• 回答数

    3

  • 浏览数

    346

CallmeNicole
首页 > 论文发表 > 量子科学论文发表时间

3个回答 默认排序
  • 默认排序
  • 按时间排序

宾格砖家

已采纳

作者 | 陈欢欢

近日,光量子计算和大尺度光量子信息处理两项成果双双入选中国科学院“率先行动”计划第一阶段59项重大 科技 成果及标志性进展。

8月16日,世界首颗量子科学实验卫星“墨子号”迎来4岁生日。在距离地球500公里的轨道上,这颗超期服役2年的“老”卫星仍然捷报频传。

6月15日,中国科学院院士、中国科学技术大学教授潘建伟领衔的合作团队在《自然》发表论文,在国际上首次实现了基于纠缠的无中继千公里级量子保密通信。这也是“墨子号”4年间产生的第5篇《自然》《科学》论文。

随着一项项科学实验的成功,卫星量子通信的应用前景日益清晰。

战略布局占先机

7月23日,美国能源部公布报告,规划了美国“量子互联网”战略蓝图。欧盟早在2016年也提出过“欧洲量子技术旗舰计划”,打算用10年建成量子互联网。

可喜的是,我国在这一领域,相关基础研究和工程技术水平都处于国际引领地位。

今年3月,我国科学家刚刚创造了光纤量子通信509公里的新纪录。同时,“墨子号”保持着星地之间1200公里量子通信的世界纪录。“墨子号”和“京沪干线”的成功实施,构建了国际首个天地一体的广域量子通信网络雏形。

之所以能“起个大早、赶个早集”,得益于潘建伟的战略眼光与布局。

量子 科技 研究主要集中在量子通信、量子计算和量子精密测量等领域,有多光子纠缠、光量子计算、超冷原子量子模拟、光晶格量子模拟、量子中继器等诸多方向。

这么多学科方向,一个人不可能包打天下。从单枪匹马到带领一支近百人的团队,潘建伟用了10多年时间。

本世纪初,量子 科技 在中国还颇为冷门。潘建伟也面临着学科方向不被理解、申请经费四处碰壁的困境。

在人手紧缺的情况下,他却果断地把优秀学生纷纷送走。德国海德堡大学、奥地利因斯布鲁克大学、美国斯坦福大学、英国剑桥大学、瑞士日内瓦大学……这些量子科学和技术顶尖团队所在地,都留下了潘建伟弟子学习的身影。

如今,各研究室独当一面的负责人正是当年那些漂流四海的年轻人。

“墨子号”量子纠缠源分系统主任设计师印娟的成长路线却略有不同。

2002年,大二结束的暑假,印娟来到潘建伟实验室,成为实验室第一位女生,从此再没有离开。

2017年,“墨子号”千公里级星地双向量子纠缠分发实验成功,以封面论文的形式发表在《科学》,印娟成为团队里第一个同时拥有《自然》和《科学》第一作者身份的科学家。

善于布局,也安心等待。这样的一支团队,一出手就是“大”成果不足为奇。

敢想敢干出奇迹

“墨子号”科学应用系统主任设计师任继刚,至今仍清楚地记得读博时第一次听潘建伟作报告的情景。“太神奇了,就像听一个科幻故事。”他回忆说。

在场的很多人可能也跟任继刚一样,把量子 科技 当成科幻故事。而作报告的那个人却是认真的。

2003年,潘建伟陷入量子通信研究瓶颈。由于光子在光纤传输时损耗太大,传输100公里只剩下1%的信号到达接收端。而外太空因为几乎真空,光信号损耗非常小,潘建伟破天荒地提出了“上天”这个“大胆且疯狂”的方案。

当时,他向博士生彭承志科普量子通信的发展前景,当说到需要通过太空实现长距离传输时,彭承志认为“这是一个遥不可及的梦想”。他问潘建伟:“这个事,是不是挺牛的?”潘建伟想了想,很肯定地回答:“肯定牛,是世界上最牛的,至少是之一。”

带着这样的信念,他们在合肥大蜀山山顶开始了第一个实验,于2005年实现了13公里的量子纠缠分发。这个传输距离超过了大气层的等效厚度,从而证实了远距离自由空间量子通信的可行性。

2009年,团队在青海湖开展百公里量子纠缠分发实验。当时,团队里的3位主力——2007年博士毕业的任继刚、2009年博士毕业的印娟、2010年将要博士毕业的廖胜凯,后来分别成为“墨子号”3个分系统主任设计师。

岛上通信信号极差,几位年轻人没什么消遣,晚上做实验,白天借着搭建的无线网桥开例会。2012年,团队在国际上首次实现百公里量级的自由空间量子隐形传态和纠缠分发。

2017年,利用“墨子号”,他们将量子纠缠分发的距离再提高一个量级,达到1200公里。

从大蜀山的13公里到天地间的上千公里,潘建伟团队一步一个脚印,从无到有地验证了量子通信的可行性。

“率先行动”很给力

中国科学院院士、 科技 部原部长徐冠华曾公开指出,我国对自身科学研究能力不自信,“在 科技 项目的确定过程中,习惯于拒绝支持有争议的项目,排斥没有国外先例的研究”。

当年的潘建伟,面对的就是这样的窘境。

2003年,潘建伟首次提出利用卫星实现自由空间量子通信的构想。这个“前无古人、闻所未闻”的想法立即遭到多方质疑:量子信息科学,欧洲美国都刚刚起步,我们为什么现在要做?

这个“不靠谱”的计划却获得了中国科学院的支持。2011年底,中国科学院空间科学先导专项正式立项“量子科学实验卫星”,自此打开了量子世界的大门。

2014年,中国科学院启动实施“率先行动”计划,给“墨子号”研制团队带来了“集团军”的支持。

当年10月,中国科学院量子信息与量子 科技 前沿卓越创新中心率先成立,2017年5月更名为量子信息与量子 科技 创新研究院。

这使得中国科学技术大学同中国科学院上海技术物理研究所、微小卫星创新研究院、光电技术研究所等都有了更加紧密的合作关系。

中国科学院上海技术物理研究所研究员、量子科学实验卫星工程常务副总师王建宇曾比喻称:星地间量子纠缠分发的难度,就像在太空中往地面的一个存钱罐里扔硬币,而且天空中的“投掷者”相对地面上的“存钱罐”还在高速运动。

在“率先行动”计划的支持下,这样一项看似“不可能的任务”最终顺利完成。“我们的合作体现出了创新研究院的价值,那就是集中力量干大事。”潘建伟说。

中国科学院院长、党组书记白春礼评价称,“墨子号”为中国在国际上抢占了量子 科技 创新制高点,成为了国际同行的标杆,实现了“领跑者”的转变。

天时、地利、人和,量子团队的下一个“惊喜”也许很快就会到来。

《中国科学报》 (2020-09-10 第1版 要闻)

197 评论

风铃结香

量子理论是普朗克提出来的。

1900年,德国柏林大学教授普朗克首先提出了“量子论”。 1900年12月14日,普朗克在柏林的物理学会上发表了题为《论正常光谱的能量分布定律的理论》的论文,提出了著名的普朗克公式,这一天被普遍地认为是量子物理学诞生的日子。

马克斯·普朗克(1858年-1947)在1900年首先形成了他的量子论。这一理论如同5年后爱因斯坦发表的相对论一样,对物理学产生了深远的影响。

量子力学要点

基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。

粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。

273 评论

贝壳里的海221

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。 1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。 在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。 由于观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式,海森堡还提出了测不准原理。1926年,苏黎世大学的奥地利物理学家薛定谔发展了另一种形式的量子力学—波动力学。1925年10月,薛定谔得到了一份德布罗意的关于物质波的博士论文,从中受到启发。将电子的运动看作是波动的结果,其运动的方程应该是波动方程,方程决定着电子的波动属性。1926年薛定谔连续发表了4片关于量子力学的论文,标志着波动力学的建立。薛定谔的理论一提出来就受到物理学奖的普遍关注和赞赏虽然海森堡的矩阵力学和薛定谔的波动力学出发点不同,从不同的思想发展而来,但它们解决同一问题是得到的结果确实一样的。两种体系的等价性也由薛定谔等人所证明,当然更高层次的证明是由英国物理学家狄拉克进行的,这将在后面有所涉及。由于海森堡和薛定谔在量子力学建立开创性的工作,他们分别获得了1932年、1933年的诺贝尔物理学奖。1926年,玻恩把薛定谔的波动方程用于量子力学的散射过程,从而提出了波函数的统计解释,量子力学才真正从一大堆的假设中找到了科学道理。玻恩认为只有薛定谔的那种形式才能对非周期性的现象给出简单的描述。经过充分的研究后,玻恩指出薛定谔的波函数是一种概率的振幅,它的模的平方对应于侧到的电子的概率的分布这个解释的确给我们一个清晰的图像,在电子衍射时,后面的屏上电子的分布确实是电子的波函数叠加的结果,电子射到某点的概率完全可以计算出来。实验的结果与理论符合的很好。量子力学到此可以说是基本的框架已经建立,后面还有很多需要完善的地方。狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式;希尔伯特在1927年4月发表的一片文章中,将狄拉克和约尔丹观念表述的更为清楚;海森堡在1927,又提出了微观现象的测不准原理;1929年海森堡和泡利提出相对论性量子场论等。到现在量子力学理论已经相当丰富,然而完善工作还在由世界各地的理论物理学家们继续进行着。在将来,或许会有更好的理论代替量子理论,这需要我们以后的理论工作进一步辛勤无私的奉献。

291 评论

相关问答

  • 量子搜索最新论文发表时间

    爱因斯坦在1905年发表了四篇论文。 1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工

    江河装饰 3人参与回答 2023-12-06
  • 凉山学子论文发表时间

    从这件事情说,可以看出,这名小伙对于自己的母校是非常感恩的,而且他对于走出大山能获得这样的一个学习机会也是非常满足的,从中可以看出,这名小伙子,他在这方面的发展

    无敌美苏苏 7人参与回答 2023-12-08
  • 中国量子通信论文发表时间

    量子通信详见前些年发射上天的墨子号,大概也就是独步全球的水平,量子计算也走在世界前列

    信息全无 6人参与回答 2023-12-05
  • 量子力学论文发表时间

    樱井纯(Jun John Sakurai, 1933年1月–1982年11月),日裔美籍理论物理学家。1933年出生于东京, 1949年以高中生的身份来到美

    白树dodo 4人参与回答 2023-12-11
  • 仪陇学子论文发表时间

    发表论文 多久能发表 ?有很多人快到评职称提交评估材料的时间,各种考试都通过了,但还没有发表文章,即使加急发表,但也不能保证100%的发表成功,比如参加各类考试

    溪爱Mr彬 8人参与回答 2023-12-09