珍妮爱美食
交试验”运作步骤:确定主要因数;选用试验次数和各因数组数的参数;给出试 验的目标优化参数值;选择“正交试验表”格式;按排定的方案进行试验;对结果进行分 析;选择最佳方案组合。下面以《水泥工程》2005年第六期“煅烧煤矸石配料对生料易烧性和熟料矿物组成影响” 一文,即武汉理工大学硅酸盐材料工程教育部重点实验室为研究煤矸石对烧成的影响,用正交试 验方案和结果的数据为样例,进行介绍。确定的基础数据 9个试验组、三个因素(配比为A2、A5、A8;烧成温度为1250C、 1300°C、1400t:;烧成时间为 30min、45min、60min)。配比煤矸石均为6%,因石灰石、江砂、铁粉、煤之间配比不同,而分成次、A5、A8。试验指标f-CaO最低值的方案为最佳。④正交试验方案和结果见下“正交试验表”。
夜月叶耶也
发表论文的整个流程,简单概括就是:定稿-选择期刊-审核-通过/返修-支付费用-定版-排版校对-印刷-出刊邮寄-上传数据库接下来按照步骤详细说说每个发表环节以及注意事项。定稿:其实就是写论文,这个我也不是专业的,所以不多说,仅从发表的角度简单说几句。1.关于论文主题:如果你的文章是准备用来发表的,尤其是准备投稿普刊,那么有些选题千万不要碰,比如港ao台、疫情、涉党涉政、宗教、神学、封jian迷xin、校园bao力等等,不要问为什么,这类主题写了大概率发表不出去!即便有收的,审核也严格,论文内容不能有不适合刊登的点。选择期刊:我个人认为这是发表论文最重要的一个环节,这个说起来很简单,做起来其实很难,很耗费精力和时间。选择期刊分为两步——第一步,大家务必要先弄清楚自己对期刊的要求,尤其是因为评职称、评奖学金、保研等这些原因需要发表论文的,一定要先去看看学校、单位对期刊的具体要求是什么,比如期刊等级,是要普刊、学报还是核心?是不是非知网收录的期刊不可?最晚什么时候需要提交评审材料?第二步,选择的期刊一定要是正规的学术期刊,即该期刊要在国家新闻出版总署可查,并且在知网、万方、维普这三个数据库(至少一个)稳定、正常更新,且收学术论文,别你在总署能查到某个期刊,数据库也稳定更新,结果人家根本不收学术性论文(比如《中国经济评论》),而你还傻傻地去投稿。而总署可查、数据库稳定更新也只能保证期刊确实存在,(青墨手打严禁复制粘贴)却不能保证你发的就一定是正刊本身,毕竟存在不少盗版刊物,所以收到录用后一定要先打杂志社电话查稿,确认文章确实被正刊录用了再付款安排。慎发电子刊、报刊、增刊,因为认可度不高,所以除非单位、学校明文规定可用,否则不要发;不要发假刊、套刊,尤其是期刊网的刊物,前面那几个还只是不太正规,但好歹是真的,假刊、套刊直接就是假的!!!假的东西能有用吗?第三步,弄清楚对期刊的要求后,根据要求去选择合适的期刊。这里需要说到投稿的两种方式:自投和找中介代发如果你是准备自己投稿,那么——首先,一定要找到官方投稿方式,可以去各数据库下载期刊的版权页,上面都会有投稿邮箱但如果你时间比较紧张、着急出刊,又或者实在没有精力去收集筛选期刊信息,那么也可以找中介代发(仅指普刊,核心找代发性价比太低了),不需要你自己花时间去找期刊,只要告知论文主题和对期刊的要求,就能给你推荐最合适的期刊。以上,发表论文的大致流程就是如此。
贵州米粉
正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行资料分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本思想。 [例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围: A:80-90℃ B:90-150分钟 C:5-7% 试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。 这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平: A:A1=80℃,A2=85℃,A3=90℃ B:B1=90分,B2=120分,B3=150分 C:C1=5%,C2=6%,C3=7% 当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。
我的实验是三因素三水平,做正交的话就是9次实验(我做一次实验得出一组资料就是一个月啊)。 我看不少论文上都是分两大步骤: 一、正交设计 1、进行正交设计,设计出后续的实验方案。 2、根据正交设计的实验方案进行试验(不写出过程,不做图表,因为各单因素的搭配是随机的,没法画曲线图分析),只给出结果。 3、根据实验结果,进行正交分析,得出各单因素的影响大小。 (在正交设计这部分,我就得做九个实验啊) 二、单因素实验 对正交设计的分析结果进行验证所补充的实验,这次所做的实验具有可比性,可以对单个因素影响效果做曲线图分析。 如此一来,那我的实验岂不是就做了两遍(虽然这两遍实验的控制因素水平可能不一样)。 做这么多实验就啥时候毕业呀。 我的问题是: 有人说先单因素方便确定正交设计的因素水平。 2 ,我不想做正交设计。想直接用简单比较法得出最优实验方案算了,不过这样做出的论文不够炫,感觉没有技术含量,和人家做正交设计的相比就差了一大截。 很是头疼,定不下来方案。希望各位走过路过的朋友帮帮忙,
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行3的3次方=27 种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3 正交表按排实验,只需作9 次,按L18(3)7 正交表进行18 次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。(汗,这里不能打出来正确的表达,反正学这个的都知道具体的写法) 正交表是一整套规则的设计表格,L 为正交表的代号,n 为试验的次数,t为水平数,c 为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4 个因素,每个因素均为3 水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) ,此表的5 列中有1 列为4 水平,4 列为2水平。根据正交表的资料结构看出,正交表是一个n 行c 列的表,其中第j 列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11 中,第二列的数码个数为3,S=3 ,即由1、2、3 组成,各数码均出现N/3=9/3=3次。
正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 1.正交表 正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的资料结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。 正交表具有以下两项性质: (1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。 (2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。 以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。 2. 互动作用表 每一张正交表后都附有相应的互动作用表,它是专门用来安排互动作用试验。表14就是L8(27)表的互动作用表。 安排互动作用的试验时,是将两个因素的互动作用当作一个新的因素,占用一列,为互动作用列,从表14中可查出L8(27)正交表中的任何两列的互动作用列。表中带( )的为主因素的列号,它与另一主因素的互动列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的互动作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B互动作用列。又如可以看到第4列与第6列的互动列是第2列,等等。 3.正交实验的表头设计 表头设计是正交设计的关键,它承担著将各因素及互动作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。 表头设计的主要步骤如下: (1)确定列数 根据试验目的,选择处理因素与不可忽略的互动作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验资料时,可设2个或多个空白列,作为计算误差项之用。 (2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。 (3)选定正交表 根据确定的列数(c)与水平数(t)选择相应的正交表。例如观察5个因素8个一级互动作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。 (4)表头安排 应优先考虑互动作用不可忽略的处理因素,按照不可混杂的原则,将它们及互动作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某专案考察4个因素A、B、C、D及A×B互动作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其互动作用,故将二者优先安排在第1、2列,根据互动作用表查得A×B应排在第3列,于是C排在第4列,由于A×C互动在第5列,B×C互动作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。
(5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果资料记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横著作”。 4.二水平有互动作用的正交实验设计与方差分析 例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。 首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为: 求:总离差平方和 各列离差平方和 SSj= 本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和 自由度v为各列水平数减1,互动作用项的自由度为相交因素自由度的乘积。 分析结果见表18。 从表18看出,在α=0.05水准上,只有C因素与A×B互动作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到互动作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。 如果使用计算机进行统计分析,在资料是只需要输入试验因素和实验结果的内容,互动作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。
L44 正交实验表 所在列 1 2 3 4 因素 A B C D 实验01 1 1 1 1 实验02 1 2 2 2 实验03 1 3 3 3 实验04 1 4 4 4 实验05 2 1 2 3 实验06 2 2 1 4 实验07 2 3 4 1 实验08 2 4 3 2 实验09 3 1 3 4 实验10 3 2 4 3 实验11 3 3 1 2 实验12 3 4 2 1 实验13 4 1 4 2 实验14 4 2 3 1 实验15 4 3 2 4 实验16 4 4 1 3 L46 实验计划表 所在列 1 2 3 4 5 6 因素 A B C D E F 实验01 1 1 1 1 1 1 实验02 1 2 2 2 2 2 实验03 1 3 3 3 3 3 实验04 1 4 4 4 4 4 实验05 2 1 1 2 2 3 实验06 2 2 2 1 1 4 实验07 2 3 3 4 4 1 实验08 2 4 4 3 3 2 实验09 3 1 2 3 4 1 实验10 3 2 1 4 3 2 实验11 3 3 4 1 2 3 实验12 3 4 3 2 1 4 实验13 4 1 2 4 3 3 实验14 4 2 1 3 4 4 实验15 4 3 4 2 1 1 实验16 4 4 3 1 2 2 实验17 1 1 4 1 4 2 实验18 1 2 3 2 3 1 实验19 1 3 2 3 2 4 实验20 1 4 1 4 1 3 实验21 2 1 4 2 3 4 实验22 2 2 3 1 4 3 实验23 2 3 2 4 1 2 实验24 2 4 1 3 2 1 实验25 3 1 3 3 1 2 实验26 3 2 4 4 2 1 实验27 3 3 1 1 3 4 实验28 3 4 2 2 4 3 实验29 4 1 3 4 2 4 实验30 4 2 4 3 1 3 实验31 4 3 1 2 4 2 实验32 4 4 2 1 3 1
L44 正交实验表 所在列 1 2 3 4 因素 A B C D 实验01 1 1 1 1 实验02 1 2 2 2 实验03 1 3 3 3 实验04 1 4 4 4 实验05 2 1 2 3 实验06 2 2 1 4 实验07 2 3 4 1 实验08 2 4 3 2 实验09 3 1 3 4 实验10 3 2 4 3 实验11 3 3 1 2 实验12 3 4 2 1 实验13 4 1 4 2 实验14 4 2 3 1 实验15 4 3 2 4 实验16 4 4 1 3
L46 实验计划表
所在列 1 2 3 4 5 6 因素 A B C D E F 实验01 1 1 1 1 1 1 实验02 1 2 2 2 2 2 实验03 1 3 3 3 3 3 实验04 1 4 4 4 4 4 实验05 2 1 1 2 2 3 实验06 2 2 2 1 1 4 实验07 2 3 3 4 4 1 实验08 2 4 4 3 3 2 实验09 3 1 2 3 4 1 实验10 3 2 1 4 3 2 实验11 3 3 4 1 2 3 实验12 3 4 3 2 1 4 实验13 4 1 2 4 3 3 实验14 4 2 1 3 4 4 实验15 4 3 4 2 1 1 实验16 4 4 3 1 2 2 实验17 1 1 4 1 4 2 实验18 1 2 3 2 3 1 实验19 1 3 2 3 2 4 实验20 1 4 1 4 1 3 实验21 2 1 4 2 3 4 实验22 2 2 3 1 4 3 实验23 2 3 2 4 1 2 实验24 2 4 1 3 2 1 实验25 3 1 3 3 1 2 实验26 3 2 4 4 2 1 实验27 3 3 1 1 3 4 实验28 3 4 2 2 4 3 实验29 4 1 3 4 2 4 实验30 4 2 4 3 1 3 实验31 4 3 1 2 4 2 实验32 4 4 2 1 3 1
以上仅供参考 希望能解决您的问题。
正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 1.正交表 正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的资料结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。 正交表具有以下两项性质: (1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。 (2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。 以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。 2. 互动作用表 每一张正交表后都附有相应的互动作用表,它是专门用来安排互动作用试验。表14就是L8(27)表的互动作用表。 安排互动作用的试验时,是将两个因素的互动作用当作一个新的因素,占用一列,为互动作用列,从表14中可查出L8(27)正交表中的任何两列的互动作用列。表中带( )的为主因素的列号,它与另一主因素的互动列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的互动作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B互动作用列。又如可以看到第4列与第6列的互动列是第2列,等等。 3.正交实验的表头设计 表头设计是正交设计的关键,它承担著将各因素及互动作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。 表头设计的主要步骤如下: (1)确定列数 根据试验目的,选择处理因素与不可忽略的互动作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验资料时,可设2个或多个空白列,作为计算误差项之用。 (2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。 (3)选定正交表 根据确定的列数©与水平数(t)选择相应的正交表。例如观察5个因素8个一级互动作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。 (4)表头安排 应优先考虑互动作用不可忽略的处理因素,按照不可混杂的原则,将它们及互动作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某专案考察4个因素A、B、C、D及A×B互动作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其互动作用,故将二者优先安排在第1、2列,根据互动作用表查得A×B应排在第3列,于是C排在第4列,由于A×C互动在第5列,B×C互动作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。 (5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果资料记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横著作”。 4.二水平有互动作用的正交实验设计与方差分析 例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。 首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为: 求:总离差平方和 各列离差平方和 SSj= 本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和 自由度v为各列水平数减1,互动作用项的自由度为相交因素自由度的乘积。 分析结果见表18。 从表18看出,在α=0.05水准上,只有C因素与A×B互动作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到互动作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。 如果使用计算机进行统计分析,在资料是只需要输入试验因素和实验结果的内容,互动作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。
需要资料分析+qq
F值是均方与自由度的比值,F比值是F值与其在相应显著性水平下的F临界值的比值,二者都可以作为反应显著性差异的引数
(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合bai,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气
论文发表的方法是:选定想要发表的论文期刊,找到该期刊的投稿方式并投稿,部分期刊要求书面形式投稿,大部分是采用电子稿件形式。在审稿通过以后即可将论文发表在期刊上。
X-51A计划的主要目的之一是对美国空军的HyTech超燃冲压发动机进行飞行试验。这种发动机使用吸热型碳氢燃料,能将飞行器的飞行马赫数从4.5提升到6.5。此外
交试验”运作步骤:确定主要因数;选用试验次数和各因数组数的参数;给出试 验的目标优化参数值;选择“正交试验表”格式;按排定的方案进行试验;对结果进行分 析;选择
交试验”运作步骤:确定主要因数;选用试验次数和各因数组数的参数;给出试 验的目标优化参数值;选择“正交试验表”格式;按排定的方案进行试验;对结果进行分 析;选择