• 回答数

    6

  • 浏览数

    320

oo鱼泡泡oo
首页 > 论文发表 > 天体物理学家发表论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

Candy526368302

已采纳

周又元院士主要从事类星体和活动星系核的研究,同时涉及宇宙学和宇宙大尺度结构等的研究。他是我国最早进行这类研究的学者之一,并创建了相应的研究团组。

197 评论

kobe紫米

天体物理学的奠基人是牛顿。艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律[1] 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、行星物理学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。天体物理学是研究宇宙的物理学,这包括星体的物理性质(光度,密度,温度,化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天体物理学探讨恒星结构、恒星演化、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学大小分支大约三百到五百门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。天体物理实验数据大多数是依赖观测电磁辐射获得。比较冷的星体,像星际物质或星际云会发射无线电波。大爆炸后,经过红移,遗留下来的微波,称为宇宙微波背景辐射。研究这些微波需要非常大的无线电望远镜。太空探索大大地扩展了天文学的疆界。由于地球大气层的干扰,红外线、紫外线、伽马射线和X射线天文学必须使用人造卫星在地球大气层外做观测实验。光学天文学通常使用加装电荷耦合元件和光谱仪的望远镜来做观测。由于大气层会干涉观测数据的品质,还必须配备调适光学系统,或使用太空望远镜,才能得到最优良的影像。在这频域里,恒星的可见度非常高。借着观测化学频谱,可以分析恒星、星系和星云的化学成份。理论天体物理学家的工具包括分析模型和计算机模拟。天文过程的分析模型时常能使学者更深刻地理解内中奥妙;计算机模拟可以显现出一些非常复杂的现象或效应。大爆炸模型的两个理论栋梁是广义相对论和宇宙学原理。由于太初核合成理论的成功和宇宙微波背景辐射实验证实,科学家确定大爆炸模型是正确无误。学者又创立了ΛCDM模型来解释宇宙的演化,这模型涵盖了宇宙膨胀(cosmic inflation)、暗能量、暗物质等等概念。理论天体物理学家及实测天体物理学家分别扮演这门学科当中的两大主力研究者,两者专业分工。理论天体物理学家通常扮演大胆假设的研究者,理论不断推陈出新,对于数据的验证关心程度较低,假设程度太高时,经常会演变成伪科学,一般都是天体物理学研究者当中的激进人士。实测天体物理学家通常本身精通理论天体物理,在相当程度上来说也有能力自行发展理论,扮演小心求证的研究者,通常是物理实证主义的奉行者,只相信观测数据,经常对理论天体物理学所提出的假说进行证伪或证实的活动,一般都是天体物理学研究者当中的保守人士。银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。金牛座T型变星光变不规则,没有固定的周期;新星爆发时抛出大量物质,光度急骤增加几万到几百万倍;有的红巨星的半径比太阳半径大1000倍以上;白矮星的密度为每立方厘米一百公斤到十吨,中子星密度更高达每立方厘米一亿吨到一千亿吨。各种各样的恒星,为研究恒星的形成和演化规律提供了样品。另外,天体上特殊的物理条件,在地球上往往并不 具备,利用天体现象探索物理规律,是天体物理学的重要职能。通过各种观测手段,人们的视野扩展到150亿光年的宇宙“深处“。这就是“观测到的宇宙”,或称为“我们的宇宙”,也就是总星系。研究表明,宇宙物质由化学元素周期表中近百种化学元素和289种同位素组成。在不同宇宙物质中发现了地球上不存在的矿物和分子。用物理学的技术和方法分析来自天体的电磁辐射,可得到天体的各种物理参数。根据这些参数运用物理理论来阐明发生在天体上的物理过程,及其演变是实测天体物理学和理论天体物理学的任务。理论物理学中的辐射、原子核、引力、等离子体、固体和基本粒子等理论,为研究类星体、宇宙线、黑洞脉冲星、星际尘埃、超新星爆发奠定了基础。

104 评论

t苹果多多t

从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利 天体物理学略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪老赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。天体物理学的发展,促使天文观测和研究不断出现新成果和新发现。1859年,基尔霍夫对太阳光谱的吸收线(即夫琅和费谱线)作出科学解释。他认为吸收线是光球所发出的连续光谱被太阳大气吸收而成的,这一发现推动了天文学家用分光镜研究恒星;1864年,哈根斯用高色散度的摄谱仪观测恒星,证认出某些元素的谱线,以后根据多普勒效应又测定了一些恒星的视向速度;1885年,皮克林首先使用物端棱镜拍摄光谱,进行光谱分类。通过对行星状星云和弥漫星云的研究,在仙女座星云中发现新星。这些发现使天体物理学不断向广度和深度发展。1905年,赫茨普龙在观测基础上将部分恒星分为巨星和矮星;1913年,罗素按绝对星等与光谱型绘制恒星分布图,即赫罗图;1916年,亚当斯和科尔许特发现相同光谱型的巨星光谱和矮星光谱存在细微差别,并确立用光谱求距离的分光视差法。在天体物理理论方面,1920年,萨哈提出恒星大气电离理论,通过埃姆登、史瓦西、爱丁顿等人的研究,关于恒星内部结构的理论逐渐成熟;1938年,贝特提出了氢聚变为氨的热核反应理论,成功地解决了主序星的产能机制问题。1929年,哈勃在研究河外星系光谱时,提出了哈勃定律,这极大地推动了星系天文学的发展;1931~1932年,央斯基发现了来自银河系中心方向的宇宙无线电波;四十年代,英国军用雷达发现了太阳的无线电辐射,从此射电天文蓬勃发展起来;六十年代用射电天文手段又发现了类星体、脉冲星、星际分子、微波背景辐射。1946年美国开始用火箭在离地面30~100公里高度处拍摄紫外光谱。1957年,苏联发射人造地球卫星,为大气外层空间观测创造了条件。以后,美国、西欧、日本也相继发射用于观测天体的人造卫星。现在世界各国已发射数量可观的宇宙飞行器,其中装有各种类型的探测器,用以探测天体的紫外线、x射线、γ射线等波段的辐射。从此天文学进入全波段观测时代。这是天体物理学的发展状况 希望有所收获

113 评论

碎花花11

天体物理学的奠基人--牛顿,哥白尼,开普勒 现代天体物理学的开创者和奠基人--爱因斯坦 射电天文学的奠基人--美国无线电工程师央斯基 星系天文学的奠基人--美国天文学家埃德温·哈勃 恒星天文学的奠基人--威廉·赫歇耳,爱丁顿

170 评论

框框拆拆远行车

科学家对最接近星系Messier 87(M87)中心的超大质量黑洞的一个新视图的分析显示了靠近黑洞的磁场的重要细节,并暗示了强大的物质喷流如何在该区域产生。 一个国际天文学家团队使用事件视界望远镜(Event Horizon Telescope)测量了黑洞周围称为极化的磁场特征。偏振是光和无线电波中电场的方向,它可以表明磁场的存在和排列。事件视界望远镜是一个由八个射电望远镜组成的集合,包括智利的阿塔卡马大型毫米波/亚毫米波阵列(ALMA)。 EHT偏振测量工作组协调员、荷兰拉德堡德大学副教授Monika Mościbrodzka说:“我们现在看到了下一个关键证据,以了解黑洞周围的磁场是如何表现的,以及这个非常紧凑的空间区域的活动如何能够驱动强大的喷流。” 用EHT和ALMA拍摄的新图像使科学家能够绘制M87黑洞边缘附近的磁场线。这个黑洞也是有史以来第一次被成像--由EHT在2019年拍摄。那张图像显示了一个明亮的环状结构,中间有一个黑暗的区域--黑洞的阴影。 最新的图像是解释距离地球5000万光年的M87如何从其核心发射高能射流的一个关键。 位于M87中心的黑洞的质量是太阳的60多亿倍。被吸入的物质形成了一个旋转的圆盘--称为吸积盘--紧紧围绕着黑洞运行。盘中的大部分物质落入黑洞中,但周围的一些粒子却逃了出来,以近乎光速的速度喷射到太空中。 美国普林斯顿理论科学中心和普林斯顿引力计划的NASA哈勃研究员Andrew Chael说:“新发表的偏振图像是理解磁场如何让黑洞‘吞噬’物质并发射强大喷流的关键。” 科学家们将显示黑洞外磁场结构的新图像与基于不同理论模型的计算机模拟进行了比较。他们发现,只有以强磁化气体为特征的模型才能解释他们在事件视界望远镜中看到的情况。 “观察结果表明,黑洞边缘的磁场足够强大,可以反推热气体,帮助它抵抗重力的拉扯。”科罗拉多大学博尔德分校副教授、EHT理论工作组协调员Jason Dexter解释说:“只有滑过磁场的气体才能向内旋转到事件视界。” 为了进行新的观测,科学家们将世界各地的八个望远镜--包括ALMA--连接起来,以创建一个虚拟的地球大小的望远镜,即EHT。该计划将望远镜的角分辨率提升至足以观测事件视界尺度结构的程度。这种分辨率使研究小组能够直接观察到黑洞的阴影和它周围的光环,新的图像清楚地显示出该光环被磁化。这些结果发表在EHT合作的《天体物理学杂志通讯》的两篇论文中。这项研究涉及来自全球多个组织和大学的300多名研究人员。 第三篇论文也发表在《天体物理学杂志快报》的同一卷上,基于来自ALMA的数据,由荷兰拉德堡德大学和莱顿天文台的科学家Ciriaco Goddi领导。 Goddi说:“来自EHT和ALMA的综合信息使科学家们能够研究从事件视界附近到远远超出星系核心的磁场的作用,沿着其强大的喷流延伸数千光年。”

189 评论

饿魔娃娃

天体物理学家周又元院士发表论文100余篇,而且还估算了中心黑洞的质量,发现了短时标变化规律新类型等等贡献,他自己的一生都献给了教育事业和国家科研工作。我们都知道能当上国家院士的人必定是百里无一的人才。国家也因此花费了很多财力物力培养,他们的一生都在为祖国强大而奉献着,所以每一位人才的逝世都是国家的一大损失,对国家来说是痛失了一大批宝藏,他们对国家的作用是真的是很大。

346 评论

相关问答

  • 美国天体物理杂志发表论文

    新华社北京7月30日新媒体专电 外媒称,当地时间周二发表于美国《天体物理学杂志通讯》的一篇论文说,天文学家首次捕捉到围绕一颗类太阳恒星的多行星系统的图像。

    lovejing0326 3人参与回答 2023-12-06
  • 天体物理博士发表几篇论文

    天体物理学家周又元院士发表论文100余篇,而且还估算了中心黑洞的质量,发现了短时标变化规律新类型等等贡献,他自己的一生都献给了教育事业和国家科研工作。我们都知道

    米儿土土 7人参与回答 2023-12-08
  • 天体物理论文发表

    这是天文学的又一创举。 近日,天文学家首次实时拍摄到一颗红超巨星生命结束时的图像。他们目睹了这颗恒星在最后爆炸成为超新星之前的垂死挣扎。观察结果与之前关于红

    Cathyshenzhen 3人参与回答 2023-12-08
  • 中国天体物理学期刊投稿

    可以给《天文爱好者》、《中国国家天文》这两个投稿。《天文爱好者》,目前国内最有名、历史最久的天文杂志;《中国国家天文》,刚发行的;《天文爱好者》杂志,由中国科学

    苹果香蕉最爱 4人参与回答 2023-12-06
  • 天体物理易发表scl论文吗

    靠思路快速发表SCI论文思路永远是最重要的,我多次发表文章表明一个意思,发表论文的目的是交流思路,只要有思路就可以发表论文,而且不一定就做实验就可以发表论文,包

    走遍大中华 7人参与回答 2023-12-10