zhang太太
学术论文,不是随便摘抄就能写出来的,水平很高的。论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。2020年12月24日,《本科毕业论文(设计)抽检办法(试行)》提出,本科毕业论文抽检每年进行一次,抽检比例原则上应不低于2%。
yaodabian0214
原文: Unpaired Multi-contrast MR Image Synthesis Using Generative Adversarial Networks 论文来自2019MICCAI 一些医学图像在某些情况下可能不容易获得,因此从能得到的图像出发生成不能得到的图像有较大的医学价值。普通的GAN不能使用一个生成器和判别器生成多种与之相对应的不同模态的图像,因此对于生成多个模态的图像需要多个模型。针对这个问题,本文提出了新的模型,使用Star-GAN来实现一到多的生成。本文引入了新的损失函数,它强制生成器生成高质量的图像,在视觉上更真实,并且有很好的结构相似性。在IXI数据集上学习所有可能的映射(T1,T2,PD,MRA),定性和定量都比较好。 因为深度学习的训练需要很多数据,但是标注代价昂贵因此为了提高深度学习的表现,通过生成一些图像的方法来实现数据增广是有研究价值的。传统方法通过cycle-gan 、c-gan 、wasserstein-gan或者pix2pix来实现一对一的生成。我们使用star-gan和U-NET来实现一对多的生成。模型能够以无监督的形式训练,这样能够使生成器学习不同种模态的通用的几何特征。无监督的方式也消除了成对数据的要求,因此对数据的限制较小。 在损失方面,使用结构相似性来约束小细节特征。除此之外还采用了‘学习感知图像块相似性’( Learned Perceptual Image Patch Similarity (LPIPS)不知道怎么翻译,目前第一次看到。)模型实现1输入4输出。 能够实现四种模态之间的转化,输入一个和一个目标域能够产生出相对的图像。 U-net用来实现两种生成,一种是输入一个域和另一个域的标签,通过深度级联(depth-wise concatenat)然后生成另一个域的假的图像。另一中是输入假的图像和原始的标签生成由假图重建的图像。第一步的生成用来计算对抗损失和分类损失。第二部分的生成中用来计算相似性的损失包括(L1范数,DSSIM,LPIPS) 过程和star-gan一样 本文使用正则化的带有梯度惩罚的Wassersteing GAN (WGAN-GP),能够稳定学习,和增强生成图像的质量。定义如下: 第一项损失是WGAN-GP损失,第二项是正则化项 x' and x''是与x相近的相距很近的数据。D_是从第二层到最后一层判别器的输出。 这部分看的不是太明白。具体可能因为WGAN没有看过把。应该原始论文中有,需要后面完善。 使生成器生成正确域的图像 第一个式子使真图的分类损失,第二个是假图的分类损失。生成器是Unet结构。判别器是基于PatchGAN的判别器。 使用LXI数据集 IXI dataset emmmm不应该和star-gan比较把。应该和介绍中提到的其他方法比较把。cycle,cgan之类的把。star-gan直接应用在这上面肯定效果不是很好啊。这个比较个人觉得无意义。
怎么样发表论文: 1、想要发表论文,事先要做的就是写好一篇查重率合格,且具备一定价值的论文,论文查重率的具体要求,要根据想要发表的期刊来定,若为普通期刊,则查重
看你上面的刊期,在职称评定中,是以刊期为准的。如果是5月份的刊期,即使是8月份收到的,也是按5月份算的。
六个发表论文的流程:准备论文、投稿、审核、录用、出刊、上网。 1、准备论文:如果论文已经准备好了,按照论文找合适的期刊就好;如果论文没写好,建议还是先找合适的期
评职称很多人会选择发表职称论文,这就涉及到了期刊的选择,作者们在学术领域可能非常权威,但是对于发表论文来说,很多人可能还是个小白,有些作者文章是发表了,评职称时
一、选刊.选定一种期刊杂志作为自己的投稿对象.怎么选呢,先看自己学校或者单位评职称需要投什么级别的刊物.现在很多都要求必须是核心期刊,这个可以上网搜一下具体都有