三万英尺001
第一步论文查重。之所以放在第一步,是因为期刊天空一直都建议作者投稿前查重,这样既能提前发现自己论文重复率多少,又不会给杂志社编辑造成不良印象,更减少了投稿后再查重导致退修,进而论文发表时间周期增加。发表论文必经流程和步骤第二步:筛选期刊。针对自己的专业方向,论文内容领域,到相应分类的期刊当中挑选。期刊天空编辑提醒,有作者因为发表论文不符合期刊发表方向而退稿的。第三步选定期刊:需要根据自己评职称、毕业论文发表要求,期刊天空编辑指出,这些内容一般从职称文件当中可以了解到,例如:期刊级别,选定后要了解期刊发表论文要求。第四步论文发表:选定期刊之后,可以通过邮箱、在线投递、微信QQ等发送文件,期刊天空编辑介绍,之所以有这么多方式,是因为各投稿方式相应的处理效率呈提高的趋势。第五步等待审稿。期刊天空编辑温馨提示:论文审稿是整个论文发表过程当中时间周期最长的,没有退修的稿件属于正常时间周期,如果存在论文审稿有退修,那么发表周期就会相应的增加。发表论文期刊的级别越高,发表周期就越长。第六步对于顺利被期刊录用的论文来说,杂志社会发送录用通知函,缴纳版面费用之后,即可安排发表刊期。第七步发表见刊。在到了论文发表安排刊期时,论文就算是正式见刊发表,作者需等待杂志社寄送样刊就可以当做评职称材料上交。
活力的维维
论文发表流程有哪些?完成一篇SCI论文后,下一个任务是如何准备和组织所需的文件和提交的材料。稿件提交后,总刊编辑将进行正式审稿,检查稿件在格式和内容上是否符合本刊要求。稿件通过正式评审后,即可进入实质性评审阶段。因此,应高度重视提交文件的准备工作。投稿前,在选择投稿期刊后,首先要认真阅读期刊作者主页指南上的每一个细节要求,并严格按照目标期刊投稿指南准备相关投稿材料。如果投稿指南上的描述不清楚,你可以下载最新一期的期刊供阅读和参考。许多杂志都会在提交指南页面提供免费下载的样本供作者参考。不同的杂志需要准备不同的文件,但它们也有某些共同点。例如,提交材料通常包括:正文(手稿或正文)、扉页(全称或扉页)、附件、图片(图)、表格(表)、补充资料文件(辅助资料或补充材料)及其他相关文件等。以下是提交文件的准备和注意事项的简要说明:文本(text)正文是对一篇论文的完整描述,按优先顺序,通常包括标题、摘要、导言、材料与方法、结果、讨论、致谢、参考文献、表格、图片说明(图例或图注)等主要部分。材料、方法和结果往往内容丰富。每个段落都可以设置副标题。副标题可以加粗或斜体,以便于阅读。少数杂志要求表格和图片说明不能放在全文中,而是放在单独的Word文档中。在正常情况下,提交指南将对文章的结构、格式和字数作出规定和详细介绍。整个稿件的每一部分都必须严格按照投稿指南的要求编写。标题页(完整标题或标题页)标题页包含文章的标题、所有作者信息(姓名、最高学位、单位及其通信地址)以及相应作者的联系信息(单位、地址、电话、传真和电子邮件)。大多数SCI期刊要求文章标题不得超过100个印刷体字符(包括字母、标点符号和空格),应为10-12个(不超过25个)英文单词的名词性短语或句子。作者排名的顺序应根据论文的写作贡献来决定。共同第一作者或共同通讯作者通常用“*”等符号标记,并单独解释。有些杂志需要在标题页上写基金支持,通常在标题页的下半部分。此外,大多数SCI期刊要求作者提供不超过40个印刷字符的标题(行标题、短标题)。求职信期刊编辑通常允许作者简要介绍论文的亮点和价值,作者也希望能为编辑提供一些信息,帮助他们的论文进行评审和决策。以上信息可写在提交信中,一封好的投稿信必须特别注意内容和格式。一些医学期刊在作者指南中对投稿信的内容和格式有具体要求。送审函的格式与一般公函相似,包括标题、标题、正文、背书、签名和附件等,正文是送审函的主体部分。在这一部分,你需要:完整地列出文章的标题。并简要介绍了本研究的主要意义、创新点、投稿意愿和适合期刊稿件的栏目。
道生一,三代二
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
丸子粉丝
1. 准备论文:如果论文已经准备好了,按照论文找合适的期刊就好;如果论文没写好,建议还是先找合适的期刊,然后参照期刊的要求进行论文的写作,这样能更容易通过审核。2.投稿:将论文通过各种途径送到期刊编辑部。3.审核:核心期刊一般是同行评审制度,编辑部会把你的论文转发给三个这个领域的专业人士,由他们提出意见,编辑部会举行会议研究这三个专家的意见后作出录用或者修改或者退稿的决定。这也是核心期刊审稿时间长的原因。普通期刊一般由编辑部自己审核,速度比较快。4.录用:审核通过后,编辑部会开一个录用证明给作者,作者支付相关版面费后就可以安排发表了。5.出刊:热门期刊的刊期通常排在一年以后了,而冷门的刊经常还在收上一年的版面。一般的出刊时间是在3-6个月左右,出刊后编辑部会付费邮寄给作者一本样刊。6.上网:如果是上知网的期刊,那么出刊1-3个月后,作者就可以在知网上检索到自己的文章了。至此,整个发表流程完成。
中图分类号的写法可参考《中国图书馆分类法》里面的分类来写。 《中国图书馆分类法》中的分类(一共分为七编): 第一编 哲学、社会学、政治、法律、军事 A/K 马克
知乎meta发布图像分割论文segment anything,将给 cv 研究带来的影响如下: Segment Anything是Meta AI发布的一种新的A
影像综述好投稿吗关于这个问题有以下原因国内影像方面的杂志,基本上分为四类:第一类:也是最难录用的,就是中华放射学杂志。第二类:中国医学影像技术;临床放射学杂志;
随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面
是。高光谱图像处理是计算机的课程之一,是计算机视觉,主要研究领域为模式识别、高光谱图像处理、计算机视觉及其在遥感、环境、农业和医疗中的应用。