• 回答数

    6

  • 浏览数

    188

无敌花花Nancy
首页 > 论文发表 > 从费马大定理看论文发表

6个回答 默认排序
  • 默认排序
  • 按时间排序

好难瘦小姐

已采纳

天啊,提问者能看懂么?

106 评论

咕噜咕噜SP

不管怎样,我看懂了,提问者慢慢看,总能看懂的.

340 评论

新津东方

1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理。他的论文发表在1995年5月的《数学年刊》上。费马大定理源自法国人皮埃尔·德·费马。费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者。从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列。所谓费马大定理,或费马猜想(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起。学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方。或者写成代数式子,即为x^2+y^2=Z^2。勾股定理中的X、Y和Z有整数解。可以证明,这种X、Y和Z的组合有无限多个。但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解。大约在1637年前后,费马在他保存的《算术》一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”。他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下。”这就是费马大定理。费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在《算术》一书上的页边空白处的评注,于1670年出版了附有费马注评的《算术》的特殊版本。费马大定理才得以公诸于世,并传于后世。费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家。更重要的是,在证明“费马大定理”的过程中,形成了许多新的数学分支,促进了数学的进一步发展。希尔伯特称之为“会生金蛋的母鸡”。

132 评论

没腰的麦兜

毫无疑问,这是史上最精彩的一个数学谜题。之所以它在数学史上的地位无可争议,可能涉及到以下几个原因:1. 问题本身简洁易懂一个完美的数学问题应该是形式简明,解法复杂。只要学过初中数学,知道勾股定理的人,都能明白「费马大定理」说的是什么。越是貌似平凡的难题,就越具有戏剧性。2. 出题者本身是个传奇众所周知,皮埃尔 • 德 • 费马(Pierre de Fermat)只是一个普通的文职人员,数学家的身份是业余的,故其被称为「业余数学家之王」。也许历史上只有印度数学天才拉马努金才能与其具有同等传奇色彩了。一个非专业数学爱好者在笔记上的随手一笔竟然能难倒未来 358 年的数学家,这绝对是一个奇迹。费马自己的一句「写不下了」也成为永远的谜题,即便被证明后,我们也无法知道费马本人究竟当年有没有正确地证明出这个定理,此又为整个故事平添一分神秘。3. 证明费马大定理的过程是一部数学史数学家安德鲁 • 怀尔斯(Andrew Wiles)把这个定理解出本身就精彩绝伦。1963年,10 岁的他在一本数学书上读到这个问题,被吸引住了。从童年时代到成年时期,他的梦想就是解决这个问题。在他的年代,费马大定理已经一度被认为是一个无法解答的难题,但他坚信自己能解开。放弃工作,在乡间隐居,花费7年,没有人知道他那段时间在干什么。他皓首穷经,一度放弃,后来出山,为了解题学习当代最新的数学理论成果,最后发现了解题的思路,完成解答。1993 年 6 月 23 日的剑桥大学,两百名数学家汇聚一堂。这是他们听怀尔斯的第三天演讲。现在,三块黑板上写满了演算式,演讲者停顿了一下。第一块黑板被擦掉了,再写上去的是代数式。每一行数学式子似乎都是走向最终答案的微小一步。然而,30 分钟后,演讲者仍然没有宣布证明……手中拿着粉笔,他最后一次转向黑板。怀尔斯写上了费马大定理的结论,转向观众,平和地说道:「我想我就在这里结束。」全场掌声雷动,虽然只有四分之一的人能真正明白他在写什么,但所有人都知道这是一个历史时刻。但故事没有结束,他的证明要被专家组严格检查。不料,之后专家们发现一个小漏洞。一开始大家都觉得怀尔斯能很快解决。没想到这个漏洞越细究越大,以至于会毁灭整个证明根基。怀尔斯再次闭关,苦思冥想,又差一点放弃,最后被一件小事给启发,重新证明费马大定理。怀尔斯的故事已经足够引人入胜。但是,如果细查怀尔斯的证明就会发现,他的成功其实是数代数学大师智慧的结晶。他的整个证明过程是一部数论史,不仅用到了最古老的丢番图智慧,还用到了当代最先进的数论理论,也就是说,怀尔斯一个人打通了从古至今所有的数学知识,为的就是解决一个所有人都能理解的「简单题目」。整个费马大定理的故事描绘的是人类为了攀登智慧高峰,如何一代一代前赴后继的历程。

212 评论

小超人0606

费马方程X^n+Y^n=Z^n整数解的增元求解法 庄 严 庄宏飞 (辽阳铁路器材厂 111000) 【 摘要】对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。 关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式 引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。 本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。 定义1.费马方程 人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。 在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支. 定义2.增元求解法 在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。 利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。 下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。 一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则” 定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件: a≥3 { b=(a^2-Q^2)÷2Q c= Q+b 则此时,a^2+b^2=c^2是整数解; 证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形: Q2 Qb 其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长 Qb为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。 故定理1得证 应用例子: 例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解? 解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到: a= 15 { b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112 c=Q+b=1+112=113 所以得到平方整数解15^2+112^2=113^2 再取a为15,选增元项Q为3,根据定a计算法则得到: a= 15 { b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36 c=Q+b=3+36=39 所以得到平方整数解15^2+36^2=39^2 定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。 二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则” 定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。 证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c; b 2b 3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c; 3b 4b 3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。 故定理2得证 应用例子: 例2.证明303^2+404^2=505^2是整数解?解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计 4算法则,以直角三角形 3×101 5×101 关系为边长时,必有 4×101303^2+404^2=505^2是整数解。 三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则” 3a + 2c + n = a1 (这里n=b-a之差,n=1、2、3…) 定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。 证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有: a1=3×3+2×5+1=20 这时得到 20^2+21^2=29^2 继续利用公式计算得到: a2=3×20+2×29+1=119 这时得到 119^2+120^2=169^2 继续利用公式计算得到 a3=3×119+2×169+1=696 这时得到 696^2+697^2=985^2 … 故定差为1关系成立 现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有: a1=3×21+2×35+7=140 这时得到 140^2+147^2=203^2 继续利用公式计算得到: a2=3×140+2×203+7=833 这时得到 833^2+840^2=1183^2 继续利用公式计算得到: a3=3×833+2×1183+7=4872 这时得到 4872^2+4879^2=6895^2 … 故定差为7关系成立 再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有: a1=3×387+2×645+129=2580 这时得到 2580^2+2709^2=3741^2 继续利用公式计算得到: a2=3×2580+2×3741+129=15351 这时得到 15351^2+15480^2=21801^2 继续利用公式计算得到: a3=3×15351+2×21801+129=89784 这时得到 89784^2+89913^2=127065^2 … 故定差为129关系成立 故定差n计算法则成立 故定理3得证 四,平方整数解a^2+^b2=c^2的a值奇偶数列法则: 定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立; (一) 奇数列a: 若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是: a=2n+1 { c=n^2+(n+1)^2 b=c-1 证:由本式条件分别取n=1、2、3 … 时得到: 3^2+4^2=5^2 5^2+12^2=13^2 7^2+24^2=25^2 9^2+40^2=41^2 11^2+60^2=61^2 13^2+84^2=85^2 … 故得到奇数列a关系成立 (二)偶数列a: 若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是: a=2n+2 { c=1+(n+1)^2 b=c-2 证:由本式条件分别取n=1、2、3 … 时得到: 4^2+3^2=5^2 6^2+8^2=10^2 8^2+15^2=17^2 10^2+24^2=26^2 12^2+35^2=37^2 14^2+48^2=50^2 … 故得到偶数列a关系成立 故定理4关系成立 由此得到,在直角三角形a、b、c三边中: b-a之差可为1、2、3… a-b之差可为1、2、3… c-a之差可为1、2、3… c-b之差可为1、2、3… 定差平方整数解有无穷多种; 每种定差平方整数解有无穷多个。 以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。证明如下: 我们首先证明,增比计算法则在任意方次幂时都成立。 定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。 证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1, 得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m 原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m) 两边消掉 n^m后得到原式。 所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。 故定理5得证 定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。 证:取定理原式a^m+b=c^m 取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m 原式化为: n^m(a^m+b)=n^mc^m 两边消掉n^m后得到原式。 由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。 所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。 故定理6得证 一元代数式的绝对方幂与绝对非方幂性质 定义3,绝对某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。例如:n^2+2n+1,n^2+4n+4,n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。 定义4,绝对非某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。 当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。 一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。 推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2; 推理:不含方幂项的一元代数式对任何方幂没有唯一性。2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……证明:一元代数式存在m次绝对非方幂式; 在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。这就是一元代数式的代数公理。即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。 当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。这种关系是: (n+1)^3-3n= n^3+3n^2+1 (n+1)^3-3n^2= n^3+3n+1 (n+1)^3-n^3=3n^2+3n+1 所以得到:当取n=1、2、3、4、5 … n^3+3n^2+1≠(n+1)^3 n^3+3n+1≠(n+1)^3 3n2+3n+1≠(n+1)^^3 即这3个代数式的值都不能等于(n+1)^3形完全立方数。当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时, n^3+3n^2+1=5≠1 n^3+3n+1=5≠1 3n^2+3n+1=7≠1 所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数。这些代数式是3次绝对非方幂式。 由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数。这些代数式是4次绝对非方幂式。 能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数。这些代数式是m次绝对非方幂式。 现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式; 2次方时有:(n+1)^2-n^2 =n^2+2n+1-n^2 =2n+1 所以,2次方相邻整数的平方数的增项差公式为2n+1。由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系。但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是: 由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比; 由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比; 由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比; …… 这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解。 所以费马方程x^n+y^n=z^n在指数为2时成立。 同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立。 3次方时有:(n+1)^3-n^3 =n^3+3n^2+3n+1-n^3 =3n^2+3n+1 所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1。 由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式。所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是: 由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数; 由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数; 由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数; …… 这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数。 所以费马方程x^n+y^n=z^n在指数为3时无整数解。 4次方时有;(n+1)^4-n^4 =n^4+4n^3+6n^2+4n+1-n^4 =4n^3+6n^2+4n+1 所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1。由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式。所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是: 由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数; 由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数; 由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数; …… 这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数。 所以费马方程x^n+y^n=z^n在指数为4时无整数解。 m次方时,相邻整数的方幂数的增项差公式为: ( n+1)^m-n^m =n^m+mn^m-1+…+…+mn+1-n^m =mn^m-1+…+…+mn+1 所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1。 由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式。所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是: 由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数; 由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数; 由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数; …… 这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数。 所以费马方程x^n+y^n=z^n在指数为m时无整数解。 所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解。 所以,长达三百多年的费马大定理问题与哥德巴赫猜想问题一样,也是一个初等数学问题。

252 评论

别针换别墅嘞

中科院数学研究机关有个不成文的规定:“凡是涉及费马大定理和哥德巴赫猜想的文章,必须经过至少两名大学数学教授的推荐”,否则,他们不予受理.我的论文,高于“两名大学数学教授的推荐”,初稿已经发表在2000年第4期《科学》杂志,题目是:《费马大定理与丢番图数学命题的婚礼》.《科学》杂志是具有国际学术权威性的刊物,一般人看不到或者不去看.现在,为了让一般群众都能了解什么是费马大定理,点燃群众性的“数学热情”;现重新改写,使它更加通俗易懂,更加贴近群众;使它从高深的和神圣的“数学殿堂”中走出来,让广大群众一睹它的真面目.这就是大数学家陈省身大师所提倡的“通俗数学”.陈省身大师已逝.他的两个愿望我们应当牢记:一、希望数学走进千家万户;二、希望中国成为21世纪的“数学大国”.(一)什么是费马大定理的“美妙证明”?我们得从头说起.皮埃尔��费马(Fermat)是十七世纪法国一位业余数学家,他本人职业是律师.1637年他在阅读《丢番图著作》(Diuphantus)第八命题时,他在书的空白处写下一段话,他写道:“将一个立方数分为两个立方数,将一个四次幂或一般高于二次幂的数,分为两个同次幂的数,这是不可能的.”(重点号是笔者所加),他又说:“关于此,我确信已经发现了一种美妙的证明,可惜这里空白太小,写不下.”费马死后三百多年,人们承认他头脑中的那个“美妙证明”,故称之为定理,而不是猜想,更不是一般的称之为数学命题.可是,经过三百多年的时间,却没有一个人能够“破译”出费马的“美妙证明”,因而费马大定理成为了世界顶级数学难题.费马大定理用数学的语言表达出来,应当是:An+Bn≠Cn(当n≥3时),或者说:An+Bn=Cn(当n≥3时)没有整数解.1994年英国数学教授威尔斯(Wiles)宣称他证明了费马大定理.1996年出席了在德国召开的“世界数学大会”,领到了德国颁发的数学奖金(为费马大定理设立的专项奖金),他的论文长达140页(有说200页).事后,美国著名数学教授Kenneth A Ribet撰文《费马的最后抵抗》(《科学》杂志1998年2月号)提出了质疑,他指出:所有数学家一致认为,威尔斯(Wiles)的证明太复杂,太现代化了,不可能是费马当年在页边空白处写下的那一段话时脑中所想到的证明.二者必居其一:要么是费马自己弄错了;要么就真的还有一个简单而巧妙的证明等待数学家们去发现.这段话讲得对极了.(二)费马大定理的巧妙证明,被我发现了.可是花去了我二十多年的时间,走了不少的弯路.后来拜读了重庆师范学院方镇华教授所著《简明数学史》,发现费马大定理,不是放在月宫里的明珠,也不是放在第118层楼的宝石.方镇华老师告诉我:费马当年,世界还处在“初等数学时期”.费马其人,是一普通的业余数学爱好者,本人职业是律师.想必他还没学过什么变量数学、近代数学和现代数学.古希腊时代的丢番图数学、毕达哥拉斯定理和中国孔夫子时代的数学水平相比,似乎还有差距.勾股弦定理早于毕达哥拉斯定理.古希腊的历史,比中国奴隶社会(夏禹时期)要晚一千多年.据美国一位数学家讲:费马当年,对中国古数学很感兴趣,也许可称之为中国古数学的“门生”.美国的数学家讲:研究中国古数学,也许就是打开“未来数学”宝库 “芝麻开门” 的魔咒.美国数学家希望中国人:要珍惜自己的历史,要珍惜自己的宝藏,不要手捧“外国月亮”.中国有足够的条件,可以成为世界“数学大国”.这些也许是废话,不说不好,说了罗嗦,只好拉倒,书归正传:我的论文《费马大定理与丢番图数学命题的婚礼》,是把两个数学命题捆绑在一起来研究的.丢番图第八命题说:将一个平方数分为两个平方数,(如:52=32+42),用数学语言表达,记为:a2+b2=c2.费马大定理说:“将一个立方数分为两个立方数,将一个四次幂或一般高于二次幂的数,分为两个同次幂的数,这是不可能的.”用数学语言表达为:an+bn≠cn,(当n≥3时);或者说:an+bn=cn,(当n≥3时);没有整数解.为什么自然数的平方c2,可分为a2+b2?而3次幂以上的自然数不可能分为两个同次幂的数呢?费马发现:a2+b2=c2,也就是毕达哥拉斯定理(中国叫勾股弦定理),它所表示的是直角三角形三个边长的关系.毕氏定理,有整数解,如:a=3 b=4 c=5;古希腊人将这种数称之为“毕氏三组数”.费马想到:按通常情况a2+b2是不等于c2的,应当是a2+b2≠c2.∵ 若a+b=c, 则(a+b)2=c2, 展开后 a2+2ab+b2=c2,右端多出 2ab,∴a2+b2≠c2可是,为什么在毕氏定理中a2+b2=c2能够成立呢?他终于发现了一个”秘密”.在毕氏定理中,引进了一个补数r,毕氏三数组,应该是毕氏四数组.于是 a+b=c+r,(a+b)2=(c+r)2,展开后 a2+2ab+b2=c2+2cr+r2;∵ 在直角三角形中,2ab=2cr+r2,两端减等量后得:a2+b2=c2 (简化式)如:a=3 b=4 c=5 r=2(3+4)2=(5+2)2展开后 32+2��3��4+42=52+2��5��2+22,左端 2��3��4=24右端 2��5��2+22=24;∴ 可简化为 32+42=52.费马大定理的无整数解,或者说不可能分成两个3次幂以上的自然数,这是因为: an+bn=cn ,(当n≥3时), 在数学中根本不能成立,它脱离了直角三角形那种数与形的特殊关系,即便也引进一个补数r,仍然不能成立.如:(a+b)3=(c+r)3,展开:a3+3a2b+3ab2+b3=a3+3c2r+3cr2+r3左端的3a2b+3ab2≠右端的3c2r+3cr2+r3∴ 不能将其简化为:a3+b3=c3,即a3+b3≠c3,在引进补数r后,n的幂次越高,则:an+bn越是不等于cn,∴an+bn≠cn,(当n≥3时),或者说:an+bn=cn,(当n≥3时),没有整数解.费马大定理就是这样简单地被我证明了, 我先是证明“毕达哥拉斯定理”,而最后推证费马大定理,步骤不是很多吧.结论:费马的“美妙证明”,大概就是因为他发现了a2+b2=c2是一个特殊的简化式,这个简化式,是经过引进一个补数r后,在直角三角形的三个边长关系中,才能简化成a2+b2=c2,若脱离了直角三角形“数和形”的关系,则a2+b2=c2是不能成立的.当然,an+bn=cn,(当n≥3时),就更不能成立,即没有整数解.(三)在讲完费马大定理的证明后,我们再回到丢番图第八命题:“将一个平方数C2分为两个平方数a2+b2”,数学表达式:a2+b2=c2是能够成立的,并且有无限多的整数解,其解法:(A)公式:当a为奇数时,b=(a2-1)/2,c=(a2+1)/2,r=a-1;计算数据为:a 3 5 7 9 11 13 15 17 19 ……b 4 12 24 40 60 84 112 144 180 ……c 5 13 25 41 61 85 113 145 181 ……r 2 4 6 8 10 12 14 16 18 ……(A)表中所有的数,都符合: a2+b2=c2.(B)公式:当a为偶数时,b=a2/4-1,c=a2/4+1;r=a-2.计算数据为:a 4 6 8 10 12 14 16 18 ……b 3 8 15 24 35 48 63 80 ……c 5 10 17 26 37 50 65 82 ……r 2 4 6 8 10 12 14 16 ……(B)表中所有的数,都符合: a2+b2=c2.我的论文,一共证明了三个问题:(1) 毕达哥拉斯定理a2+b2=c2为什么能够成立;(2) 费马大定理:an+bn=cn,(当n≥3时),不能成立,即没有整数解;(3) 丢番图第八命题(又称丢番图方程),有无限多的整数解;(见前面运算公式及A、B二表).说明:这里(A)、(B)两个公式及其所计算的数据,只供证明丢番图第八命题(丢番图方程)的有解性,作为三个边长都是整数的直角三角形,还有其他解法,别人已经发现.此外,根据相似三角形可按等比例放大的原理,(A)、(B)两表中的数都可以“等比放大”.于是推导出公式:(ak)2+(bk)2=(ck)2 (k=1.2.3…………….n)(相似三角形等比放大原理)例如:a=5 b=12 c=13 k=113则有:(5×113)2+(12×113)2=(13×113)25652+13562=14692另外:当n=4 an+bn=cn 可能有少数整数解

217 评论

相关问答

  • 马理论论文发表版面费

    1:普刊费用低,几百到几千的都有,一般是在800-2000之间。省级刊物的版面费一般为一个版面800元。一个版面也就能刊登2000字符左右,还不算图片、表格之类

    蔻蔻妖妖柒 4人参与回答 2023-12-09
  • 马理论发表论文

    20%。目前一般对小论文的重复率要求不能高于20%或30%这两个数字,具体标准因杂志社而已。而大部分杂志社也是使用知网查重系统来检测论文的重复率。

    丸子的小雕 2人参与回答 2023-12-09
  • 看马理论论文怎么写好发表

    大学的专业有很多,每次到了毕业季,各专业的学生都需要进行论文撰写,大家写论文都喜欢到网上找参考资料,这些对论文写作确实有帮助,但具体的作用有多大,那就要看分享的

    萌萌萌萌瓜 7人参与回答 2023-12-06
  • 看马理论论文发表

    可以。马理论与社会学是相通的,两者存在共变关系,值得研究。硕博论文的专业性、创新性、严谨性的要求要高的多。

    irisorlove 2人参与回答 2023-12-10
  • 马原理论文发表

    怎么理解怎么写,可以上网搜一搜

    下一个路岔 6人参与回答 2023-12-12