• 回答数

    6

  • 浏览数

    289

郑小包允在
首页 > 职称论文 > 毕业论文矩阵的秩开题报告

6个回答 默认排序
  • 默认排序
  • 按时间排序

吃是王道呼

已采纳

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

178 评论

miumiu大酱

这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性

285 评论

樱桃小胖子O

矩阵秩的意义在于它可判定线性方程组的解。①系数矩阵秩R(A) = 增广矩阵秩R(A | b),方程组有唯一解;②系数矩阵秩 R(A) = 增广矩阵秩R(A | b) < 未知量个数n (n亦为列向量个数),方程组有无穷多解;③系数矩阵秩 R(A) < 增广矩阵秩R(A | b),方程组无解。( 系数矩阵属于增广矩阵的一部分;增广矩阵包含系数矩阵在内)。

358 评论

凯利的心窝

矩阵的秩就是其主元的个数,从这一点,你应该可以隐约知道些什么

334 评论

大酸杏儿

一个最大无关组,向量组的秩又恰好等于其构成的矩阵的秩,这使得矩阵的秩与向量空间的维数和向量空间的基相联系.因此,研究矩阵的秩、向量组的秩、向量空间的维数以及线性方程组解得理论和方法密不可分

215 评论

J家馍小T

啊?这个东西开什么题啊,早都有人做过了,真是无语。

112 评论

相关问答

  • 毕业论文矩阵

    LZ是文科生吧

    大大大吉CQ 5人参与回答 2023-12-09
  • 矩阵的迹毕业论文

    求矩阵A的迹主要用两种方法:迹是所有对角元的和,就是矩阵A的对角线上所有元素的和。迹是所有特征值的和,通过求出矩阵A的所有特征值来求出它的迹。在线性代数中,一个

    linlin0530 6人参与回答 2023-12-10
  • 矩阵的秩论文参考文献

    rank就是指矩阵的秩啊,low-rank matrix可能是指秩比较小的矩阵吧

    c阿c的鲁鲁 7人参与回答 2023-12-11
  • 毕业论文有关矩阵的秩

    矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。 能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关) 矩阵的秩

    哆啦Y梦 6人参与回答 2023-12-11
  • 矩阵秩论文的研究过程

    A = 1 -1 2 1 0 2 -2 4 -2 0 3 0

    江苏友道木业 6人参与回答 2023-12-09