• 回答数

    5

  • 浏览数

    110

尛尛尛舒
首页 > 论文发表 > 量子密码发表论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

爷很忙2

已采纳

通信技术论文范文篇二 浅析量子通信技术 【摘要】量子通信作为既新鲜又古老的话题,它具有严格的信息传输特性,目前已经取得突破性进展,被通信领域和官方机构广泛关注。本文结合量子,对量子通信技术以及发展进行了简单的探讨。 【关键词】量子;通信;技术;发展 对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。 一、量子通信技术 (一)量子通信定义 到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。 从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。 (二)量子通信原理 量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。 利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。 (三)量子密码技术 从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是0.5,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。 (四)量子通信的安全性 从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。 从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。 二、量子通信应用与发展 和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。 在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在�潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。 三、结束语 量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。 参考文献 [1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497. [2]徐兵杰,刘文林,毛钧庆等.量子通信技术发展现状及面临的问题研究[J].通信技术,2014(5):463-468. [3]刘阳,缪蔚,殷浩等.通信保密技术的革命――量子保密通信技术综述[J].中国电子科学研究院学报,2012, 7(5):459-465. 看了“通信技术论文范文”的人还看: 1. 大学通信技术论文范文 2. 通信技术毕业论文范文 3. 通信技术论文范文 4. 关于通信工程论文范文 5. 大学通信技术论文范文(2)

128 评论

Me馍馍27

赵忠贤物理学家。辽宁新民人。1964年毕业于中国科学技术大学技术物理系。1987年当选为第三世界科学院院士。中国科学院物理研究所研究员,超导国家重点实验室主任。一直从事低温与超导研究。1967-1972年参加几项国防任务。1976年开始从事探索高温超导电性研究。所发表的论文包括第Ⅱ类超导体的磁通钉扎与临界电流问题;非晶态合金的超导电性。1983年开始研究氧化物超导体BPB系统及重费米子超导性,1986年底在Ba-La-Cu-O系统研究中,注意到杂质的影响,并于1987年参与发现了液氮温区超导体 。1991年当选为中国科学院院士(学部委员)。郭光灿光学和量子信息专家。1942年生于福建惠安。1965年毕业于中国科学技术大学无线电电子学系。现任中国科学院中国科学技术大学量子信息重点实验室主任、物理系教授。主要从事量子光学、量子密码、量子通信和量子计算的理论和实验研究。提出概率量子克隆原理,推导出最大克隆效率,在实验上研制成功概率量子克隆机和普适量子克隆机。发现在环境作用下不会消相干的“相干保持态”,提出量子避错编码原理,被实验证实。提出一种新型可望实用的量子处理器,被实验证实。在实验上实现远距离的量子密钥传输,建立基于量子密码的保密通信系统,并提出“信道加密”的新方案,有其独特的安全保密优点。在实验上验证了K-S理论,有力地支持了量子力学理论。发现奇偶相干态的奇异特性等。2003年当选为中国科学院院士。侯建国物理化学家。1959年生于福建平潭。1983年毕业于中国科学技术大学物理系,1989年获中国科学技术大学博士学位。1993年至1995年在美国Oregon州立大学化学系做助理研究员。现任中国科学技术大学教授、副校长、理化科学中心主任。主要从事结构分析、表面物理化学和无机材料制备方法的研究。利用分子自组装技术,获得了能够分辨碳—碳单键和双键的分子图像,并从实验和理论上分别论证了扫描隧道显微术对单分子直接成像的可能性与限制因素,并进而确定了C 表面晶格的取向特征。此外,发展了确定单分子在固体表面吸附取向与局域电子态的方法,提出了制备具有特殊性能的同质分子超晶格的新途径。2003年当选为中国科学院院士。饶子和分子生物物理与结构生物学家。1950年生于江苏南京。1977年毕业于中国科技大学,1982年获中国科学院研究生院硕士学位,1989年获墨尔本大学博士学位。现任清华大学教授,中国科学院生物物理研究所所长,生物大分子国家重点实验室主任。在《Nature》上发表了SIV-MA的晶体结构,首次提出HIV及其家族分子的装配模型;在《Cell》上发表了H Factor Ⅸ EGF-like Domain与Ca++结合复合物的结构与功能研究结果,揭示了该复合物的生物学机理;在2003年SARS爆发期间,成功地解析出第一个SARS病毒的蛋白质-3CLPRO及其与抑制剂复合物的晶体结构,为抗SARS药物的发现奠定了重要的结构基础,论文在《PNAS》上发表。其研究组已经系统地表达出200余个与人类健康密切相关的重要蛋白质,解析出50多个重要蛋白质的结构。2003年当选为中国科学院院士。 王震西磁性及非晶态材料专家。江苏省海门市人。1942年9月3日出生。1964年毕业于中国科技大学物理系获学士学位。中国科学院北京三环新材料高技术公司总经理、研究员。长期从事磁性非晶态材料的研究及应用推广。研制成功我国第一代国防用多种微波铁氧体材料和器件。在非晶态DyCo3.4合金薄膜中,合作发现并命名了SPerimagnet(散磁性)新型磁结构。研制成功具有我国自己特色的低纯度钕稀土铁硼永磁合金,系统地解决了大规模工业生产中整套关键技术、工艺和设备,并积极推广。创建产业型三环新材料高技术公司,经济效益显著。多次获得国家及省部级奖励?quot;低纯度钕稀土铁硼永磁合金获1988年国家科技进步奖一等奖。发表学术论文数十余篇。1995年当选为中国工程院院士。许祖彦1940年2月生,1963年中国科大技术物理系毕业分配到中科院物理所,从事激光物理与激光技术研究至今。主要研究方向为可调谐激光,全固态激光和超快激光的研究与应用。研究有机染料可调谐激光技术,获国家科技进步二等奖一项,中科院科技进步二等奖二项,电子部科技进步二等奖一项。研究非线性光学和光参量宽调谐激光,获国家发明二等奖一项,中科院科技进步一等奖一项。研究大功率全固态激光,取得多项国内外领先成果和发明。研究超快激光,国内首创全固态飞秒光源和国际领先宽调谐飞秒激光器等。2001年当选为中国工程院院士。陈立泉1940年生于四川南充,1964年毕业于中国科学技术大学物理系,同年到中国科学院物理研究所工作至今。其间1976~1978年赴西德马普协会固体所进修;1985年、1990年和1992年曾分别在法国科研中心波尔多固体化学研究所、荷兰代尔夫特理工大学和日本东京工业大学任客座教授。主要研究方向:纳米离子: 纳米离子材料和离子电子混合导电材料的制备和表征;纳米离子材料和离子电子混合导电材料的离子和电子的输运特性和其他物理性质。高能电池和燃料电池中的物理化学过程。发表论文下230余篇,申请发明专利13项。长期从事固态离子学的研究,是我国固态离子学的创始人之一,长期从事锂电池、锂离子电池及可持续能源领域内的研究工作,在固态离子学及可持续能源领域在国际上享有很高的声誉。现担任国际固态离子学学会的委员、“ Solid State Ionics ”国际杂志的编委,中国固态离子学会名誉理事长,曾任中国固态离子学学会理事长。发表论文230余篇,申报发明专利13项。曾是国家863计划二次锂电池专题负责人并参加了课题研究,主持了专题研究计划的制定和实施及全国11个子课题研究的协调。近年来取得纳米金属储锂合金负极材料等一批国际一流水平的研究成果,这一成果被美国能源部年度政府工作报告中引用的唯一一篇中国的文献。2001年当选为中国工程院院士。

237 评论

晓晓小同学

量子密码与传统的密码系统不同,它依赖于物理学作为安全模式的关键方面而不是数学。下面是我精心推荐的一些量子通信技术论文,希望你能有所感触!

基于科学史视角的量子密码

摘 要: 为了寻求一种无条件安全的密钥系统,采用了科学史的研究方法,对人类历史上产生过巨大影响的密钥思想进行了探究,调研了现在广泛使用的密码系统,特别是RSA密码系统,并指出它的安全性受到量子计算能力的严重挑战,在此基础上探究一次一密与量子密钥分发的结合能否实现无条件安全通信。

关键词: RSA密码系统; 量子密码 ; 一次一密; 量子密钥分发

中图分类号: TN918?34 文献标识码: A 文章编号: 1004?373X(2013)21?0083?03

0 引 言

保密通信在人类社会中有着重要的地位,关系到国家的军事、国防、外交等领域,同时也与人们的日常生活息息相关,如银行帐户存取、网络邮箱管理等。保密通信关键在于密码协议,简称“密钥”。密钥的安全性关系到通信的保密性。密码学的发展也正是在加密者高明的加密方案和解密者诡异的解密技术的相互博弈中发展前行的,两者互为劲敌,但又互相促进。随着量子计算机理论的发展,传统的安全通信系统从原理上讲已不再安全。那么,是否存在一种无条件安全的通信呢?量子密码又将给信息的安全传输带来怎样的新思路呢?本文从科学史的角度分析人类传统的密码方案,考察量子密码发展的来龙去脉,为科学家提供关于量子密码的宏观视角,以便更好地推进关于量子密码的各项科学研究。

1 人类历史上影响巨大的密钥思想

密码学有着古老历史,在近代逐渐发展成为一门系统的应用科学。密码是一个涉及互相不信任的两方或多方的通信或计算问题。在密码学中,要传送的以通用语言明确表达的文字内容称为明文,由明文经变换而形成的用于密码通信的那一串符号称为密文,把明文按约定的变换规则变换为密文的过程称为加密,收信者用约定的变换规则把密文恢复为明文的过程称为解密。敌方主要围绕所截获密文进行分析以找出密码变换规则的过程,称为破译。密码协议大致可以分为两类:私钥密码系统(Private Key Cryptosystem)和公钥密码系统(Public Key Cryposystem)。

1.1 我国古代的一种典型密钥——阴符

阴符是一种秘密的兵符,在战争中起到了非常重要的作用。据《六韬·龙韬·阴符》记载,阴符是利用不同的长度来代表不同的信息,一共分为八种。如一尺的兵符代表“我军大获全胜、全歼敌军”;五寸的兵符代表“请求补给粮草、增加兵力”;三寸的兵符代表“战斗失利,士卒伤亡”。

从现在的密码学观点来看,这是一种“私钥”,私钥密码系统的工作原理简言之就是:通信双方享有同一个他人不知道的私钥,加密和解密的具体方式依赖于他们共同享有的密钥。这八种阴符,由君主和将帅秘密掌握,是一种用来暗中传递消息,而不泄露朝廷和战场机密的通信手段。即便是阴符被敌军截去,也无法识破它的奥秘。由于分配密钥的过程有可能被窃听,它的保密性是由军令来保证的。

1.2 古斯巴达人使用的“天书”

古斯巴达人使用的“sc仔tale”密码,译为“天书”。天书的保密性在于只有把密文缠绕在一定直径的圆柱体上才能呈现明文所要表达的意思,否则就是一堆乱码。不得不感叹古代人的智慧。图1为“天书”的示意图,它也是一种“私钥”,信息的发送方在发布信息时将细长的纸条缠绕在某一直径的圆柱体上书写,写好后从圆柱体上拿下来便是密文。但是,它的保密性也非常的有限,只要找到对应直径的圆柱体便很容易破译原文。

1.3 著名的“凯撒密表”

凯撒密表是早在公元前1世纪由凯撒大帝(Caesar)亲自设计用于传递军事文件的秘密通信工具,当凯撒密码被用于高卢战争时,起到了非常重要的作用。图2为“凯撒密表”。从现代密码学的角度看,它的密钥思想非常简单,加密时,每个字母用其后的第[n]个字母表示,解密的过程只需把密文字母前移[n]位即可。破译者最多只要尝试26次便可破译原文。

1.4 德国密码机——“恩尼格玛”

二战期间德国用来传递军事机密的“ENIGMA”密码机,它的思想基本类似于“凯撒密表”,但比“凯撒密表”复杂很多倍,它的结构主要分为三部分:键盘、密钥轮和显示灯盘。键盘可以用于输入明文,显示灯盘用于输出密文,密钥轮是其核心部分,通常由3个橡胶或胶木制成的直径为6 cm的转子构成,密钥轮可以任意转动进行编制密码,能够编制出各种各样保密性相当强的密码。它的神奇之处在于它不是一种简单的字母替换,同一个字母在明文的不同位置时,可以被不同的字母替换。而密文中不同位置的同一个字母,可以代表明文中不同的字母。所以它的安全性较高,但也并非万无一失,由于德国人太迷恋自己的“ENIGMA”密码机,久久不愿更换密钥,所以免不了被破译的结局。

2 目前人类广泛使用的密钥及其存在的问题

2.1 现代广泛使用的密码系统——RSA密码系统受到前所未有的挑战

现代广泛被用于电子银行、网络等民用事业的RSA密码系统是一种非对称密钥。早在20世纪60年代末70年代初,英国情报机构(GCHQ)的研究人员早已研制成功。相隔十年左右,Ronald Rivest、Adi Shamir和Leonard Adleman才研制出类似的密码系统,并以三个人的名字命名为“RSA”。它是一种公钥密码系统,工作原理如下:假设通信双方分别为Bob和Alice。Bob公布一个公钥,Alice用这个公钥加密消息传递给 Bob,然而,第三方不可能用Bob的公钥解密。原因在于加密变换巧妙,逆向解密困难。而Bob有与公钥配对的私钥。

RSA公钥密码系统巧妙地运用了分解因数和解离散对数这类难题,它的安全性依赖于计算的复杂性。虽然原理上可以计算出,但是计算出来也需要几万年的时间。然而,随着量子计算机理论的成熟,RSA密码体受到严重挑战,随着计算时间的缩短,RSA密码系统的安全性令人堪忧,RSA密码系统有可能随着量子时代的到来被人类完全抛弃。 2.2 “一次一密”的最大的问题是密钥分配

RSA密码系统受到严重挑战后,一次一密(One time Padding)的不可破译性又被人们所记起。一次一密指在密码当中使用与消息长度等长的随机密钥, 密钥本身只使用一次。原理如下:首先选择一个随机位串作为密钥,然后将明文转变成一个位串,比如使用明文的ASCII表示法。最后,逐位计算这两个位串的异或值,结果得到的密文不可能被破解,因为即使有了足够数量的密文样本,每个字符的出现概率都是相等的,每任意个字母组合出现的概率也是相等的。香农在1949年证明一次一密具有完善的保密性[1]。然而,一次一密需要很长的密码本,并且需要经常更换,它的漏洞在于密钥在传递和分发上存在很大困难。科学家试图使用公钥交换算法如RSA[2],DES[3]等方式进行密钥交换, 但都使得一次一密的安全性降低。因此,经典保密通信系统最大的问题是密钥分配。

3 量子密码结合“一次一密”实现无条件保密

通信

量子密码学是量子力学和密码学结合的产物,简言之,就是利用信息载体的量子特性,以量子态作为符号描述的密码。

3.1 运用科学史的视角探究量子密码的发展过程

量子密码概念是由Stephen Wiesner在20世纪60年代后期首次提出的[4]。

第一个量子密码术方案的提出是在1984年,Charles Bennett, Gills Brassard提出一种无窃听的保密协议,即,BB84方案[5],时隔5年后有了实验原型[6]。随后,各类量子密码术相继出现,如简单效率减半方案——B92方案[7] 。

1994年后,RSA密码系统面临前所未有的威胁,因为,经典保密通信依赖于计算的复杂性,然而,Peter Shor 提出寻找整数的质因子问题和所谓离散对数的问题可以用量子计算机有效解决[8]。1995年,Lov Gover 证明在没有结构的搜索空间上搜索问题在量子计算机上可以被加速,论证了量子计算机的强大的能力[9]。Peter Shor和 Lov Gover量子算法的提出,一方面证明了量子计算的惊人能力,另一方面,由于经典密码系统受到严重威胁,促使各国将研究重点转向量子密码学。

3.2 量子密码解决“一次一密”的密钥分配难题

一次一密具有完善的保密性,只是密钥分配是个难题。

量子密钥在传输过程中,如果有窃听者存在,他必然要复制或测量量子态。然而,测不准原理和量子不可克隆定理指出,一个未知的量子态不能被完全拷贝,由某一个确定的算符去测量量子系统,可能会导致不完备的测量,从而得不到量子态的全部信息。另外,测量塌缩理论指出测量必然导致态的改变,从而被发现,通信双方可以放弃原来的密钥,重新建立密钥,实现绝对无窃听保密通信。量子密码的安全性不是靠计算的复杂性来保障,而是源于它的物理特性。

这样就保证了密钥可以被安全分发,窃听行为可以被检测。因此,使用量子密钥分配分发的安全密钥,结合“一次一密”的加密方法,可以实现绝对安全的保密通信。

4 结 语

与经典密码系统相比较,量子密码不会受到计算速度提高的威胁,并且可以检测到窃听者的存在,在提出近30年的时间里,逐渐从理论转化为实验,有望为下一代保密通信提供保障,实现无条件安全的保密通信。

参考文献

[1] SHANNON C E. Communication theory of secrecy systems [J]. Bell System Technical Journal, 1949, 28(4): 656?715,

[2] 张蓓,孙世良.基于RSA的一次一密加密技术[J].计算机安全,2009(3):53?55.

[3] 王伟,郭锡泉.一次一密DES算法的设计[J].计算机安全,2006(5):17?18.

[4] WIESNER S. Unpublished manuscript circa 1969: conjugate coding [J]. ACM Sigact New, 1983, 15: 77?79.

[5] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing [C]// Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: IEEE, 1984: 175?179.

[6] BENNETT C H. BRASSARD G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working [J]. ACM Sigact News , 1989, 20: 78?80.

[7] BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography [J]. Journal of Cryptology, 1992(5): 3?21.

[8] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring [C]// Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, 1994: 124?133.

[9] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys Rev Letters, 1997, 79(2): 325?328.

点击下页还有更多>>>量子通信技术论文

86 评论

偶与吃货

他的比谷歌悬铃木快一百亿倍?怎么计算的?他的计算有一个案例吗?仅仅又是理论猜测?正如网友认为:一会儿量子卫星、一会儿一眨眼又量子计算机、一会儿量子之父!谁不知美国谷歌,⋯这些人利用了某些人喜爱高大上的厉害了的面子工程,形象工程,己经玩我高层于股掌之间,并已经达到极至。科学本身就是在质疑、在不断否定之中成长。忽悠们为什么怕别人质凝?还动不动什么敌对势力?说你是伟大,就是朋友,质疑你就是敌?什么混帐逻辑?我们等待他们的产品岀来吧,如果没有,就是一个大忽悠,如果有,也是谷歌在先。不要有一点试验,就又什么世界霸主了!超越美国了!一看就知道太不成熟了,狂热充满头脑。什么潘是量子之父呀!一派胡言,1900年普朗克发现量子,你怎么敢妄称“量子之父”?还有潘的信口开河,令人喷饭:什么所有日用量子产品都是!屁臭不臭?谁说量子科学,不用能用到民用?日用?无知!脚踏实地搞好自己的技术吧!本份一点,不要凭着弯道超车,搞了一点小动作,就狂妄无知,猖狂得比天高。一切让时间检验,是真是假拿出实证应用来说话,不要把理论猜测拿来忽悠高层与主媒,总有一天是要水落石出的,一句话,出来混总是要还的。

342 评论

纵横四海2000

在理论上绝对安全的量子通信“惊现破绽”?一篇研究量子通信攻防的论文引发广泛讨论,中科大量子通信团队迅速做出了多重回应,从学理讨论升级到实战演练。

先有中科大量子通信领军人物潘建伟院士等5名科学家联名撰文指出所谓的“破绽”早已有解决方案,目前量子通信安全性正在逼近安全系统。3月20日,科大国盾量子技术股份有限公司(下简称“科大国盾量子”)更宣布提供商用量子密钥分发产品,摆设擂台,成功窃取到量子密钥的攻擂者将获奖100万元人民币。

潘建伟的学生“击穿最强加密之盾”?

这篇触发量子通信安全性讨论的文章由某微信公众号在3月12日翻译加工自《麻省理工 科技 评论》,题为《量子加密惊现破绽:上海交大团队击穿“最强加密之盾”,实验成功率竟高达60%!》。

文章介绍了一项上海交通大学金贤敏组收录于预印本网站、尚未正式发表的论文成果。

值得一提的是,金贤敏是潘建伟的学生,2004年至2010年在中科大读博并从事博士后工作。

量子通信的本质是将信息编码在光子上。由于量子力学独特的态叠加和不可克隆性质,任何试图截获读取光子的窃听者都会破坏光子上的信息,窃听行为就此暴露。因此,量子通信在理论上是一种绝对安全的通信手段。

然而,由于现实中存在一些设备和工程学上的限制,难以百分百复制完美的理想情况。因此,自量子通信被提出以来,不少学者就试图通过研究“窃听”的现实可行性以推动该领域的安全性。

该文章写道:“上海交通大学研究团队近来在经过不断的实验与尝试之后,发现了现有量子加密技术可能隐藏着极为重大的缺陷,攻破这个最强的加密之盾却不需要什么神兵利器,而是利用‘盾’本身就存在的物理缺陷。这个研究这将可能导致量子加密从原本印象中的坚不可破,转而变成脆弱不堪。……

目前被广泛应用在量子通信中的 QKD(Quantum Key Distribution,量子密钥分发)方法并不完美,研究团队通过将具有不同种子频率的光子注入激光腔来改变激光频率的方法,进而观察注入光子的半导体激光器的动态,最终居然获得高达 60%的信息盗取成功率。”

论文作者:攻击,是为了让量子密码无懈可击

金贤敏表示,报道中有一些不够准确和深入的部分。他的文章在理论上提出了一种针对量子密钥分发实际系统源端物理漏洞的攻击方案,并通过实验数据验证可行。这个工作提醒并强调,为了更高的安全性,实际量子密钥分发系统中源端的高对比度的光隔离不仅不可或缺,而且要非常大。目前的实际系统中,有的光源已经采取了高对比度的光隔离,但有的光源还没有。

“我们的工作并不否认量子密钥分发理论上的绝对安全性,相反正因为量子加密提供了理论上的绝对安全,使得人类追寻了几千年的绝对安全通信几近最终实现。而我们不断的针对实际系统的物理安全漏洞问题的研究正是为了这个绝对安全性变得更加可靠。攻击,是为了让量子密码更加安全、无懈可击。” 金贤敏写道。

5名科学家联合撰文:正在逼近理想系统

由于“此文在微信号发布后,国内很多关心量子保密通信发展的领导和同事都纷纷转来此文询问我们的看法”,3月14日,中科大的徐飞虎、张强、潘建伟和清华大学的王向斌、马雄峰等5名量子科学家联合撰文对量子通信安全性进行了科普。

文章指出,量子密钥分发逐步走向实用化研究,出现了一些威胁安全的攻击,这并不表示安全性证明有问题,而是因为实际量子密钥分发系统中的器件并不完全符合理想协议的数学模型。归纳起来,针对器件不完美的攻击一共有两大类,即针对发射端--光源的攻击和针对接收端--探测器的攻击。

金贤敏组的实验工作就属于对光源的木马攻击。这类攻击早在二十年前就已经被提出,而且其解决方案就正如他本人宣称的一样,加入光隔离器这一标准的光通信器件就可以了。

按照文章中的攻击方案,需要使用约1000瓦的激光反向注入。5名科学家认为,如此高能量的激光,无论是经典光通信还是量子通信器件都将被破坏,这就相当于直接用激光武器来摧毁通信系统,已经完全不属于通信安全的范畴了。

“总之,虽然现实中量子通信器件并不严格满足理想条件的要求,但是在理论和实验科学家的共同努力之下,量子保密通信的现实安全性正在逼近理想系统。目前学术界普遍认为测量器件无关的量子密钥分发技术,加上自主设计和充分标定的光源可以抵御所有的现实攻击。”

量子通信龙头企业“邀您来攻擂”

3月19日,济南量子技术研究院在官网上发布了量子通信摆“安全擂台”的消息。

该院表示,量子通信行业内普遍认为,量子密钥分发技术已知的现实安全性漏洞都已具有可靠的防御措施。即便如此,他们对量子密钥分发的安全性实践,依然保持“大胆假设,小心求证”的审慎态度,而且,从科学的角度,客观的分析和严谨的实验是应有之义。

济南量子技术研究院联合科大国盾量子共同建成了量子攻防实验室。在攻防实验室里,被攻击的系统为由科大国盾量子生产的一对高速量子密钥分发设备,包括一台发送端和一台接收端。

济南量子技术研究院成立于2011年5月,在全球首条商用量子保密通信干线“京沪干线”的建设、运行过程中扮演了重要的节点作用。近日获批的《济南市量子信息产业发展规划》提出,到2030年,济南将实现量子信息产业规模300亿元,具备千亿级产业发展能力。目前,济南高新区已在中心区规划占地面积230亩的量子谷,分三期打造。

3月20日,科大国盾量子也在官方微信号上发布了“安全擂台”的消息:“耳听为虚,眼见为实。欢迎来到现实世界!究竟量子密钥分发的安全性如何?是的确如其支持者所言那样不怕窃听,还是像某些传言所说的那样,在实际中的安全性未经检验脆弱不堪?”

科大国盾量子计划举办系列擂台,在第一期擂台中,由科大国盾量子生产的一对发送端和接收端被安置在同一个房间内,连接设备的光纤链路则被完全开放地放在另一个房间内,任攻击者处理,最后以攻击者能成功获得最终密钥且不被通信双方察觉为判定标准。

成功攻击并窃取到量子密钥的攻擂者,将获得国盾量子提供的100万人民币奖金。

基于潘建伟团队的研发力量,成立于2009年的科大国盾量子已经崛起为量子通信龙头企业。公开资料显示,中科大资产经营有限责任公司目前持股18%,为公司第一大股东;潘建伟持股11.01%,紧随其后。潘建伟团队核心成员、中科大研究员彭承志担任董事长。

据介绍,擂台举办期间,组织方将通过网络实时更新活动进展、活动花絮,并邀请国盾量子的量子专家、安全专家和国际标准专家,做一些科普工作,普及量子技术、量子通信、量子密钥分发、量子“黑客”等各个方面的知识。

302 评论

相关问答

  • 量子密码期刊投稿邮箱地址

    下载地址私信你了,点击右上消息可以看到。

    咕噜咕噜SP 4人参与回答 2023-12-12
  • 期刊投稿密码

    你可以联系英文期刊的出版商,询问关于密码重置的信息。如果你使用的是一个专业的出版商,他们有可能会提供一个安全的密码重置流程让你重新设置密码。

    多妈elva 3人参与回答 2023-12-07
  • 量子密码期刊投稿

    一次一个密码会耗费大量的密码,这就需要双方不断更新密码本,然而密码被他称为me十分发的传输本质上是不安全的,所以有了量子密匙

    达达1110 4人参与回答 2023-12-12
  • 密码学家发表论文

    我觉得这样的情况的话,是会影响我们一些软件的使用安全,毕竟这个东西已经达到了最高的级别,是很容易破解一些加密的东西,当然软件也是其中一类。

    沈阳王小圈儿 5人参与回答 2023-12-12
  • 量子密码期刊投稿经验总结

    《化学理论与计算杂志》。《化学理论与计算杂志》主要涵盖理论、计算化学投稿的期刊,是适合计算化学投稿的杂志2022。以及和化学有关的一些子领域的重点期刊进行罗列,

    安居客jismkll 2人参与回答 2023-12-12