• 回答数

    3

  • 浏览数

    321

为爱浪漫1
首页 > 论文发表 > 非晶态固体期刊投稿

3个回答 默认排序
  • 默认排序
  • 按时间排序

伊泽瑞言

已采纳

非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,它没有一定规则的外形。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点,所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。玻璃体是典型的非晶体,所以非晶态又称为玻璃态。重要的玻璃体物质有:氧化物玻璃、金属玻璃、非晶半导体和高分子化合物。

非晶体没有固定的熔点,随着温度升高,物质首先变软,然后由稠逐渐变稀,成为流体,具有一定的熔点是一切晶体的巨观特性,也是晶体和非晶体的主要区别。

199 评论

Camillemcc

玻璃在我们的日常生活中无处不在,然而在原子尺度上,人们对玻璃的理解仍然十分有限。 比如,1960年科学家们发明了金属玻璃,它又可以叫做非晶态合金,具有无序的原子结构和独特的玻璃-过冷液体转变的性质。它既有金属和玻璃的优点,又克服了它们各自的弊病,比如玻璃易碎,没有延展性。而金属玻璃的强度高于钢,且具有一定的韧性和刚性。所以,金属玻璃又被为“敲不碎、砸不烂”的“玻璃之王”。 然而, 正是由于他们的长程无序特征,金属玻璃的3D原子结构无法通过常规的晶体学确定 。要知道,如果已知某个材料中每个原子的化学元素和3 D位置,那么科学家们便可以通过三维坐标,了解精确的原子结构以及该结构如何为材料提供其属性,从而开发更多的功能和应用。因此, 识别金属玻璃的原子结构成为晶体科学家和材料学家九十多年来一直追求的梦想 ! 尽管近年来,诸多的实验和计算方法已经被用于研究金属玻璃结构,但是 迄今为止,还没有一种试验方法能够直接确定金属玻璃中所有3D原子的位置。 2021年4月1日凌晨, 美国加州大学洛杉矶分校(UCLA)华人科学家 苗建伟教授 团队在《Nature》发文称, 团队在国际上 首次实现了对金属玻璃中所有原子的3D位置的实验测定 。团队使用了一种名为 原子分辨电子断层扫描技术 (AET)完成了这一壮举,成功通过实验 确定了金属玻璃中18000多个原子的精确位置,精度可达21 pm(万亿分之一米) ! AET技术为确定材料3D原子结构带来了曙光 原子分辨电子断层成像术(AET)于2012年由Van Dyck 和陈福荣等人首次报道, 该方法基于单一投影方向上的系列欠焦高分辨透射电子显微图像和出射波重构技术, 辅以特定的三维重构算法, 可以实现在原子尺度上获得材料三维结构信息。简单来说,就是从多个角度对二维粒子进行成像,然后依靠复杂的计算机算法将一系列二维投影转换为粒子的三维图像重建。 UCLA的华人科学家苗建伟教授一直致力于利用各种光谱学手段(尤其是AET技术)解析材料的3D原子结构,并在该领域陆续取得重大进展,研究成果多次登上《Nature》正刊。2019年,苗建伟教授团队利用AET技术和新开发的算法,首次在一个铁铂纳米粒子中观测到6569个铁原子和16627个铂原子的精确位置! 图1. 苗建伟教授团队于2019年首次观测到一个铁铂纳米粒子中23000多个原子的精确位置。 如何确定金属玻璃中3D原子的精确位置 首先,研究人员通过具有高冷却速率的碳热冲击技术合成了具有多金属成分的玻璃纳米粒子(图2),该纳米粒子纳米颗粒由八种元素组成:Co,Ni,Ru,Rh,Pd,Ag,Ir和Pt。 随后,研究人员使用AET技术将8种元素分为三种不同类型:Co和Ni为第一类;Ru,Rh,Pd和Ag为第二类;Ir和Pt为第三类。分类后,研究人员获得了纳米粒子的3D原子模型, 该模型分别由8322、6896和3138个第一、二和三类型原子组成。 接着,为了验证重建,原子追踪和分类过程,研究人员使用多层仿真从实验原子模型生成了55张图像,随后重构,原子追踪和分类程序,从55个多层图像中获得了一个新的3D原子模型(图3)。通过比较两个模型发现,研究人员正确地识别了 高达97.37%的原子,且其3D精度高达21 pm 。 图2. 玻璃中合金纳米粒子的表征 图3. AET技术确定金属玻璃中原子的3D位置 金属玻璃中的3D原子结构 使用多组分玻璃形成合金作为原理证明,研究人员定量表征了金属玻璃纳米粒子中3D原子排列的短程和中程顺序。研究发现, 尽管短程有序的3D原子堆积在几何上是无序的,但部分短程有序的结构会彼此连接,形成晶体状的超团簇从而产生中距离有序 。这与之前科学家们猜想的结构略有出入(图4a)。 同时,研究人员确定了非晶合金材料中具有四种类型的晶状中程有序结构:面心立方,六方密堆积,体心立方和简单立方。值得注意的是, 这些实验结果为目前金属玻璃的有效团簇包裹模型提供了直接的实验证据 ,在该模型中,溶质原子(在玻璃中少量存在的溶质原子)位于溶剂原子簇的中心(占大多数原子)。 这些团簇充当“超原子”,它们以大于原子尺度的长度尺度紧密地堆积在一起,从而形成玻璃结构 (图4b)。 图4. a) 科学家猜想金属玻璃的原子结构为球形原子的密集无规堆积;b) 苗建伟教授团队报道的金属玻璃的三维原子结构。 小结 毫无疑问,了解每一个原子之间的确切位置能够可以帮助科学家预测晶体是如何生成的。更何况是得到如此精确的图像,将来必定可以帮助材料科学家制造纳米尺寸应用结构,如硬盘驱动器等。这项工作有望为确定各种非晶态固体的3D结构铺平道路,从而提高人们对开发新型金属玻璃的见识,并加深人们对非晶和结构各向异性玻璃之类的非常规材料的基本理解。此外,该工作还可以为表征玻璃结构缺陷的技术开辟了新的道路,为设计更好的多功能材料迈出了坚实的第一步。 沃斯(WOSCI)由耶鲁大学博士团队匠心打造,专注最新科学动态并提供各类科研学术指导,包括:前沿科学新闻、出版信息、期刊解析、论文写作技巧、学术讲座、SCI论文润色等。

256 评论

狐狸猫fiesta

非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类(见无序体系)。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子(如二元无序合金)或者不同的磁矩(如无序磁性晶体)。在这类体系中物理量不再有平移对称性。另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。例如,金属玻璃是无规密积结构,而非晶硅是四面体键组成的无规网络。实际情形或许更加复杂,可能存在一些微晶结构的原子簇。例如,非晶硅中存在非晶基元。20年代发现并在70年代得到发展的扩展X 射线吸收精细结构谱(EXAFS)技术成为研究非晶态固体原子结构的重要手段。 无序体系的电子态具有其独特的性质,P.安德森(1958)在他的富有开创性的工作中,探讨了无序体系中电子态局域化的条件,10年之后,N.莫脱在此基础上建立了非晶态半导体的能带模型,提出迁移率边的概念。以非晶硅或锗为例,它的禁带宽度依赖于原子间的互作用,能带宽度依赖于原子的价键之间的耦合。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电。这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现今非晶硅正成为制备廉价的高效率太阳能电池的重要材料。 非晶态合金具有特殊的物理性质。例如,它们的电阻率较大而其温度系数小。有的材料有很大的拉伸强度,有的具有优异的抗腐蚀性,可与不锈钢相比。非晶态磁性合金具有随机变化的交换作用,可导致居里温度的改变(大多数材料居里温度变低),同时在无序体系中,缺陷失去原有的意义。因而非晶态磁性固体可以在较低的外磁场下达到饱和,磁损耗减小。所以,非晶态合金具有多方面用途。 关于多孔物质的物理性质现今来已开始受到人们的注意。 非晶态固体内部结构的无序性使其具有特殊的物理性质,无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。现今对许多基本问题还存在着争论,有待进一步的探索和研究(见非晶态材料)。

307 评论

相关问答

  • 非晶态固体期刊投稿

    非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,它没有一定规则的外形。它的物理性质在各个方向上是相

    为爱浪漫1 3人参与回答 2023-12-07
  • 晶体投稿期刊

    朋友你好,虽然没有投过这个杂志,但其他的投过很多,在这里给我交流一下。根据我多年从事文字工作的经验,我认为:如果投稿更有针对性,命中率会更高一些。这就关系到,你

    瞪样的胖子 3人参与回答 2023-12-06
  • 非晶投稿的期刊

    这些都是检索系统,一个收录很多论文的数据库。 SCI主要偏重理论性研究。 SSCI是社会科学期刊数据库。 EI偏工程应用。 CSCD和核心期刊都是中国的数据库。

    筱晓鱼T3Y 3人参与回答 2023-12-06
  • 固体火箭期刊投稿

    航天控制不属于ei,南航学报只有英文版属于,中文版也不是。

    好运大鸟 4人参与回答 2023-12-12
  • 晶体生长类期刊投稿

    英国皇家化学会主办的国际著名期刊CrystEngComm(影响因子4.2)《晶体工程通讯》。CrystEngComm作为老牌的晶体学杂志,在学术界影响广泛。著名

    无锡美艺馨 4人参与回答 2023-12-07