫遗愿,拿出第一笔收入7000元,盖起一所小学。她从丈大与自己的名字中各取一字,分别命名为“加玉林场”与“旺琴小学”。她的行为感动了一位参观的港商,这位港商悄悄留下5.5万元赞助这所小学改建校舍,却没有留下名字。人们称颂牛玉琴创造的是“绿色奇迹”。 分析:牛玉琴的事迹向人们证明了人类改变生存现状的决心和成果。奇迹的产生,没有艰苦卓绝的付出是不可能的。 话题:“奇迹”“成功与坚持” 5. “一天变三天”与“一生才三天” 俄国著名地理学家奥勃鲁契夫把每个工作日分成“三天”。第一天是从早晨到下午两点, 他认为是最宝贵的时间,用来安排重要的工作。第二天是下午两点至晚上六点,在这段时间里他认为做较轻松的工作为宜。如写书评或各种笔记等。第三天是从晚上六点到夜里十二点,用来参加会议、看书。他说,这是等于把自己的生命延长了。 美国夏威夷岛上学生们上课时,总是先背诵一段祈祷词:今天已经和你在一起,但很快会过去。明天就要到来,也会消逝。抓紧时间吧,一生只有二天。 分析:以上两则材料的核心都是要珍惜时间。把一天的时间合理分配,对时间要有紧迫感,从某种意义上讲,珍惜时间就意味着延长我们的生命。 话题:“对生命的态度”“珍惜时间” 科技之道 1.把闪电关在瓶子里 在18世纪,人们还不能正确地认识雷电到底是什么;当时本杰明•富兰克林认为雷电是一种放电现象,它和在实验室产生的电在本质上是一样的。但却受到了嘲笑。 富兰克林决心用事实来证明一切。1752午6月的一天,阴云密布,电闪雷鸣,一场暴风雨就要来临了。富兰克林和他的儿子威廉一道,带着上面装有一根金属杆的风筝来到一个空旷地带。富兰克林和他的儿子一道拉着风筝线,父子俩焦急地期待着。此时,刚好一道闪电从风筝上掠过,富兰克林用手靠近风筝上的铁丝,立即掠过一种恐怖的麻木感。他抑制不住内心的激动,大声呼喊:“威廉,我被电击了!”随后,他又将风筝线上的电引入瓶中。回到家里以后,富兰克林用雷电进行了各种电学实验,证明了天上的雷电与人工摩擦产生的电具有完全相同的性质。富兰克林关于天上和人间的电是同一种东西的假说,在他自己的这次实验中得到了很好的证实。 分析:面对人们的指责,我们最好的回答就是用事实来证明一切。科学中没有懒惰,只有勤奋和严谨。 话题:“真知来源于实践”“事实胜于雄辩” 2.科学家的价值 美国一位将军在他的《现在可以说了》一书中是这样评价著名的德国原子物理学家海森堡的:“得到海森堡这样的科学家,足以抵得上德国10个师的军队。” 20世纪50年代,美国海军次长金波尔阻挠钱学森回祖国,他给美国移民局的电报中称: “我宁可把这个家伙枪毙了,也不能让他离开美国。那些对我们来说至为宝贵的情况,他知道得太多了,无论在哪,他都抵得上五个师!” 分析:掌握了科学技术,就掌握了引领世界潮流的力量。因为科学是一种推动历史前进的力量。 话题:“人才”“科技的力量” 3.十英镑的遗憾 蒸汽机之于世界的作用是划时代的。有了它,大规模的机器便获得了强大的动力。正是由于蒸汽机的出现,才导致了大工业时代的开始。 “1789年”,瓦特专利说明书上的这个时间是人们公认的蒸汽时代的元年。然而,这个时间本应该被提前。如果当时能有一位稍许宽容的绅士出现,人类就有可能在1689年便拥有初步实用化的蒸汽机技术。因为在这一年,法国人巴本发明了可以进行演示的蒸汽机。这位谨慎而又贫困的先生虔诚地向英国皇家学会申请区区10英镑的研究经费,用于改进和完善自己的发明。然而,刻薄的皇家学会认为为一个天真的想法提供资金,简直是对经费的随意挥霍,于是提出了一个探索者无法接受的条件:实验必须保证成功!正是由于宽容精神的缺失,交流和沟通的机会失去了,失误甚至错误中蕴含着的潜在价值遭到漠视,成功的机会便被无情地剥夺了。 分析:我们的确应该在宽容这个问题上多一些反思。宽容的美德有利于人们的交流和沟通,也有利于价值的体现。 话题:“宽容”“交流与沟通”“培植与扼杀” 4. “用生命做一次试验” 巴斯德,19世纪法国著名微生物学家。他在进行科学研究时,把科学的发展看得比自己的生命更重要。一次,一艘停靠在波尔多的轮船上发现了黄热病人,巴斯德闻讯后立即赶往那里,希望发现引发这种烈性传染病的病菌。有人问他:“你难道不怕危险?”巴斯德毫不犹豫地问答:“这有什么要紧?生命处在危险的境地,这才是真正的生命。为了能使其他人活得更好,我愿意用自己的生命做一次试验。”当他来到港口时,检疫人员坚持不让他上船。巴斯德恳求说:“请宽恕一个学者追求科学的热情吧!”他的精神深深地感动了检疫人员。正是靠着这种执著的精神,巴斯德才在传染病研究上取得了惊人的科学成就。 分析:对科学的执著超过了对生命的热爱——正是因为有巴斯德这种奋不顾身的精神,才有了今日医学的繁荣景象。 话题:“对事业的执著”“生命的意义” 5.让青蛙做证人 伊凡•谢切诺夫是俄国生理学家。1862年,他通过对青蛙的解剖实验,发表了《蛙脑对脊髓神经的抑制》等文章,同时又出版了《脑的反射》一书,为神经生理学做出了很大的贡献。 可是,沙俄政府竟然把宣传科学真理看作是一种罪过,把谢切诺夫逮捕了,并对他进行审讯。在法庭上,法官对谢切诺夫说:“你可以给自己找个辩护证人。”谢切诺天平静地回答:“让青蛙做我的证人吧!”在敌人的淫威面前,这位科学家神色自若,因为他知道,真理是在自己一边。 分析:为了自己的信念,为了真理,甘愿被逮捕。科学的道路总是充满了荆棘。 话题:“信念的价值”“科学的坚持” 文化教育 1. “五音不全”的歌手 美国华裔少年孔庆翔既没有漂亮的面孔,也没有圆润的嗓子。然而在美国——一个造梦的天堂(或者叫地狱),孔庆翔打造出了一片属于自己的天空,不能不说是一种奇迹。 2004年,貌不惊人的华人小子孔庆翔参加了美国综艺节目《美国偶像》。他不仅五音不全,而且台风滑稽,让现场观众和评委都大跌眼镜。评委克威尔尖酸地嘲讽他说:“你竟然不会跳舞?在台上表现得过于麻木!并且几乎无唱功可言,令人颇感聒噪。”而孔庆翔却不慌不忙地说:“我觉得我虽唱功稍差,但我没有遗憾,因为我已经尽力了。”由于该大赛是电视直播,美国的观众都为孔庆翔的言辞感动,立刻声援声四起。节目播出之后,孔庆翔受到了前所未有的关注,多家媒体争相报道他在歌手大赛中的表现。于是孔红了,成了美国家喻户晓的人物。紧接着,孔庆翔和KOCH以及FUSE两家唱片公司签订第一张专辑《灵感》(1nspiration),于2000年4月6日在全美发行,第二周的销量成功蝉联美国公告牌独立大碟榜冠军,挤入公告牌流行榜前40 位,气势逼人。孔庆翔也成为在美国知名度最高的中国人。 分析:在美国人看来,“我已经尽力了”是一个人对待一件事情最好的态度。既然一个人“已经尽力了”,那么我们还有什么理由嘲笑他呢?孔庆翔的出名和成功虽是偶然,但里面必然存在所处环境的社会文化因素。 话题:“偶然与必然”“成功的机遇” 2.治学三境界 王国维在《人间词话》里谈到了治学经验,他说:“古今成大事业、大学问者,必经过三种境界:‘昨夜西风凋碧树。独上高楼,望尽天涯路。’此第一境也。‘衣带渐宽终不悔,为伊消得人憔悴。’此第二境也。‘众里寻他千百度,蓦然回首,那人却在灯火阑珊处。’此第三境 也。” 在《文学小言》一文中,王国维又把这三种境界说成“三种之阶级”。并说:“未有不阅第一第二阶级而能遽跻第三阶级者,文学亦然,此有文学上之天才者,所以又需莫大之修养也。”千国维所引词句第一为晏殊《蝶恋花》,第二为柳永《蝶恋花》,第三为辛弃疾《青玉案•元夕》。 分析:第一境界是说,做学问成大事业者首先应该登高望远,鸟瞰路径,了解概貌,“望尽天涯路”;第二境界是说,做学问成大事业不是轻而易举的,必须经过一番辛勤劳动的过程,“为伊消得人憔悴”,就是说要像渴望恋人那样,废寝忘食,孜孜不倦,人瘦带宽也不后悔:第三境界是说,经过反复追寻、研究,最终取得了成功。 话题:“探索与追求”“勤奋与学问” 3.日本的“菠菜原则” 日本人饭桌上是少不了菠菜的,他们甚至把一种企业组织原则称为“菠菜原则”。这个原则由三个基本点组成,即“报告”、“联络”、“沟通”。“菠菜原则”是日本企业的基本原则,任何一个雇员,从部长到社长,无一例外都需执行这条原则。所谓报告,就是把自己工作的进展状况随时通知同事,比如出差回到公司,一定要将所见所闻汇报;外出的收获,一定要让全体同事分享。联络,就是把自己目前遇到的问题通知有关同事,如上班路上遇到堵车可能迟到,你得打电话告诉同事你何时能到公司。沟通,是工作遇到问题时,一定要找同事或者上司咨询,以集体智慧予以解决。 “菠菜原则”说的就是个人与组织之间的协调性原则。日本的这种原则是其教育体系与教育思想的产物。在日本人的观念中,教育的目的不是培养精英,而是培养能够适应严酷集体生活的有协调性的人。这种教育贯穿着一个基本点,即培养合格的国民。这种国民具有共同的教养、共同的信念。 分析:个人生活在社会中,那么,个人就应该与整个社会融洽相处。这样全体国民才有共同的向心力,这就是日本的教育。 话题:“教育的目的”“个人与集体” 4.名人教子 家教:包拯为官公正清廉,被老百姓尊称为包青天。他担心家人子弟利用权势贪污腐化, 因而自述家训:“后世子孙仕宦,有犯财者,不得放归本家;亡疫之后,不得葬与大莹之中。不从吾志,非吾子孙。” 铭教:宋代诗人苏轼的长子苏迈赴任县太尉时,苏轼送给他一个砚台,上有他亲手所刻的砚铭:“以此进道常若渴,以此求进常若惊;以此治财常若予,以此书狱常思生。” 鞭教:岳云12岁参军作战,一次骑马下坡,没注意地形,人马栽进沟里:岳飞喝令按军法鞭打岳云,众将求情不允,责打百鞭。此后岳云刻苦训练,勇猛作战。 1134年攻打随州时,挥舞40公斤重的铁锤,冲锋陷阵第一个登城。岳飞教子的原则是:受罪重于士卒,作战先于士卒,受功后于士卒。 名教:1945年,革命老前辈林伯渠6岁的小儿子要读书上小学了。林老对儿子说:“上学,该有个地道的名字,我看你就叫用三吧!”儿子疑惑不解,林老解释说:“用三者,三用也,即用脑想问题,用手造机器,用足踏实地!” 联教:无产阶级革命家吴玉章曾撰写一幅对联挂在堂前。上联:创业难,守业亦难,明知物力维艰,事事莫争虚体面。以此教育子孙后辈要艰苦创业,勤俭持家,切不可铺张浪费,追求虚荣;下联:居家易,治家不易,欲自我以身作则,行行当立好楷模。指出做长辈的要时时刻刻以身作则,身教重于言教,处处做出好样子,成为后辈们效仿的楷模。 章程教:老舍先生的教子章程,一是不必非考一百分不可;二是不必非上大学不可:三是应多玩,不失儿童的天真烂漫;四是要有健全的体魄。总之,老舍先生认为,孩子不必争做“人上人”,虚荣心绝对不可有。 分析:教育后代的方式是多种多样的,不同的人有不同的特色,但都有一个共同点,那就是:关注人性,关注品德,既严厉又慈爱。 话题:“家庭教育”“教育与成才” 社会生活 1.一对残疾作家 孙幼忱是位双腿残疾的作家。他创作的小说《小佛佛历险记》受到读者的欢迎,还得了奖。可不幸又降临这个家庭,妻子董江云的左腿也残疾了。董江云为了支持丈夫写作,不仅代替丈夫去工作,还挑起了全部家务重担,她拄着拐杖拖着残腿干繁重的体力活。在丈夫的影响下,董江云也写起了童话,并在《黑龙江日报》上发表了〈〈小鸭子莎莎〉。 这对残疾作家坦然面对自己身体的缺陷,他们认为,残疾并不是人生的全部。 分析:“上帝为你关上一扇门,必会打开一扇窗”,厄运只是一道坎,走过了是阳光,走不过就只能长陷泥淖。 话题:“面对生活中坎坷”“身残志不残”

94 评论

相关问答

  • 杭州出口产业分析论文发表

    1、了解杭州市高新技术产品出口的现状和趋势。通过研究杭州市高新技术产品出口的情况,可以了解杭州市高新技术产业的发展状况,以及杭州市高新技术产品在国际市场上的竞争

    有心便是海 3人参与回答 2023-12-08
  • 沙俄出口结构分析论文发表

    如果沙特最终打输了这一场石油,这样的话,那么对于他们的经济发展可以说是非常重大的打击。毕竟他们一直是靠着石油这种东西赚钱的,他们也很少有别的能够赚钱的途径了。

    我想文文静静 6人参与回答 2023-12-06
  • 王宁字体结构分析论文发表

    已发送。看能帮到你吗。祝好运

    古蒂guti 4人参与回答 2023-12-06
  • 中国国家结构分析论文发表

    写作思路:论文既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。 全国人大常委会法制工作委员会负责人向十三届全国人大常委会第十九次

    快乐之光 7人参与回答 2023-12-06
  • 结构分析计算能否发表论文

    资本结构是指企业各种融资工具或不同融资来源的种类及其比例关系,合理的资本结构决定了股东、债权人、经理等利益相关者对公司的控制权分配。下文是我为大家搜集整理的关于

    只会品菜 3人参与回答 2023-12-07