首页 > 学术期刊知识库 > 关于酶的论文的参考文献

关于酶的论文的参考文献

发布时间:

关于酶的论文的参考文献

我公司生产的 磷酸二酯酶Phosphodiesterase 磷酸二酯酶 PhosphodiesteraseCAS#:9025-82-5蛇毒来源:江浙蝮蛇 (Agkistrodon halys)简介:属于非特异性核酸外切酶,以DNR、RNA为底物,水解DNA、RNA上磷酸二酯键;底物3,-必须含有游离羟基(3,-OH),水解时从3,-端开始逐一水解,生成5,-核苷酸。用途:核酸序列分析。 (产品质量标准)产品名称 磷酸二酯酶 来源 江浙蝮蛇 外观 白色冻干粉 分子量 约110kDa 纯度 ≥90% 生物活性 磷酸二酯酶 I 能从3'-端羟基-核糖-和 核糖-聚核苷酸中水解5'-单核苷酸。 该酶被广泛用作核酸结构和序列分析的工具酶 酶活性 ≥ 单位/mg 蛋白质 单位定义 在pH ,37 °C条件下,一单位每分钟.能水解 μmole硝基苯 磷酸盐 贮存温度 −20°C. 保存期限 24个月 注意事项 本产品仅供实验室研究 使用

cAMP磷酸二酯酶抑制剂 cAMP phosphodiestrerase inhibitors 一类能抑制cAMP磷酸二酯酶活性的化合物,是一类具有新机理的强心药。 cAMP磷酸二酯酶是在与Ca2+结合的钙调素激活下分解环腺苷酸的酶。cAMP磷酸二酯酶抑制剂能抑制心肌和血管平滑肌细胞内的第三型磷酸二酯酶的活性,使细胞内cAMP含量增加,从而增强心肌收缩,扩张外周血管,改善心力衰竭病人的血流动力学。 临床短期使用对急性心力衰竭有明显疗效,但长期使用则引起不良后果。根据对不同亚型的cAMP磷酸二酯酶的亲和力,可分成非选择性抑制剂和选择性抑制剂。

3',5'-环核苷酸磷酸二酯酶[](简称PDE),在生物体内有重要的生化功能。它可水解环核苷酸为5'-核苷酸,并与核苷酸环化酶共同维持细胞内环核苷酸水平。根据性质的不同PDE分为多种形式,但总的可分为两大类:依赖于Ca(上标 2+)的PDE,可被钙调蛋白激活;不依赖于Ca(上标 2+)的PDE,不被钙调蛋白激活。开展对环核苷酸、钙调蛋白及药物杀虫机理的研究都需要分离制备这两类不同形式的PDE。本实验以新鲜的猪心为材料制备分离出这两种PDE,并进行了活性分析。 环核苷酸磷酸二酯酶(PDE)有五类同工酶,它们的结构相似,但各具有不同的生化特性及生理功能,它们的调节方式亦各异。目前开发的许多选择性PDE同工酶抑制剂有可能成为平喘药、强心药、血管扩张药、抗血栓药与抗抑郁药。

(1)酶促反应动力学(kinetics of enzyme-catalyzed reactions)是研究酶促反应速度及其影响因素的科学。这些因素主要包括酶的浓度、底物的浓度、pH、温度、抑制剂和激活剂等。Kinetics of enzyme-catalyzed reactions is to study the factors that affect the speed of the chemical reaction including the enzyme concentration, substrate concentration, PH, temperature , inhibitor and activator etc. (2) Years of research at DSM allowed its scientists a unique technical insight into the activity of oenological yeast and enzymes and how they can improve specific aspects of a wine's profile. Developed by winemaking experts in close contact with leading oenological universities and institutes, the company produces and supplies a complete range of specially designed wine biotechnology ingredients for selected oenological applications. They have thus developed enzymes and tested enzymatic activity to specifically improve wine quality. Whether producing bulk or super premium wines, these enzymes, wine yeasts and fermentation aids provide solutions tailored to any winemaking style. Rapidase Glucalees, for example, is an effective new enzyme which has the ability to optimize filtration and enhance ageing on lees, and improving the clarification and mouthfeel of wine. “With an in-depth knowledge of grape, wine and yeast constitution, DSM has been able to select the optimum spectrum of enzymatic activities for Rapidase Glucalees, a preparation associating β-glucanases and pectinase,” said Céline Fauveau, product application specialist, DSM Food Specialties. ß-glucans are present in Saccharomyces cerevisiae cell walls or found in wines when grapes are affected by Botritis cinerea, the fungus responsible for noble or gray rot. B. cinerea polysaccharides interact with other wine components to increase viscosity and block filtration. However, the hydrolysis of S. cerevisiae cell walls releases numerous compounds into the wine which have positive effects on its stability and organoleptic profile. “The financial benefits of this enzymatic preparation are noteworthy,” continued Fauveau, “as the savings observed in filtration largely exceed the cost of the enzymatic treatment. In ageing on lees, the use of Rapidase Glucalees provides superior results in 3 to 6 weeks compared to many months of traditional ageing, as it allows a greater yield of mannoproteins than would be extracted even after years of ageing on lees.”

关于脂肪酶的论文的参考文献

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

材料与仪器TG16高速离心机(19310 g,长沙英泰仪器有限公司);UV?2000紫外可见分光光度计(尤尼柯上海仪器厂); vertex 70型红外光谱仪(德国Bruker公司);AM?3250B型磁力搅拌恒温器(天津奥特赛恩斯仪器有限公司)。介孔分子筛SBA?15的合成利用表面活性剂Pouronic P123(EO20PO70EO20, 美国Aldrich公司)为模板剂,以浓HCl( 35%~37%)为催化剂,通过对正硅酸乙酯(Si(OC2H5)4, TEOS, ,日本Junsei Chemical公司)的分解和硅缩聚反应后而得到。编号Lu001和LLSD1的介孔分子筛合成方法基本相同,原料量略有不同,二者的BET比表面积762 m2/g,孔容 cm3/g,孔径 nm,壁厚 nm。柱状假丝酵母脂肪酶(candida rogusa lipase, CRL)购自日本Amano酶技术公司;BCA蛋白定量试剂盒购自美国Pierce公司。实验用水为二次蒸馏水。 傅立叶变换红外(FT?IR)测试样品和KBr在115 ℃下抽真空烘干10 h。将300 mg KBr和 mg样品在研钵中混合研磨成细粉后压片,干燥后立刻置于红外光谱仪的石英原位池中测试。仪器分辨率为2 cm-1,扫描波数范围4000~400 cm-1,扫描128次。 CRL在SBA?15上的固定化将CRL磷酸盐缓冲溶液(pH )以3000 r/min离心15 min,收集上清液,得原酶溶液。将适量SBA?15放入原酶溶液中,在15 ℃水浴和150~200 r/min下搅拌吸附21 h,再以10000 r/min下离心15 min,收集上清液为吸余液。用磷酸盐缓冲溶液清洗分子筛4次以洗脱疏松附着的酶,洗脱液再以10000 r/min离心15 min,取出上清液为清洗液。测定原酶溶液、吸余液和清洗液的酶蛋白含量,根据物料衡计算得出酶蛋白固定量(immobilized amount of enzyme protein, mg),取单位质量分子筛的酶蛋白固定量为载酶量(enzyme loading, mg/g)。 固定化CRL的泄漏将上述载酶SBA?15移入70 mL磷酸盐缓冲溶液中,在15 ℃水浴、以150~200 r/min搅拌并定时取样,样品再以10000 r/min离心15 min,分析上清液中的酶蛋白泄漏量。 蛋白质定量方法分别用单波长紫外分光光度法、双波长紫外分光光度法和BCA法测定样品蛋白质含量。单波长紫外法公式为:C(protein)(g/L) =F×A280×D/d,式中A280为280 nm波长处吸光度,D为溶液稀释倍数,d为石英比色皿厚度(cm),F为校正因子。双波长紫外法Warburg?Christian公式为:C(protein)(g/L)=; Lowry?Kalckar公式为:C(protein)(g/L)=,式中A260和A280分别为260 和280 nm紫外波长下的吸光度。BCA法参照美国Pierce公司蛋白定量方法测定。 分 析 化 学第37卷第8期尚 雁等:介孔分子筛SBA?15的脂肪酶固定量分析测定 蛋白质定量方法对比图1表明不同浓度CRL溶液在260~280 nm均有一个较强的吸收峰,该吸收峰为蛋白质芳香族氨基酸的特征峰,用于蛋白质含量测定。将粗酶浓度为6 g/L的CRL溶液进行不同倍数稀释,得到一系列相对浓度已知的酶溶液,分别用单波长和双波长紫外法以及BCA法测定酶浓度,验证所测浓度比例关系是否符合其相对浓度,由此得出各检测方法的准确度。图2结果说明BCA法测定结果与样品稀释后的相对浓度最接近,双波长紫外法测定值与BCA法接近,单波长法测定结果远高于BCA法和双波长紫外法。由表1中的相对浓度计算结果可知,BCA法的相对误差最小,单波长和双波长紫外法的相对误差较大。这是因为BCA法的原理是以工作试剂CuSO4中的Cu2+螯合蛋白质分子,发生显色反应测试吸光度,因此抗干扰能力较强,准确度较高。紫外分光光度法操作步骤少,简单快捷,不用显色试剂,不消耗样品。但是,直接检测光密度值受溶液中杂质干扰影响较大,误差较大。为考察介孔分子筛对吸光度的影响,分别在3 mL蒸馏水中加入, 和 mg SBA?15(编号Lu001),以蒸馏水为参比样,测定其吸光度,并计算出可能对蛋白质测定产生的浓度值偏差。表2说明SBA?15有明显紫外吸收。为此,本实验的样品溶液以10000 r/min离心,以消除介孔分子筛对吸光度的干扰。表1 不同方法测定蛋白质浓度的结果表2 SBA?15对吸光度的影响 表3为不同定量方法测定的 SBA?15(编号为Lu001)对CRL的固定量,3次平行实验的初始粗酶浓度均为6 g/L,SBA?15载体用量均为 g,双波长紫外法测定结果略高于BCA法; 单波长紫外法测定结果远高于双波长法和BCA法。表3还说明BCA法的精密度高于单波长与双波长紫外法,这是因为BCA法靠显色反应测试吸光度,灵敏度较高,且介孔分子筛不参与显色反应,抗干扰能力较强,重现性好,更适合介孔分子筛载体的酶固定量和酶泄露量的测试;紫外分光光度法受溶液中杂质和残留介孔分表3 SBA?15上的CRL固定量及载酶量◆: 固定量(amount of immobilized protein); ◇: 载酶量(enzyme loading).子筛干扰较大。由于双波长紫外法测定的酶固定量结果与BCA法较接近,若实验条件有限或者为了不消耗样品且干扰因素较少,可使用双波长紫外法来代替BCA法测定酶固定量,每个样品中的介孔分子筛干扰可通过物料衡算而抵消。 不同初始酶浓度时BSA?15载体上的酶固定量利用BCA法测定不同初始酶浓度条件下LLSD1对CRL的固定量,图3表明当酶浓度较低时,SBA?15载体对CRL的固定量和载酶量随酶浓度的增加而线性增加,但是当酶蛋白浓度达到约 g/L(粗酶浓度约1 g/L)时固定量和载酶量达到平稳,最大载酶量为 mg/g。 两种SBA?15载体的酶固定量在初始酶浓度均为2 g/L、分子筛用量均为 g相同条件下,LLSD1和Lu001对CRL的固定图4 LLSD1(a)和Lu001(b)的SEM电镜照片 SEM images of LLSD1(a) and Lu001(b)量分别为和 mg;载酶量分别为和 mg/g。可见,LLSD1的固定量及载酶量远大于Lu001。图4为LLSD1和Lu001的SEM电镜照片,可见二者外观形状基本相同,均属于SBA?15的传统形状[9],二者大小也无明显区别。图5是LLSD1和Lu001的FT?IR谱图,从图中可看出LLSD1表面上的羟基基团数量大于Lu001。由于酶的吸附是酶和介孔材料表面上的羟基通过氢键作用完成的,介孔分子筛表面上的羟基通过氢键作用可以促进对酶的吸附[10]。因此, 图5 Lu001(1)和LLSD1(2)的FT?IR谱图 FT?IR spectra of Lu001(1) and LLSD1(2)两种介孔分子筛对酶固定量差异很可能与介孔分子筛的羟基含量有关,具有较高羟基含量有利于固定更多的CRL。 SBA?15固定化酶的泄漏量固定化酶容易“脱落”到水相中成为游离酶,即“泄漏”[11]。图6表明Lu001固定化CRL在缓冲溶液中100 h后的泄漏率为,LLSD1的泄漏率为,泄露量均较低,说明SBA?15是良好的酶固定化载体。泄露率较低可能与SBA?15孔径大小有关。研究[3,12]表明, 当介孔材料的孔径与酶分子大小相适应时,固定化酶的稳定性较好。Lu001和LLSD1的孔径均为 nm,假丝酵母脂肪酶的动力学直径约为5 nm,二者大小较匹配,使酶分子恰好固定于孔内而不易发生泄露。◆,■,▲,● 为泄露量(leakage); ◇,口,△,○为泄露率(leakage rate),其中◆, ◇ : g LLSD1, 载酶量(enzyme loading) mg/g; ■,口: g LLSD1, 载酶量(enzyme loading) mg/g;▲, △: g Lu001, 载酶量(enzyme loading) mg/g;●,○: g Lu001, 载酶量(enzyme loading) mg/g。 1 Lei C, Shin Y, Liu J, Ackerman E J. Journal of the American Chemical Society, 2002, 124: 11242~112432 Lei J, Fan J, Yu C Z, Zhang L Y, Jiang S Y, Tu B, Zhao D Y. Microporous and Mesoporous Materials, 2004, 73: 121~1283 Essa H, Magner E, Cooney J, Hodnett B K. Journal of Molecular Catalysis B: Enzymatic, 2007, 49: 61~684 Rosales?Herńandez M C, Mendieta?Wejebe J E, Correa?Basurto J, Vázquez?Alcantara J I, Terres?Rojas E, Trujillo?Ferrara J. International Journal of Biological Macromolecules, 2007, 40: 444~4485 Gao Bo(高 波), Zhu Guang?Shan(朱广山), Fu Xue?Qi(付学奇), Xin Ming?Hong(辛明红), Chen Jing(陈 静), Wang Chun?Lei(王春雷), Qiu Shi?Lun(裘式纶). Chem. J. Chinese Universities(高等学校化学学报), 2005, 26(10): 1852~18546 Humphrey H P Y, Wright P A, Botting N P. Microporous and Mesoporous Materials. 2001, 44?45: 763~7687 He J, Xu Y, Ma H. Journal of Colloid and Interface Science, 2006, 298: 780~7868 Xu Jian(徐 坚), Yang Li?Ming(杨立明), Wang Yu?Jun(王玉军), Luo Guang?Sheng(骆广生), Dai You?Yuan(戴猷元). Journal of Chemical Industry and Engineering(China)(化工学报), 2006, 10(57): 2407~24109 Zhao D Y, Feng J L, Huo Q S, Nicholas M, Fredrickson G H, Chmelka B F, Stueky G D. Science, 1998, 279: 548~55210 Zheng L Y, Zhang S Q, Zhao L F, Zhu G S, Yang X Y, Gao G, Cao S G. Journal of Molecular Catalysis B:Enzymatic, 2006, 38: 119~12511 Zhu Y F, Shen W H, Dong X P, Shi J L. Journal of Materials Research, 2005, 20: 2682~269012 Diaz J F, Balkus K J. Journal of Molecular Catalysis B: Enzymatic, 1996, 2: 115~126

脂类代谢与人体健康 脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。 一、脂类的消化与吸收 1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。 2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。 二、脂肪的代谢 1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。 脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。 2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。 3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。 4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。 三、类脂的代谢 1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。 2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。 四、血浆脂蛋白代谢 1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。 表1 正常成人空腹时血浆中脂类的组成和含量脂类物质 nmol/L mg/dl 脂类总量 4~7(g/L) 400~700甘油三酯 ~ 10~160胆固醇总量 ~ 150~250磷 脂 ~ 150~250游离脂肪酸 ~ 8~25血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。 血脂的来源与去路如下:2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。 五、脂类代谢紊乱引起的常见疾病 1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。 表2 各型高脂蛋白血浆脂蛋白及脂类含量变化类型 血浆脂蛋白变化 血脂含量变化 发生率 Ⅰ 高乳糜微粒血症 甘油三酯升高 罕见 (乳糜微粒升高) 胆固醇升高 Ⅱa 高 脂蛋白血症 甘油三酯正常 常见 (低密度脂蛋白升高) 胆固醇升高 Ⅱb 高 脂蛋白血症 甘油三酯升高 常见 高前 脂蛋白血症 胆固醇升高 (低密度脂蛋白及极 低密度脂蛋白升高 Ⅲ 高 脂蛋白血症 甘油三酯升高 较少 高前 脂蛋白血症 胆固醇升高 (出现“宽 ”脂蛋白 低密度脂蛋白升高 Ⅳ 高前 脂蛋白血症 甘油三酯升高 常见 (极低密度脂蛋白升高) 胆固醇升高 Ⅴ 高乳糜微粒血症 甘油三酯升高 高前 脂蛋白血症 胆固醇升高 不常见按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。 高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。 2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。 3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。 4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。 近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。 5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。 脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。

酶法双甘酯的制备论文字数:19829,页数:36摘 要 双甘酯(Diacylglycerol, DG)是甘三酯(Triacylglycerol, TG)中的一个脂肪酸被羟基取代的结构脂质。双甘酯是天然植物油脂中的微量成分及体内脂肪代谢的内源中间产物,它是公认安全(GRAS)的食品成分。近年来的研究表明, 双甘酯具有许多独特的生理作用和物化性质, 可广泛地应用于食品、医药、化妆品及其他化工产品, 是一类很有开发前景的新型化工原料。本论文主要对双甘酯的酶促甘油醇解、水解以及超声波外力场辅助酶促水解制备进行了研究。 首先研究了酶促棕榈油甘油醇解反应制备双甘酯,研究表明:在搅拌、棕榈油与甘油底物摩尔比为2:1、加酶量为油脂质量的8%、甘油加水量0%、反应温度42℃的条件下,酶促甘油解制备双甘酯反应较慢,反应30小时,DG的质量分数才达40%。试验同时发现,体系中游离脂肪酸生成速率较快,尤其在前12小时。体系中没有加入水,参与反应的水主要源于酶中以及油脂中已有的水分,这二者的水分含量均不高,在此情况下,水解反应却较快,这说明,酶催化水解反应的能力很强。既然酶催化水解易于进行,因此,下文进行了酶促水解制备DG的研究。 试验显示,在机械搅拌条件下,酶促水解的最优条件为:底物摩尔比(水∶棕榈油)为,加酶量为油脂质量的6%,反应温度42℃,反应时间4h,产物中双甘酯的含量达到。该试验表明,酶促水解反应比甘油醇解反应快得多,且双甘酯产率高。 为了进一步加快反应速率,本文在超声波作用下,对脂肪酶催化棕榈油水解制备双甘酯进行了试验。试验结果表明:在底物摩尔比(水∶棕榈油)为,加酶量为油脂质量的6%,反应温度为37℃,超声功率为50W,仅需反应2h,产物中双甘酯的含量即达到。关键词:双甘酯 脂肪酶 甘油醇解 水解 超声波 The Preparation of Diglyceride catalized by Enzyme Abstract: Diglyceride (DG) is a kind of structured lipid that hydroxyl replace acyl in the sn-1, 2, 3 position of triglyceride (TG). DG is a natural minor component of various edible oils and the endogenetic intermediate metabolite of lipid. Moreover, it is generally recognized as safe (GRAS) by FDA. Recent investigations have shown that diglyceride can be extensively applied to food, pharmaceuticals, cosmetics and other chemical products due to its specific physiological actions and physico-chemical properties. Diglyceride is one kind of new and promising chemical product. In this paper, the preparation of DG in different conditions were studied. Firstly, the preparation of DG by enzymatic glycerine alcoholysis of palm oil was studied. The research indicated that the DG content in the yield was only about 40% under the following conditions: mechanical agitation, ratio of palm oil to glycerol 2:1,lipase content 8%, water content of glycerol 0%,reaction temperature 42℃ and reaction time 30h. At the same time,the results show that the ability of enzymatic hydrolysis reaction is strong compared to the enzymatic glycerine alcoholysis reaction. Secondly, the preparation of DG by enzymatic hydrolysis of palm oil under the mechanical agitation condition was studied. The optimum reaction conditions were got by single-factor experiments and they are as follows: ratio of palm oil to water 1∶, lipase content 6%, reaction temperature 42℃, reaction time 4h. The DG content in the yield was under the above conditions. Thirdly, the preparation of DG by enzymatic hydrolysis of palm oil in the ultrasonic field were studied. The optimum reaction conditions are as follows: ratio of palm oil to water 1∶, Lipase content 6%, reaction temperature 37℃, Ultrasonic power 50W and the reaction time 2h. The DG content in the yield was under the above words: Diacylglycerol(DG);Lipase;Glycerine Alcoholysis;Hydrolysis;Ultrasound 目 录1 绪论 1 前言 1 双甘酯的组成、结构与功能 1 双甘酯的组成与结构 1 双甘酯的生理功能 2 双甘酯的应用 3 双甘酯在食品添加剂中的应用 3 双甘酯在医药中的应用 4 双甘酯在化妆品中的应用 4 其他应用 4 双甘酯的各种制备方法 5 双甘酯的化学制备方法 5 双甘酯的酶法制备 6 双甘酯各种制备方法的特点分析 8 双甘酯的分析方法 9 超声波及其在酶促反应中的应用 10 超声波 10 超声波工作原理 11 超声波在酶促反应中的应用 12 课题研究内容 132 测定方法 14 样品制备 14 羟基值的测定 14 乙酰化试剂的配置 14 测定步骤 14 单甘酯的含量测定 14 游离甘油含量测定 15 游离脂肪酸的含量测定 15 双甘酯的含量 16 甘三酯的含量 163 酶促棕榈油甘油醇解、水解制备双甘酯 17 试验材料与仪器 18 试验材料 18 试验仪器 18 试验方法 18 酶促甘油醇解反应 18 酶促水解反应 19 结果与讨论 19 酶促甘油醇解反应影响因素 19 酶促水解反应影响因素 20 (1)反应时间对双甘酯产率的影响 20 (2)加酶量对双甘酯产率的影响 20 (3)反应温度对双甘酯产率的影响 21 (4)底物摩尔比对双甘酯产率的影响 22 结论 234 超声场中酶促水解制备双甘酯 24 试验材料与仪器 24 试验材料 24 试验仪器 24 试验方法 25 结果与讨论 25 超声功率对双甘酯产率的影响 25 超声场与机械搅拌条件对比 26 结论 275 结论与展望 28 结论 28 存在的问题与展望 28参考文献 29Abstract 31 致 谢 32以上回答来自:

酶论文的参考文献

Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. 2012 J. Biol. , drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from J. Cell , 527– of maize C4 photosynthetic development in a mesophyll cell-defective mutant. 2008 Plant , 1469–, the membrane subunit of protein phosphatase 1{beta}, signals nuclear translocation of the nuclear receptor CAR. 2008 Mol. , 1113-1121.

一、文献类型与文献载体代码根据gb3469-83《文献类型与文献载体代码》规定,以单字母标识:m——专著(含古籍中的史、志论著)c——论文集n——报纸文章j——期刊文章d——学位论文r——研究报告s——标准p——专利a——专著、论文集中的析出文献z——其他未说明的文献类型电子文献类型以双字母作为标识:db——数据库cp——计算机程序eb——电子公告非纸张型载体电子文献,在参考文献标识中同时标明其载体类型:db/ol——联机网上的数据库db/mt——磁带数据库m/cd——光盘图书cp/dk——磁盘软件j/ol——网上期刊eb/ol——网上电子公告二、参考文献书写格式(参考文献:宋体四号字加黑,顶头)中文≥10篇,英文≥5篇(主要内容用宋体小四号不加黑,中文中标点用全角;英文符号用半角,标注说明如下)(1)杂志:[编号]姓名1,姓名2,姓名3等.文章名称[j].杂志名称,年,卷(期):页码范围.(2)书籍:[编号]姓名1,姓名2,姓名3等.书籍名称(第几版).出版地点:出版社,出版年:起止页码(第一版不标注).(3)学位论文:[编号]姓名.论文名[d].保存地点:保存单位,撰写年,页码范围.(4)会议论文集:[编号]姓名1,姓名2,姓名3等.文章题目名[c].会议名(论文集名),年份,会议地:出版者,页码范围.(5)报纸:[编号]姓名1,姓名2,姓名3等.文章题目名[n].报纸名称,出版年-月-日(版面号).(6)专利:[编号]专利所有者姓名1,姓名2,姓名3等.专利题目名[p].专利国别:专利号,出版日期.(7)电子文献:[编号]姓名1,姓名2,姓名3等.电子文献题名[载体类型].电子文献的出处或可获得地址,发表或更新日期/引用日期.载体类型:联机上网数据库(databaseonline)[db/ol];光盘网数据库(databaseoncd-rom)[db/cd];光盘图书(monographoncd-rom)[m/cd];磁盘软件(computerprogramondisk)[cp/dk];网上期刊(serialonline)[j/ol];网上电子公告(electronicbulletinboardonline)[eb/ol]参考文献:(宋体四号字加黑)(样例)[1]惠晓实,王凯航,陆舟,等.一种基于web技术的网络数据库系统设计[j].计算机应用研究,2000,17(1):84~86.[2]强文久,元章,雯荣.数学分析的基本概念与方法.北京:高等教育出版社,1989:153~167.[3]詹东风.中国漆树酶分离制备及反映功能研究[d].武汉大学博士学位论文,1998:81~89.[4][j].scientificamerican,1994,270(1):78~86.[5]buchbergerb,collinsge,~76.

[1] Thoroson J S, Hoster T J, Jiang J, et al. Nature′s carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites [J]. Curr Org Chem,2001,5(2):139[2] Weymouth?Wilson A C. The role of carbohydrates in biologically active natural products [J]. Nat Prod Rep,1997,14(2):99[3] Losey H C, Peczuh M W, Chen Z, et al. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides [J]. Biochemistry,2001,40(15):4745[4] Cudic P, Kranz J K, Behenna D C, et al. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation [J]. Proc Natl Acad Sci,2002,99(11):7384[5] Gellert M, O′Dea M H, Itoh T, et al. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase [J]. Proc Natl Acad Sci,1976,73(12):4474[6] Sosio M, Stinchi S, Beltrametti F, et al. The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species [J]. Chem Biol,2003,10(6):541[7] Quiros L M, Aguirrezabalaga I, Olano C, et al. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus [J]. Mol Microbiol,1998,28(6):1177[8] Gourmelen A, Blondelet?Rouault M H, Pernodet J L. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens [J]. Antimicrob Agents Chemother,1998,42(10):2612[9] 代焕琴. 安丝菌素生物合成的后修饰研究[D]. 中国科学院博士学位论文,2006:40[10] Walsh C T, Losey H C, Freel C L. Antibiotic glycosyltransferases [J]. Biochem Soc Trans,2003,31(Pt3):487[11] Lu C, Bai L, Shen Y. A novel amide N?glycoside of ansamitocins from Actinosynnema pretiosum [J]. J Antibiot,2004,57(5):348[12] Hoffmeister D, Ichinose K, Bechthold A. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity [J]. Chem Biol,2001,8(16):557[13] Mulichak A M, Losey H C, Walsh C T, et al. Structure of the UDP?glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics [J]. Structure,2001,9(7):547[14] Sanchez C, ButovichI A, Brana A F, et al. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives [J]. Chem Biol,2002,9(4):519[15] Otten S L, Liu X, Ferguson J, et al. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyltransferase involved in daunorubicin biosynthesis [J]. J Bacteriol,1995,177(22):6688[16] Zhao Y, Ahlert J, Xue Y, et al. Engineering a methy?mycin/pikromycin?calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety [J]. J Am Chem Soc,1999,121(42):9881[17] Hoffmeister D, Ichinose K, Domann S, et al. The NDP?sugar co?substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster [J]. Chem Biol,2000,7(11):821[18] Walsh C, Freel C L, Losey H C. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming [J]. J Med Chem,2003,46(16):3425[19] Blanco G, Patallo E P, Brana A F, et al. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus: the producer of the antitumor polyketide elloramycin [J]. Chem Biol,2001,8(3):253[20] Dürr C, Hoffmeister D, Wohlert S E, et al. The glycosyltransferase UrdGT2 establishes both C? and O?glycosidic bonds [J]. Angewandte,2004,43(22):2962[21] Freel C L, Anderson J W, Kahne D, et al. Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin [J]. Biochemistry,2002,42(14):4179[22] Mendez C, Salas J A. Altering the glycosylation pattern of bioactive compounds [J]. Trends Biotechnol,2001,19(11):449[23] He X, M Liu, H W. Formation of unusual sugars: mechanistic studies and biosynthetic applications [J]. Annu Rev Biochem,2002,71:701[24] Oberthur M, Leimkuhler C, Kruger R G, et al. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases [J]. J Am Chem Soc,2005,127(30):10747[25] Wohlert S E, Blanco G, Lombo F, et al. Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by elm genes in cosmid 16F4 and which shows a broad sugar substrate specificity [J]. J Am Chem Soc,1998,120(41):10596[26] Salas J A, Mendez C. Biosynthesis pathways for deoxysugars in antibiotic?producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives [J]. J Mol Microbiol Biotechnol,2005,9(2):77[27] Sanchez C, Zhu L, Brana A F, et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds [J]. Proc Natl Acad Sci,2005,102(2):461[28] Salas A P, Zhu L, Sanchez C, et al. Deciphering the late steps in the biosynthesis of the anti?tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase [J]. Mol Microbiol,2005,58(1):17[29] Doumith M, Legrand R, Lang C, et al. Interspecies complementation in Saccharopolyspora erythraea: elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new ery

关于酶的论文的英文文献

1A DNA polymerase is an enzyme that catalyzes the polymerization of deoxyribonucleotides into a DNA strand. DNA polymerases are best-known for their role in DNA replication, in which the polymerase "reads" an intact DNA strand as a template and uses it to synthesize the new strand. The newly-polymerized molecule is complementary to the template strand and identical to the template's original partner strand. DNA polymerases use a magnesium ion for catalytic polymerase can add free nucleotides to only the 3’ end of the newly-forming strand. This results in elongation of the new strand in a 5'-3' direction. No known DNA polymerase is able to begin a new chain (de novo). DNA polymerase can add a nucleotide onto only a preexisting 3'-OH group, and, therefore, needs a primer at which it can add the first nucleotide. Primers consist of RNA and DNA bases with the first two bases always being RNA, and are synthesized by another enzyme called primase. An enzyme known as a helicase is required to unwind DNA from a double-strand structure to a single-strand structure to facilitate replication of each strand consistent with the semiconservative model of DNA correction is a property of some, but not all, DNA polymerases. This process corrects mistakes in newly-synthesized DNA. When an incorrect base pair is recognized, DNA polymerase reverses its direction by one base pair of DNA. The 3'->5' exonuclease activity of the enzyme allows the incorrect base pair to be excised (this activity is known as proofreading). Following base excision, the polymerase can re-insert the correct base and replication can polymerases have highly-conserved structure, which means that their overall catalytic subunits vary, on a whole, very little from species to species. Conserved structures usually indicate important, irreplicable functions of the cell, the maintenance of which provides evolutionary viruses also encode special DNA polymerases, such as Hepatitis B virus DNA polymerase. These may selectively replicate viral DNA through a variety of mechanisms. Retroviruses encode an unusual DNA polymerase called reverse transcriptase, which is an RNA-dependent DNA polymerase (RdDp). It polymerizes DNA from a template of polymerase (EC ) is an enzyme whose central function is associated with polymers of nucleic acids such as RNA and DNA. The primary function of a polymerase is the polymerization of new DNA or RNA against an existing DNA or RNA template in the processes of replication and transcription. In association with a cluster of other enzymes and proteins, they take nucleotides from solvent, and catalyse the synthesis of a polynucleotide sequence against a nucleotide template strand using base-pairing is an accident of history that the enzymes responsible for the catalytic production of other biopolymers are not also referred to as particular polymerase, from the thermophilic bacterium, Thermus aquaticus (Taq) (PDB 1BGX, EC ) is of vital commercial importance due to its use in the polymerase chain reaction, a widely-used technique of molecular well-known polymerases include:Terminal Deoxynucleotidyl Transferase (TDT), which lends diversity to antibody heavy chains Reverse Transcriptase, an enzyme used by RNA retroviruses like HIV, which is used to create a complementary strand to the preexisting strand of viral RNA before it can be integrated into the DNA of the host cell. It is also a major target for antiviral drugs. 3RNA polymerase (RNAP or RNApol) is an enzyme that produces RNA. In cells, RNAP is needed for constructing RNA chains from DNA genes as templates, a process called transcription. RNA polymerase enzymes are essential to life and are found in all organisms and many viruses. In chemical terms, RNAP is a nucleotidyl transferase that polymerizes ribonucleotides at the 3' end of an RNA of the process of gene transcription affects patterns of gene expression and, thereby, allows a cell to adapt to a changing environment, perform specialized roles within an organism, and maintain basic metabolic processes necessary for survival. Therefore, it is hardly surprising that the activity of RNAP is both complex and highly regulated. In Escherichia coli bacteria, more than 100 transcription factors have been identified, which modify the activity of can initiate transcription at specific DNA sequences known as promoters. It then produces an RNA chain, which is complementary to the template DNA strand. The process of adding nucleotides to the RNA strand is known as elongation; In eukaryotes, RNAP can build chains as long as million nucleosides (the full length of the dystrophin gene). RNAP will preferentially release its RNA transcript at specific DNA sequences encoded at the end of genes known as of RNAP include:Messenger RNA (mRNA)—template for the synthesis of proteins by ribosomes. Non-coding RNA or "RNA genes"—a broad class of genes that encode RNA that is not translated into protein. The most prominent examples of RNA genes are transfer RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in the process of translation. However, since the late 1990s, many new RNA genes have been found, and thus RNA genes may play a much more significant role than previously thought. Transfer RNA (tRNA)—transfers specific amino acids to growing polypeptide chains at the ribosomal site of protein synthesis during translation Ribosomal RNA (rRNA)—a component of ribosomes Micro RNA—regulates gene activity Catalytic RNA (Ribozyme)—enzymatically active RNA molecules RNAP accomplishes de novo synthesis. It is able to do this because specific interactions with the initiating nucleotide hold RNAP rigidly in place, facilitating chemical attack on the incoming nucleotide. Such specific interactions explain why RNAP prefers to start transcripts with ATP (followed by GTP, UTP, and then CTP). In contrast to DNA polymerase, RNAP includes helicase activity, therefore no separate enzyme is needed to unwind and initiationRNA Polymerase binding in prokaryotes involves the α subunit recognizing the upstream element (-40 to -70 base pairs) in DNA, as well as the σ factor recognizing the -10 to -35 region. There are numerous σ factors that regulate gene expression. For example, σ70 is expressed under normal conditions and allows RNAP binding to house-keeping genes, while σ32 elicits RNAP binding to heat-shock binding to the DNA, the RNA polymerase switches from a closed complex to an open complex. This change involves the separation of the DNA strands to form an unwound section of DNA of approximately 13 bp. Ribonucleotides are base-paired to the template DNA strand, according to Watson-Crick base-pairing interactions. Supercoiling plays an important part in polymerase activity because of the unwinding and rewinding of DNA. Because regions of DNA in front of RNAP are unwound, there is compensatory positive supercoils. Regions behind RNAP are rewound and negative supercoils are present. ElongationTranscription elongation involves the further addition of ribonucleotides and the change of the open complex to the transcriptional complex. RNAP cannot start forming full length transcripts because of its strong binding to promoter. Transcription at this stage primarily results in short RNA fragments of around 9 bp in a process known as abortive transcription. Once the RNAP starts forming longer transcripts it clears the promoter. At this point, the -10 to -35 promoter region is disrupted, and the σ factor falls off RNAP. This allows the rest of the RNAP complex to move forward, as the σ factor held the RNAP complex in 17-bp transcriptional complex has an 8-bp DNA-RNA hybrid, that is, 8 base-pairs involve the RNA transcript bound to the DNA template strand. As transcription progresses, ribonucleotides are added to the 3' end of the RNA transcript and the RNAP complex moves along the DNA. Although RNAP does not seem to have the 3'exonuclease activity that characterizes the proofreading activity found in DNA polymerase, there is evidence of that RNAP will halt at mismatched base-pairs and correct addition of ribonucleotides to the RNA transcript has a very similar mechanism to DNA polymerization - it is believed that these polymerases are evolutionarily related. Aspartyl (asp) residues in the RNAP will hold onto Mg2+ ions, which will, in turn, coordinate the phosphates of the ribonucleotides. The first Mg2+ will hold onto the α-phosphate of the NTP to be added. This allows the nucleophilic attack of the 3'OH from the RNA transcript, adding an additional NTP to the chain. The second Mg2+ will hold onto the pyrophosphate of the NTP. The overall reaction equation is:(NMP)n + NTP --> (NMP)n+1 + PPi TerminationTermination of RNA transcription can be rho-independent or rho-dependent:Rho-independent transcription termination is the termination of transcription without the aid of the rho protein. Transcription of a palindromic region of DNA causes the formation of a hairpin structure from the RNA transcription looping and binding upon itself. This hairpin structure is often rich in G-C base-pairs, making it more stable than the DNA-RNA hybrid itself. As a result, the 8bp DNA-RNA hybrid in the transcription complex shifts to a 4bp hybrid. These last 4 base-pairs are weak A-U base-pairs, and the entire RNA transcript will fall off

[1] 袁勤生. 应用酶学[M]. 上海: 华东理工大学出版社,1994.[2]Nair S U,Singhal R S,Kamat M Y.Induction of pullulanase production in Bacillus cereus FDTA 213 [J].Biores.Technol. ,2007,98( 4) : 856 -859.[3]Park H S,Park J T,Kang H K,et al. .TreX from sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alphaglucanotransferase activities[J].Biosci.Biotechol.Biochem. ,2007,71( 5) : 1348 -1352.[4] 乔宇, 丁宏标 , 王海燕, 常敏. 普鲁兰酶的研究进展[J]. 生物技术进展2011 年第1 卷第3 期189 ~194.普鲁兰酶是一种在低pH值下应用的热稳定脱支酶,与糖化酶一起使用,可由液化淀粉浆来生产高葡萄糖浆和高麦芽糖浆。这是一种由经过基因工程改造的地衣芽胞杆菌制得的酶。该酶在高温酸性下稳定,并可水解液化淀粉中的α—1.6—D糖苷键而产生包含(1,4-α-D)葡糖键的直链多聚糖。此酶符合联合国粮农组织(FAO)/世界卫生组织(WHO)及食品化学药典(FCC)所推荐的食品级酶制剂。在美国,被认为是可以放心使用产品。 名称 普鲁兰酶 其他名称 茁酶多糖酶 来源 微生物(产气杆 菌等) 作用键 水解支链淀粉和糖原等分支点的α—1, 6 糖苷键 底物 支链淀粉, 普鲁兰糖 产物 麦芽三糖, 麦芽糖 该酶在55~65℃范围内活性较强, 其中60℃为其降解普鲁兰糖的最适温度。普鲁兰酶在低于70℃时稳定性较好, 残余活力在90%以上, 温度高于70℃后, 酶活力开始迅速下降。最适pH 值为。在pH 值 范围内, 普鲁兰酶稳定性较高, 活力损失较少, 酶的残余活力在90%以上。Fe3+对普鲁兰酶活性有激活作用;Cu2+、Ag+ 、Hg2+、Pb2+对酶活性有强烈的抑制作用;Zn2+、Mg2+、Ni2+也有一定的抑制作用,其他金属离子对该酶活性影响不明显。普鲁兰酶与其他淀粉酶协同作用或单独作用, 使食品质量提高,降低粮耗,节约成本,减少污染。普鲁兰酶能分解支链的特性决定了他在食品工业中的广泛应用,已成为淀粉酶制剂中一个很有前途的新品种,具有广阔的开发和应用前景,其在食品工业中的应用研究也将日趋广泛和深入,目前国际上普鲁兰酶的工业化生产被丹麦垄断,我国仅局限于实验室研究,且酶活较低,所以开发普鲁兰酶对食品加工领域具有重要的工业价值。

CNKI数据库

1 邱雁临.纤维素酶的研究和应用前景[J].粮食与饲料科技,2001,30~31 2 刘耘,鄢满秀.纤维素酒精发酵的研究进展[J].广州食品工业发酵,1999,15(2):51~54,63 3 戴四发,金光明,王立克,等.纤维素酶研究现状及其在畜牧业中的应用[J].安徽技术师范学院学报,2001,45(3):32~38 4 阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233~237 5 张鸿雁,陈锡时.微生物纤维素酶分子生物学研究进展[J].生物技术,2003,13(3):41~42 6 杨礼富,微生物学通报,2003, 30 (4):9 987 史雅娟,吕永龙,环境科学进展1999, 7 ( 6)3} 378 宋桂经,纤维素科学与技术,广西人学学报:自然科学版).2004. 29(1):73- 769 曲杳波,高培基.开展生物质转化为洒精研究实现液态燃料可持续供应}c}.发酵工程学科的进展一第一次全国发酵工程学术讨论会.北京:中国轻工业出版社,2002, 34一39.

带参考文献的酶论文

学术论文是科学或者社会研究工作者在学术书籍或学术期刊上刊登的呈现自己研究成果的文章。学术论文往往强调原创性的工作总结,但也可以是对前人工作总结的回顾及做出评价,后者也往往被称为综述性文章(Review)。学术论文的出版正在经历着重大变化,出现了从传统的印刷版到网络上电子格式的兴起。论文中最重要的就是论点、论据和论证,所以在写作中,一定要对这三点加以重视。论文写作,简单的说,就是大专院校毕业论文的写作,包含着本科生的学士论文,研究生的硕士论文,博士生的博士论文,延伸到了职称论文的写作以及科技论文的写作。一般来说,论文写作,即高校毕业生,科技工作者以及各科研机构,事业单位工作人员,依据一定的论文格式和字数要求,对学习和工作的学术总结和创新。[1]论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。命题方式简明扼要,提纲挈领。英文题名方法①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。这些规定可供我们参考。⑤在论文的英文题名中。凡可用可不用的冠词均不用。署名(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。结论(七)论文——结语或结论论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。参考文献(八)论文——参考义献这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。

[1] 袁勤生. 应用酶学[M]. 上海: 华东理工大学出版社,1994.[2]Nair S U,Singhal R S,Kamat M Y.Induction of pullulanase production in Bacillus cereus FDTA 213 [J].Biores.Technol. ,2007,98( 4) : 856 -859.[3]Park H S,Park J T,Kang H K,et al. .TreX from sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alphaglucanotransferase activities[J].Biosci.Biotechol.Biochem. ,2007,71( 5) : 1348 -1352.[4] 乔宇, 丁宏标 , 王海燕, 常敏. 普鲁兰酶的研究进展[J]. 生物技术进展2011 年第1 卷第3 期189 ~194.普鲁兰酶是一种在低pH值下应用的热稳定脱支酶,与糖化酶一起使用,可由液化淀粉浆来生产高葡萄糖浆和高麦芽糖浆。这是一种由经过基因工程改造的地衣芽胞杆菌制得的酶。该酶在高温酸性下稳定,并可水解液化淀粉中的α—1.6—D糖苷键而产生包含(1,4-α-D)葡糖键的直链多聚糖。此酶符合联合国粮农组织(FAO)/世界卫生组织(WHO)及食品化学药典(FCC)所推荐的食品级酶制剂。在美国,被认为是可以放心使用产品。 名称 普鲁兰酶 其他名称 茁酶多糖酶 来源 微生物(产气杆 菌等) 作用键 水解支链淀粉和糖原等分支点的α—1, 6 糖苷键 底物 支链淀粉, 普鲁兰糖 产物 麦芽三糖, 麦芽糖 该酶在55~65℃范围内活性较强, 其中60℃为其降解普鲁兰糖的最适温度。普鲁兰酶在低于70℃时稳定性较好, 残余活力在90%以上, 温度高于70℃后, 酶活力开始迅速下降。最适pH 值为。在pH 值 范围内, 普鲁兰酶稳定性较高, 活力损失较少, 酶的残余活力在90%以上。Fe3+对普鲁兰酶活性有激活作用;Cu2+、Ag+ 、Hg2+、Pb2+对酶活性有强烈的抑制作用;Zn2+、Mg2+、Ni2+也有一定的抑制作用,其他金属离子对该酶活性影响不明显。普鲁兰酶与其他淀粉酶协同作用或单独作用, 使食品质量提高,降低粮耗,节约成本,减少污染。普鲁兰酶能分解支链的特性决定了他在食品工业中的广泛应用,已成为淀粉酶制剂中一个很有前途的新品种,具有广阔的开发和应用前景,其在食品工业中的应用研究也将日趋广泛和深入,目前国际上普鲁兰酶的工业化生产被丹麦垄断,我国仅局限于实验室研究,且酶活较低,所以开发普鲁兰酶对食品加工领域具有重要的工业价值。

  • 索引序列
  • 关于酶的论文的参考文献
  • 关于脂肪酶的论文的参考文献
  • 酶论文的参考文献
  • 关于酶的论文的英文文献
  • 带参考文献的酶论文
  • 返回顶部