首页 > 期刊论文知识库 > 矩阵秩的求法毕业论文

矩阵秩的求法毕业论文

发布时间:

矩阵秩的求法毕业论文

我以前写过一篇关于计算矩阵的秩的小论文,里面是我的一些看法,我从中摘录了一部分,附在下面,看看对你有没有什么帮助。我的看法也是通过将矩阵化成最简形来求解,以下是这么选择的原因。其实这个问题可以讨论讨论的,当时我对自己的算法也不算很满意,所以有什么问题尽管提。本程序是为求解矩阵的秩而进行编译的。要说明其功能,首先要明白什么是矩阵的秩。设在矩阵A中有一个不等于0的r结子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。零矩阵的秩为1。根据定义推断,计算矩阵A的秩,可以转化为计算矩阵A的最大非零子式。但是,实际应用这条原理来解决此问题并不容易。因为,应用计算机计算矩阵A所对应的行列式|A|的值非常麻烦。一个m×n的矩阵,其k阶子式多达m!/[k!•(m-k)!]•n!/[k!•(n-k)!]个,这大大增加了程序的计算量。同时,由于不同阶的子式的值的算法不易通用,故也增加了程序员的编程负担,最重要的是,程序的通用性较低,不易应用于相似题目的求解。故,本程序算法并未采用这种思路。那么,本题又应当如何求解呢?实际生活中,我们一般的求解方法是应用初等变换求解。应用初等变换,将要求的矩阵A变换成行最简形或列最简形然后再进行判断,这才是我们求解矩阵的秩的常规做法。那么,编写程序求解矩阵的秩当然也可以遵循这种做法。相对于前面所讨论的原理来说,应用这种原理进行算法设计,可以减少不少的时间,同时计算机求解的速度也能大大提高。而且,再本算法的基础上稍加改进,即可适应任何阶次的矩阵的秩的求解。

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

第2行,减去第3、4行,变成0第2、4行交换,得到行阶梯型矩阵,数一下非零行数,是2则秩等于2

要快速求一个矩阵的秩当然是使用初等行变换的方法也就是进行矩阵行的化简在通过化简得到最简矩阵之后其矩阵的非零行数就是这个矩阵的秩即行秩是A的线性无关的横行的极大数目

毕业论文有关矩阵的秩

矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。

能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)

矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End(V)与所有矩阵组成的空间M(n)是同构的。

扩展资料:

A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。

奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V

U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。

如果A是复矩阵,B中的奇异值仍然是实数。

SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。

参考资料来源:百度百科——矩阵的秩

行列式的秩如下:

对于行列式来说,非零子式的最高阶数就是它的秩。矩阵的秩用来表示一种矩阵结构,表示矩阵的某些行能否被其他行代替。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。

行列式的特点:

行列式A中某行用同一数k乘,其结果等于kA。

行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

对矩阵A:m×n做初等行变换,A的秩等于m减去元素全为0的行的个数

通过化简矩阵 使矩阵达到最简 有多少行非零的 秩就是多少 秩和解的个数有关

毕业论文矩阵的秩开题报告

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性

矩阵秩的意义在于它可判定线性方程组的解。①系数矩阵秩R(A) = 增广矩阵秩R(A | b),方程组有唯一解;②系数矩阵秩 R(A) = 增广矩阵秩R(A | b) < 未知量个数n (n亦为列向量个数),方程组有无穷多解;③系数矩阵秩 R(A) < 增广矩阵秩R(A | b),方程组无解。( 系数矩阵属于增广矩阵的一部分;增广矩阵包含系数矩阵在内)。

矩阵的秩就是其主元的个数,从这一点,你应该可以隐约知道些什么

逆矩阵的求法毕业论文

逆矩阵的求法:

1、利用定义求逆矩阵

设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。

2、运用初等行变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

3、增广矩阵法

如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。

4、待定系数法

待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。

逆矩阵的求法主要有以下两种:

1、利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。

2、是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得:

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端。

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。

一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;

在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。

扩展资料:

逆矩阵求法:

求逆矩阵的初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

初等变换法计算原理

若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得

,在此式子两端同时右乘A-1得:

比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。

伴随矩阵法

如果矩阵可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。

要求得

即为求解的余因子矩阵的转置矩阵。

A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。

参考资料:百度百科-逆矩阵

求逆矩阵例题

矩阵的秩论文参考文献

rank就是指矩阵的秩啊,low-rank matrix可能是指秩比较小的矩阵吧

低秩矩阵说的就是矩阵的秩比较小的情况!假设已知矩阵C,矩阵的低秩分解研究的就是找到一个秩比较小的矩阵C’,使得C-C'的F范数满足一个阈值的约束!SVD分解就属于低秩分解的一种方法!

一个向量空间(A),不可能通过线性变换使其维数升高(r(BA)≤minr(B)r(A)),一如孤立系统中无法降低的熵。把向量空间看成广义系统,无法降低的熵表示其混乱程度,则无法升高的rank,就表示混乱的对立面(秩)。

low-rank matrix是低秩矩阵。矩阵的秩,需要引入矩阵的SVD分解:X=USV',U,V正交阵,S是对角阵。如果是完全SVD分解的话,那S对角线上非零元的个数就是这个矩阵的秩了(这些对角线元素叫做奇异值),还有些零元,这些零元对秩没有贡献。1.把矩阵当做样本集合,每一行(或每一列,这个无所谓)是一个样本,那么矩阵的秩就是这些样本所张成的线性子空间维数。如果矩阵秩远小于样本维数(即矩阵列数),那么这些样本相当于只生活在外围空间中的一个低维子空间,这样就能实施降维操作。举个例子,同一个人在不同光照下采得的正脸图像,假设每一张都是192x168的,且采集了50张,那构成的数据矩阵就为50行192x168列的,但是如果你做SVD分解就会发现,大概只有前10个奇异值比较大,其他的奇异值都接近零,因此实际上可以将接近零的奇异值所对应的那些维度丢掉,只保留前10个奇异值对应的子空间,从而将数据降维到10维的子空间了。2.把矩阵当做一个映射,既然是映射,那就得考虑它作用在向量x上的效果Ax。注意Ax相当于A的列的某个线性组合,如果矩阵是低秩的,这意味着这些列所张成的空间是外围空间的一个低维子空间,这个空间由Ax表达(其中x任意)。换句话说,这个矩阵把R^n空间映射到R^m空间,但是其映射的像只在R^m空间的一个低维子空间内生活。从SVD理解的话,Ax=USV'x,因此有三个变换:第一是V'x,相当于在原始的R^n空间旋转了一下坐标轴,这样只是坐标的变化,不改变向量本身(例如长度不变);第二是S(V'x),这相当于沿着各个坐标轴做拉伸,并且如果S的对角线上某些元素为零,那么这些元素所对应的那些坐标轴就相当于直接丢掉了;最后再U(SV'x),还是一个坐标轴旋转。总的来看,Ax就相当于把一个向量x沿着某些特定的方向做不同程度的拉伸(附带上一些不关乎本质的旋转),甚至丢弃,那些没被丢弃的方向个数就是秩了。

  • 索引序列
  • 矩阵秩的求法毕业论文
  • 毕业论文有关矩阵的秩
  • 毕业论文矩阵的秩开题报告
  • 逆矩阵的求法毕业论文
  • 矩阵的秩论文参考文献
  • 返回顶部