• 回答数

    4

  • 浏览数

    103

淡淡的生活
首页 > 论文发表 > 物理论文发表心情图片大全

4个回答 默认排序
  • 默认排序
  • 按时间排序

小遥CITY

已采纳

物理学力学论文篇3 浅析物理力学的产生及其发展 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 物理学力学论文篇4 试谈物理力学的产生及其发展分析 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 猜你喜欢: 1. 物理学史论文3000字 2. 高中物理力学论文范文 3. 物理学生论文力学 4. 物理学术论文3000字

150 评论

lclcjunjun

谈谈物理概念和物理量的区别论文

导语:我们可以将物理概念比喻成一个外表抽象,内涵复杂的“系统”。物理量只是对相应同名物理概念的量的表述,物理概念除了量的性质以外,还有其他很多质的性质。以下是我整理的谈谈物理概念和物理量的区别论文,一起来看看吧。

在已发表的文献中,关于物理概念教学的文章很多,但在这些已发表的文献中,许多作者并没有区分好物理概念和物理量,混淆了两者的界限,其中尤以同名的物理概念和物理量为重,常见表述为“定量的物理概念,即物理量”或者“物理量就是定量的物理概念”。

其实,物理概念和物理量是有本质区别的:物理概念是物理教学论文量的前提,也是物理量的基础,物理量从属于与之相应的同名物理概念,没有物理概念,就谈不上物理量;物理量通常都有与其对应的同名物理概念,但物理概念不一定有与其对应的同名物理量,即使同名,两者也有很多不同,物理概念比物理量具有更加丰富的含义。下面从两个方面进行说明。

1、广义的物理概念和物理量的区别

1.1 定义不同

物理概念是一类物理现象的共同特征和本质属性在人脑中概括和抽象的反映,是对物理现象和物理过程的抽象化和概括化的思维形式。物理概念所反映的不再是个别的物理现象,也不再是具体的物理过程或物理状态,而是物理世界中具有本质属性的物理客体、物理过程和物理状态的抽象与概括,故称为“概—念”。

量是对事物在数值上的具体表征与量度。物理量就是物理学中量度物质属性或描述物体运动状态及其变化过程的量。对于有单位的物理量,必须要同时用数字和单位来描述,否则不能产生任何物理意义。

由于其定义不同,其含义自然不同,物理概念和物理量是从不同角度对物理现象、物理事实或物理过程的描述。

1.2 引入目的不同

一般地说,只要抽象出物理现象的本质属性及其共同特征之后,并对其加以概括,也就形成了物理概念,它是对特征的独特组合而形成的知识单元。根据物理现象本质属性和共同特征的不同,物理概念可以分为两种:一种是只有质的规定性的概念,如机械运动、简谐运动、干涉、偏振等;另一种是既有质的规定性、又有量的规定性的概念,如速度、加速度、电场强度、电阻、电动势等。

对于第二种概念,除了表述其质的属性外,还要清楚表示其量的属性,如何表示呢?这就促使人们对其抽象与概括的对象给以量度和具体数值上的表示,由此,物理量才得以引入,并且它与相应的物理概念同名。由此可知,物理量的引入,要以已确立的同名物理概念作为它引入的基础,其目的只是定量化同名物理概念在量方面的属性,所以说,物理量从属于物理概念。物理量通常有与其对应的同名物理概念,但物理概念不一定有与其对应的同名物理量,物理概念的范围比物理量更广。

当然,由于量的本身包含有数和度的双重含义,作为每一物理量的引入,也就对相应物理概念的抽象与概括的对象,给予了具体数值上的定量表征与量度,当然也就使相应物理概念更加具有科学性,物理量是对物理概念必要的补充和定量化。

1.3 功能不同

物理概念是物理规律和理论的基础,因为物理规律揭示了物理概念之间的相互联系和制约关系。例如,如果学生对力、质量、加速度这几个概念不清楚,那就无法掌握和理解牛顿第二定律,更谈不上能正确应用。可以说,如果没有一系列概念作为基础,就无法形成物理学体系。再如,如果没有电路、电流、电压、电阻、磁感应强度、电磁感应等一系列概念,就无法形成电磁学体系;如果没有光源、光线、实像、虚像等一系列概念,也就无法形成光学体系。

所以,物理概念是组成物理的基本元素,物理概念的学习在整个物理学习中处于核心的.地位。

物理量给了相应物理概念在量值方面的含义,在一定条件下,物理量之间可进行数学运算,这为定义新的物理量提供了可能。由于每个物理量都有相应的符号,也使得物理表述更加简洁、美观,而且物理规律的定量表述,也使得物理学成为了一门定量的学科,使物理学的结论可以随时加以严格检验,这有利于人类认识自然,把握规律。物理概念和规律的定性表述与精确的数学定量表述相结合,构成物理学科的突出特点之一。

1.4 分类不同

物理量有基本物理量和导出物理量之分,但是物理概念却只有广义上的基础概念,没有基本概念一说。

1960年10月第11届国际计量大会确定了国际通用的国际单位制,简称SI制。在国际单位制中,总共选定了七个物理量做为基本物理量(其单位相应作为基本单位),其余物理量是导出物理量,相应单位为导出单位。导出物理量是借助其它两个或两个以上物理量来定义的,它需要用一定的物理公式(数学表达式)来表达。

然而,虽然物理概念只有广义上的基础概念,没有基本概念的说法,但却有层次之分(说明:概念的其他分类方法,此文不做说明)。概念之间可能是上位概念和下位概念的关系,也可能是并列关系,还可能是包含关系。明确概念之间的层次关系,我们才能更好的理解概念,这一点可以画概念图。比如,如果把能量当成是上位概念,那么它包括的势能,动能,内能等等就是其下位的概念,而势能中又包括重力势能,电势能,分子势能等更为具体的概念。理解物理概念的层次后,才能正确区分类似能量守恒和机械能守恒这些容易混淆的规律,学生在运用这些规律时候,才能不出问题或少出问题。

2、同名的物理概念和物理量的区别

物理量与物理概念有时还具有着完全相同的命名,彼此相应,物理量与相应物理概念在表征与反映对象上具有同一性,在外观表现形式上具有对应性,但是,它们在物理意义以及含义上存在着本质的区别,这决定了它们在定义的方式方法上和在发挥的作用上存在着明显的各异性,这也是教师最容易混淆的地方。

例如,力是同名的物理概念和物理量。力作为物理量,定义为使1 kg的物体获得1 m/s2的加速度所需要的力为1N;现代物理学还把力定义为物体动量的变化率;力是矢量;通常表述为拉力F=8 N,方向向东;力不是基本物理量等等。力作为物理概念,力的定义为物体对物体的作用;除了包含上述物理量的性质外,还有其他特征:力有物质性,也有相互性;它有大小、方向、和作用点三个要素;还有重力、弹力、摩擦力、电场力等具体的力;有瞬时效果,有时间积累效果,有空间积累效果等等,概念有更加丰富的内涵和外延。

又如,功是高中的一个重要概念,也有相应的同名物理量。作为物理量,其定义式为W=Fscosθ,我们可以理解功有零功正功和负功之分;功与参照系有关;此式适用恒力,若是变力要做相应处理;功是标量;其单位是焦耳,各力功相加就是合力功,等等。但如果将功作为物理概念,仅理解上述各方面还不够!对于功的概念,只有在学生学习了功能关系或动能定理之后,才能明白为什么要用力与位移的乘积来定义功;也只有当学生学习了机械能守恒定律、热力学第一定律,能量守恒定律之后,才能真正领会功这个概念的本质:功是能量转化的一种量度,一切做功过程都是能量转化的过程。

再如,电阻既是一个概念,也是一个物理量。作为物理量,电阻的定义是R=UI,它提供了测量电阻的重要方法。作为概念,除了其大小,还要考虑电阻在电路中有哪些作用?电阻由什么决定?电阻的本质是怎么产生的?……其他很多同名概念都有类似特点。

由此可见,同名的物理概念,比相应的物理量更复杂,涉及面更广,除了包含相应物理量的信息外,还包含其他丰富的信息。

物理规律借助物理量可以以物理公式(数学表达式)形式呈现,这些物理公式表面上涉及的仅仅都是物理量,其实不然,它们是物理概念的相互联系和制约关系。理解了物理概念,才能把握好这些物理公式和物理规律。所以,记住物理公式,是学好物理的必要条件,但还不充分,如果忽略了物理概念的理解,只重视物理量的学习,就会落入“物理只是背公式”的错误认识,学生也就会出现“公式都背了,考试还考不好”的情况。

总之,通过上述比较可知,物理概念和物理量有很多的不同之处,是不同的物理名词。相对物理量而言,可以说物理概念是上位的,概括性强,更加抽象,包含信息更加丰富,物理量只是对相应同名物理概念的量的表述,物理概念除了量的性质以外,还有其他很多质的性质。

我们可以将物理概念比喻成一个外表抽象,内涵复杂的“系统”,它包括物理概念的引入目的(或背景)、定义、物理意义、与其他概念之间的关系、以及其他性质等诸多方面,如果概念有量的属性,则还有相应的同名物理量。

教师知道了两者的区别,就不会将概念教学沦为物理量教学,更不会只是公式教学,这自然有助于学生对物理概念的学习,不仅知其然,更知其所以然,有助于能更好的从整体上、从本质上把握物理概念。

270 评论

赵大宝宝

(一)广义惯性使牛顿力学进化爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性"([3]第55页)。这个同一性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定律涵义的数学表达式。所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位。广义惯性包含了牛顿惯性,所以,又是其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性([3]第十五版说明),由此"广延性"再往前走一步,就是[2]文说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质([4]第六章)。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节)。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。(二)再看牛顿力学为什么人们回避牛顿第二定律中的"力"(外力)的反作用力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力 --惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也当作有外力(不包括阻力)正在作用之。之所以把非牛顿惯性系中的外力惯性力叫做虚构力,是说明牛顿力学中还有第二个观念:"力是物体对物体的直接作用"--这是作用方式力,但有的教材除了摩擦力外,把作用方式力几乎都归结于弹性力则是错误的。又从这第二个观念来看其外力惯性力时,真的不存在另一个物体来表现之,只得权宜称为虚构力。当把重力也当作外力时,发现确实有另一个物体(中心物体)与之对应,这可是"真实"的外力了。麻烦又出现了,这个引力是超距作用性质的力,从作用方式力的观念角度来看时,又难理解了。为了让引力回复到可理解的直接作用性,又引起了从牛顿时代起至今的许多人去虚构在两个超距的物体之间飞来飞去的各种"微粒子",以此物来担当引力成为直接作用性的重任。引力本来也是虚构力,还要为这虚构的"东西"再虚构一些东西,麻烦可就大了。因为凡是具有质量的物体都具有广义惯性,也可以说是"万有"惯性。之所以惯性力学在力学体系中占有主要及重要的地位,而其他属性(如弹性与磁性等)力学占次要地位,且以"惯性力"作为力的物理单位,也是由于其"万有"的原因。但作为表现广义惯性力的重力的空间(重力场)及场源物体(整体天体)可不"万有"。这两个角度分不开,还会认为重力(引力)"万有",这又会回到为什么会超距作用的难理解的怪圈。广义惯性使探索"引力作用机制"的研究方向成为毫无意义的方向,是徒劳无功的方向,因为引力本身是由牛二律的局限性而派生出来的虚构的力。(三)再看广义相对论爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的" 低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然"引力"波也不存在了;如果重力场有边界,重力场就与电磁场不同,当然引力"波"也不存在了。如果以光线在重力场中弯曲的角度而导出的"黑洞",黑洞不存在,因为光线在重力场中弯曲的原理不是由于"引力";如果是由于"弯曲时空"原理而导出的"黑洞",黑洞也不存在,因为本来弯曲时空是由光线的弯曲(光子的广义惯性运动)而规定出来的,反过来又认为光线的弯曲是由弯曲时空所造成的,这是什么逻辑?如果光线在重力场中有红移效应,那么,由此原理而导出的黑洞,黑洞有可能存在。引力都不存在了,也就无所谓四种相互作用力的统一的问题。目前的"大统一理论"仅剩下"引力"没有被统一进去,也正说明了这个问题。经归纳的现象)再变为抽象层次的基本概念的过程,是人们最不习惯的过程,总不容易摆脱"具象"。之所以不习惯,其原因之一也是因为人们先有了原来理论的抽象及已经习惯了的思维方式,即使有了"具象"也看不到其抽象意义。而由抽象变为"具象"的过程,那可容易多了,但也往往"具象"出来客观世界不存在的东西。从逻辑学角度,基本概念是不能被其它概念来定义的概念,其内涵具有一定的模糊性。ρ空间也是如此,只能用"感觉"到的物体质量部分的压强梯度现象来说明之,但又不是压强梯度本身。"真空"是具象空间,真空里照样存在"重力场"的ρ梯度值的有否,可用具象的压强梯度来检验之。但不能认为真空是ρ均匀空间。ρ空间与压强梯度的关系可类比铁粉末直观表现磁场结构的关系。摆脱不了具象,不能变为一个基本概念,也是爱因斯坦的"一无所有"的空间怎能分出两种空间的困惑原因之一,而用"运动"规定出来的弯曲时空又不能区分出是表述了物体的广义惯性还是表述了场的属性。特别强调的是:物体内部空间只能指物体质量部分所占据的空间,也是爱因斯坦晚年醒悟的"物体具有空间广延性"的涵义;而重力场空间不仅包含质量部分(整体天体)的空间,也包含没有质量部分的空间。这样就避免了变为"一无所有"的无边界的抽象参考系而带来的"相对"不清的问题。总的说来,ρ空间仅在数学形式上是标量场(其梯度为矢量场),但在物理意义上,则包含了表述广义惯性、可变为物体内部空间及重力场的本体性场、势、能、熵与质量部分的压强梯度等涵义。

113 评论

刘思韵2522

简单粗暴的方式就是好别人发表的文章(应用物理)上的,把他们的格式套过去~

268 评论

相关问答

  • 大学论文发表心情图片大全

    花钱就能解决~

    扭扭炒饭 3人参与回答 2023-12-10
  • 小论文发表心情图片大全

    写论文是每一个学生都必须要经历的事情,而且我们在大学前几年的时候就已经多多少少的有过一些基础,所以在最后毕业的时候写论文可能会给我们带来一些不一样的感受,毕竟大

    annking168 5人参与回答 2023-12-06
  • 论文发表心情开心图片大全

    想要快乐,我们只需要懂得分享,便能得到简单的快乐。以下是由我为大家提供的“简单快乐的心态句子图片大全”,仅供参考,祝你阅读愉快。 1.一直相信精神振起来,最终会

    文哥哥哥哥哥 2人参与回答 2023-12-05
  • 文学论文发表心情图片大全

    (1)毕业论文暂告收尾,这也意味着我在XXX大学的四年的学习生活既将结束。回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的

    骑猪去看海AA 7人参与回答 2023-12-05
  • 物流论文发表心情图片大全

    在论文完成之际,我要特别感谢我的指导老师XX老师的热情关怀和悉心指导。在我撰写论文的过程中,X老师倾注了大量的心血和汗水,无论是在论文的选题、构思和资料的收集方

    乐趣小鱼 6人参与回答 2023-12-08