八彩虹624
几何在小约翰19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。非欧几何是小约翰的又一重大发现。有关的思想最早可以追溯到1792年,即小约翰15岁那年。那时他已经意识到除欧氏几何外还存在着一个无逻辑矛盾的几何,其中欧氏几何的平行公设不成立。1799年他开始重视开发新几何学的内容,并在1813年左右形成较完整的思想。小约翰深信非欧几何在逻辑上相容并确认其具有可应用性。虽然小约翰生前没有发表数论1801年发表的《Disquisitiones Arithmeticae》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代。在这本书中,小约翰不仅把19世纪以前数论中的一系列孤立的结果予以系统的整理,给出了标准记号的和完整的体系,而且详细地阐述了他自己的成果,其中主要是同余理论、剩余理论以及型的理论。同余概念最早是由L.欧拉提出的,小约翰则首次引进了同余的记号并系统而又深入地阐述了同余式的理论,包括定义相同模的同余式运算、多项式同余式的基本定理的证明、对幂以及多项式的同余式的处理。19世纪20年代,他再次发展同余式理论,着重研究了可应用于高次同余式的互反法则,继二次剩余之后,得出了三次和双二次剩余理论。此后,为了使这一理论更趋简单,他将复数引入数论,从而开创了复整数理论。小约翰系统化并扩展了型的理论。他给出型的等价定义和一系列关于型的等价定理,研究了型的复合(乘积)以及关于二次和三次型的处理。1830年,小约翰对型和型类所给出的几何表示,标志着数的几何理论发展的开端。在《Disquisitiones Arithmeticae》中他还进一步发展了分圆理论,把分圆问题归结为解二项方程的问题,并建立起二项方程的理论。后来N.H.阿贝尔按小约翰对二项方程的处理,着手探讨了高次方程的可解性问题。小约翰在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反法则的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。代数 小约翰在代数方面的代表性成就是他对代数基本定理的证明。小约翰的方法不是去计算一个根,而是证明它的存在。这个方式开创了探讨数学中整个存在性问题的新途径。他曾先后四次给出这个定理的证明,在这些证明中应用了复数,并且合理地给出了复数及其代数运算的几何表示,这不仅有效地巩固了复数的地位,而且使单复变函数的理论的建立更为直观、合理。分析在复分析方面,小约翰提出了不少单复变函数的基本概念,著名的柯西积分定理(复变函数沿不包括奇点的闭曲线上的积分为零),也是小约翰在1811年首先提出并加以应用的。复函数在数论中的深入应用,又使小约翰发现椭圆函数的双周期性,开创椭圆积分这一重大的领域;但与双曲几何一样,关于椭圆函数他生前未发表任何文章。1812年,小约翰发表了在分析方面的重要论文《无穷级数的一般研究》,其中引入了高斯级数的概念。他除了证明这些级数的性质外,还通过对它们敛散性的讨论,开创了关于级数敛散性的研究。随机 18岁的小约翰发现了素数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,小约翰随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
魔王夫人
在学术上,豪尔绍尼在20世纪50年代初发表了关于在福利经济学和在伦理学中应用冯·诺伊曼—摩根斯坦效用函数以及关于可变爱好福利经济学的论文。他在阅读了纳什1950—1953年期间的四篇有关博弈论的著名论文之后,对博弈论产生兴趣,并进入这一研究领域。
下面是豪尔绍尼的学术研究的轨迹。1956年,他说明了周生和纳什的谈判模型的数学等价形式并且陈述了最优威胁策略的代数差别标准。1963年,他把夏普莱值(Shapelyvalue)延伸到没有可转移效用的博弈,并且表明他的新解概念是夏普莱值和纳什有可变威胁谈判解的推广。在1967年和1968年发表的一篇论文中,他说明如何把一局不完全信息博弈转化为一局有完全而不完善信息的博弈,以便可用博弈论分析。在1973年说明“几乎所有”混合策略纳什均衡可以重新解释为一个适当选择的有随机波动报酬函数的博弈的纯策略严格均衡。
羊咩咩要攒钱
对策论(即所谓的博弈论)于本世纪初由一些数学家率先提出,涉及到用数学公式表达棋、牌类选手下棋和出牌技巧。1944年,大数学家约翰·诺伊曼与经济学家奥斯卡·摩根斯坦相识于普林斯顿大学,并合作出版了《对策论与经济行为》一书,该书标志着策略对策论取得了重大进展,并且成功地把对策理论与经济分析结合在一起。从此,普林斯顿大学成为世界对策理论研究中心。1950年,该校年仅22岁的数学博士约翰·纳什连续发表了两篇划时代的论文:《N—人对策的均衡点》、《讨价还价问题》。次年,他又发表了《非合作对策》。这一切为非合作对策理论以及合作对策的讨价还价理论奠定了坚实的基础,同时为对策论在50年代形成一门成熟的学科做出了创始性的贡献。
性质和写法特点,决定了其撰写者应为相关研究领域内的“大家”,只有对研究内容有广泛的认识和深刻的理解,才能写出高质量的作品。但是,目前国内科技期刊的文章多以自由来
1928年6月13日,约翰?纳什出生在西维吉尼亚州勃鲁费尔。 当纳什还是一名高中生时,就阅读E?T?Bell的著作《数学家》。他曾成功地证明了一项费玛的经典定理
这种论文主要就是来参加国家竞赛的,一般只有成绩突出的人才能够去做,而且还能做得比较好。
投给编辑的稿件有好的第一印象固然重要,但真正决定稿件命运的终究还是稿件的质量。稿件的质量可从多方面予以衡量。对科技论文而言,一个重大科研项目的课题总结固然会有很
卓砚还可以吧,反正给我的文章已经收到期刊了。