首页 > 学术期刊知识库 > 有关玉米脂肪酸的论文文献

有关玉米脂肪酸的论文文献

发布时间:

有关玉米脂肪酸的论文文献

玉米的常用别名有苞米、包谷、珍珠米。性平,味甘。归脾、肺经。其含蛋白质、脂肪、糖类、胡萝卜素、B族维生素、维生素E及钙、铁、铜等多种矿物质。

玉米的常用别名有苞米、包谷、珍珠米。性平,味甘。归脾、肺经。其含蛋白质、脂肪、糖类、胡萝卜素、B族维生素、维生素E及钙、铁、铜等多种矿物质。玉米中含有丰富的不饱和脂肪酸,它和玉米胚芽中的维生素E协同作用,能有效降低血液胆固醇浓度,适合高脂血症患者食用。适用量是每餐50克。玉米是一种常见的粮食作物,主要生产于北方,有黄玉米、白玉米两种,其中黄玉米含有较多的维生素A,对人的视力非常的有益。

玉米有利尿消肿的功效,能排毒动消化。适合小满、芒种是至的节有,性味:性平,味甘,归经:归肝、胆、膀胱经选购秘诀:颜色浅、重量足、不空洞者较佳保存技巧:保存玉米需将外皮及毛须去除,井放置在干燥通风处。

玉来是粗粮中的保健佳品,其中富含的膳食纤维素,可刺激胃肠蠕动,加速肠内毒素的排出,可防治便秘、胃病、肠炎、肠癌等。玉米胚芽中的不饱和脂肪酸和维生素E协同作用,可降低血液胆固醇浓度,防止动脉硬化。

玉米中所含的玉米黄质和叶黄素有强大的抗氧化作用,可以吸收进入眼球内的有害光线,保护黄斑的健康,所以,司机、学生、编辑、作家等经常使用眼睛的人,都应该多吃一些黄色的玉米。

玉米胚芽中的不饱和脂肪酸和维生素E协同作用,可降低血液胆固醇浓度,防止动脉硬化。 玉米中所含的玉米黄质和叶黄素有强大的抗氧化作用,

玉米中含有丰富的不饱和脂肪酸,它和玉米胚芽中的维生素E协同作用

有关反式脂肪酸检测的论文

式脂肪又叫反式脂肪酸,反式脂肪酸在自然食品中含量很少,人们平时食用的反式脂肪酸大多都是由植物油加氢制成,这是一个人为的加工过程,就是把植物油脂中液态的不饱和脂肪通过加氢硬化。说白了,就是液态的植物油为了防止它变质、便于保存或者改善口感,而把它变成固态或半固态的油脂,这就是反式脂肪酸。 反式脂肪酸目前被食品加工业者广泛应有于食品中。因为食品中添加反式脂肪酸后,会增加食品的口感,让食品变得更松脆美味。反式脂肪酸常见于人造黄油、奶油蛋糕之类的西式糕点、烘烤食物,如饼干、薄脆饼、油酥饼、炸面包圈、薯片以及油炸快餐食品,如炸薯条、炸鸡块等食物。

给孩子买小零食,发现好多知名品牌都有精炼植物油。比如现在手这的米多奇的香米饼。 以前自己吃零食,喜欢粗粮、坚果类,健康。但现在发现要想健康,还要仔细地看食品的成分。 但一看,多多少少地都难以让人信任。比如这个植物油。到底是什么?以前看过,觉得不够健康。现在一查,还是要小心些,尽量避开这些东东。 我们大家平常非常喜欢吃的奶油蛋糕、饼干、油酥饼、油炸干吃面、炸面包圈、薯片、巧克力、色拉酱、汉堡、炸薯条、炸鸡块、爆米花等美食,都含有精炼植物油。有的厂家会在包装上明确标出使用了精炼植物油,而很多厂家根本就不标明成分。要知道,精炼植物油里藏有许多反式脂肪酸,这对人体是非常不利的。 精炼会产生反式脂肪酸       美国麦当劳“薯条反式脂肪酸含量增加事件”发生后,反式脂肪酸对人体健康的危害已成为人们关注的焦点。过去人们曾认为饱和脂肪酸是身体健康的大敌,精炼植物油才能保障健康,其实食品中的反式脂肪酸比饱和脂肪酸的危害更大。       最新医学报告指出,反式脂肪酸和饱和脂肪酸一样,都会提高人体胆固醇含量,特别是低密度脂蛋白胆固醇含量。大量摄入可能会引发心血管疾病、胆囊疾病、Ⅱ型糖尿病、老年痴呆症、癌症(如结肠癌、前列腺癌、乳腺癌)等,还会抑制胎儿和幼儿的生长发育、危害男性生殖功能。而且反式脂肪不容易代谢,通常要50多天才能被代谢出体外。       反式脂肪酸是在植物油精炼加工过程中产生的。天然植物油如大豆油、菜籽油等,都是顺式结构的脂肪酸,因其不饱和程度较高,稳定性较差,容易发生氧化、酸败,不易长期保存和储存,故需进行部分氢化加工,以脱除植物油的异味及游离脂肪酸、醛、酮类等有害物质,以改善植物油的品质。但在精炼过程中,通常要在250℃以上高温处理,此过程会产生一定数量的反式脂肪酸。 另外,烹调时过高的油温或反复煎炸也会生成少量反式脂肪酸。         抵制口感的诱惑       氢化后的油脂呈固态或半固态,使食物口感更酥松,这也就是为什么人们普遍觉得一些酥化、松脆的食物特别香、特别可口的原因。人造黄油、煎炸油、起酥油等均属于氢化油脂,它们中的反式脂肪酸含量一般在5~45%之间,最高可达65%。据统计,美国人日常膳食用于烹饪和加工的植物油中80~90%的反式脂肪酸源于植物油的氢化。       要想真正减少反式脂肪酸对人们健康的损害,应该在膳食上减少反式脂肪酸的摄入量,特别是孕妇和乳母,其每天摄入量应低于2g。要避免和减少食用富含反式脂肪酸的各种奶油糕点、油炸小食等,尽量避免高温炒菜或是油炸烹调。       要呼吁人们少吃快餐及高油脂的甜点,尤其是那些经常给孩子买起酥面包、酥脆点心和洋快餐的家长,一定要警惕。           提醒:在超市选购食品时,不妨多留意以下标识: 凡成分中有精炼植物油、氢化植物油、半氢化植物油、人造黄(奶)油、鲜奶奶油、人造植物黄(奶)油、人造脂肪、起酥油或植脂末等字眼,就表示有反式脂肪酸,应尽量少选择这类产品。       结论:食品用油中的橄榄油、核桃油、葵花籽油、棕榈油或玉米油等及氢化程度较低的油中不含或少含反式脂肪酸,可放心食用。但用油量要控制,每天25克左右。 最后补充一点,你可能会在一些食物的配料表里发现有反式脂肪酸的面孔,但是在营养成分表里却写得反式脂肪酸含量为0,这时,你千万不要以为这个食物不含反式脂肪,因为不含反式脂肪酸的全氢化植物油或植脂末等,一定会在配料表里或显眼的位置就告诉你,它不含反式脂肪酸。而像我所说的那种情况是因为我国在2011年10月份发布了国标GB28050- 2011《预包装食品营养标签通则》,其中规定如果食品中的反式脂肪含量低于的话,就可以标注为0。所以食物中“不含反式脂肪”和“反式脂肪酸的标注为0”,也要区分开来。 曾获得诺贝尔奖的反式脂肪酸到底是啥?为什么这么令人深恶痛绝?  2018-07-29 20:32 大家可能经常听到“反式脂肪酸”这个词,摄入过多脂肪肯定是不好的,“反式脂肪酸”近些年更是像毒药一样人人喊打。 2013年美国FDA将“不完全氢化植物油”(最常见的人造反式脂肪酸)移出“一般认为安全”。 2018年5月14日,世界卫生组织宣布,计划在未来5年在世界范围内,全面消除食物中的人造反式脂肪。 反式脂肪,又称为反式脂肪酸,天然的牛乳、人乳都含有这种成分。 不过我们最关注的是人造反式脂肪酸,它主要是脂肪酸经氢化过后的产物,多见于氢化植物油,如人造黄油、代可可脂等。 采用氢化植物油的食物口感更佳,保持期也更长,因此这一技术被广泛用于食品生产、加工过程。 你可能不知道的是,人造反式脂肪酸还有过一段“辉煌”的历史。 欧美人烹饪习惯偏向使用猪油、牛油等固体动物油脂。但后来随着一段时间的物价上涨,原本供应量就不大的动物油脂价格更是水涨船高。 为了寻找价格低廉的固体油脂,商人们把目光移向了大豆。大豆在很长一段时间都是美国主要蛋白质来源,而且 大豆还有个重要的产物——大豆油。 然而欧美人并不喜欢这种液体油脂,于是科学家研究出植物油加氢技术。 方法是在少量的镍、钯、铂或钴等触媒金属的帮助下,将氢加入植物油里产生氢化反应。从而 提高了饱和脂肪酸在植物油中的比重,让植物油可以像动物油一样在常温中变成固体。 而反式脂肪酸,便是这个氢化反应的副产物。 1890年,化学家保罗·萨巴捷率先发明了 氢化技术 ,并因此获得了诺贝尔化学奖。 到了1901年,德国化学家威廉·诺曼则首次发现氢化技术可以将液态的植物油变成固体。 直到1909年,日化巨头宝洁公司买下该专利的使用权,并且开始了疯狂的广告、电视节目轮番轰炸。 再后来其他看到氢化植物油商业价值的巨头们也纷纷加入竞争的行列。 到1957年,人造黄油的销量终于首次超越了天然黄油。 从此这种廉价的固体的植物油真正走进千家万户,成了颠覆传统食品行业概念的产品。 更加如有神助的是当欧美的商人都在疯狂推销人造黄油的时候,美国的心血管疾病发病率逐年上升。 经过美国心脏协会等权威机构认定,动物脂肪中大量的饱和脂肪酸是罪魁祸首。 于是作为不饱和脂肪酸一员的氢化植物油顺理成章的免费加上了一个“健康”的标签。 原来广告中吹牛的“植物更健康”竟然出乎意料的有了权威认定。 本来只是“废物利用”的人造黄油竟然还比天然黄油更健康了。 于是1958年,美国国会也通过了《食品添加剂法案》。 “不完全氢化植物油”也被列入 “一般认为安全” 的清单。 这个“一般认为安全”的概念就是日常饮食中可以放心添加,基本不会危害健康。 食品加工业对于不完全氢化植物油的添加量甚至不需要经过审查。 但幸运的是始终有科学家对反之脂肪酸的安全性抱有怀疑。 一名叫费雷德·库默罗的心血管疾病专家,怀疑 造成血栓、动脉硬化的罪魁祸首,是人工生产出来的反式脂肪酸,而不是普通脂肪。 在几年的小鼠实验中,他就发现喂食人造反式脂肪的老鼠会发生了动脉粥样硬化。 而停止喂食人造反式脂肪一段时间后,动脉粥样硬化便又会消失。 于是早在1957年,他便发表了相关研究论文指出,氢化植物油会导致人体内的胆固醇升高,可能会导致冠心病。可惜当时并没有引起重视。 直到20世界80年代,才出现了对反式脂肪酸引起心血管疾病的“实锤”。 哈佛大学的威利特等,花了8 年的时间,调查饮食中的反式脂肪对10 万名妇女健康的影响。 他们发现, 反式脂肪可以让冠状动脉疾病风险增加50%。 2006年,更有一篇论文汇总分析了目前所有有关反式脂肪酸的研究。 得出“反式脂肪在膳食总能量中的比例每上升2%(相当于每天吃4克),会显著增加冠心病的风险”的结论。 再后来越来越多的研究成果证实了反式脂肪酸对健康的危害。 到了2008年,美国已经基本全面禁止餐饮业添加任何反式脂肪酸。 不过幸运的是由于中国的饮食习惯,反式脂肪酸摄入量远低于欧美国家。毕竟一般的家庭很少见使用固体油脂的习惯。 但要注意的是, 虽然平均摄入量少,但每个人的饮食习惯不同。有很多人都偏好含有反式脂肪酸的食物。 例如 “植脂末”、“奶精”、“植物奶油”、“人造奶油”、“代可可脂” 等等成分都需要引起注意。 此外,我国对反式脂肪含量的管理标准是:100克或100毫升食物中反式脂肪含量低于克即可标示为“0”。 也就是说, 市面上一些标注着“零反式脂肪”的食物也不是完全可以放心大胆的吃。 学会认识一些食品成分表,是避免踩入狡猾商家陷阱的第一步。表 1 :常见植物油中的反式脂肪酸含量( g/100g ) 油脂种类及品牌 食品名称 反式脂肪酸含量(g/100g)* 大豆油 1号**精炼一级大豆油 2号一级大豆油 玉米油 1号植物甾醇玉米油 2号压榨玉米油 调和油 1号食用调和油 2号食用植物调和油 花生油 3号一级花生油 葵花籽油 2号压榨葵花籽油 橄榄油 4号特级初榨橄榄油 黄油 5号含盐黄油 6号植物黄油 动物油脂类 猪油 牛油 奶油 氢化植物油 氢化豆油 氢化棕榈油 氢化软棕榈油 * 检验方法为AOCS Ce 1f-96。 ** 代表产品的不同品牌。下同。 由上述结果可见,除了橄榄油外,其余所有油脂(以每100克计)的反式脂肪酸含量都超过克。氢化后的植物油中反式脂肪酸含量更高,如氢化豆油达到了。氢化后的油脂虽然不会直接用来烹调,但作为一些包装食品的原料,会经常出现在各类食品中,值得引起关注。植物油也含有少量的反式脂肪酸,油脂加工工艺是导致反式脂肪酸含量差异的主要原因。压榨花生油的工艺条件较温和,仅存在少量的反式脂肪酸,而大豆油、玉米油、调和油通常进行高温脱臭,故其反式脂肪酸含量明显高于前者。另外,不同品牌的植物油中反式脂肪酸的含量也有一定差异。   饼干、糕点类反式脂肪酸含量 休闲食品已经成为人们闲暇生活不可或缺的一部分。对7种常见品牌中的19种产品,其中包括两种现制现售品牌的产品中脂肪含量较高的蛋黄派、巧克力派、小熊饼、糕点产品进行分析测定后发现,这些食品中均大都含有反式脂肪酸,有的含量较高,值得引起消费者的注意。详细结果如表2所示。 表 2 :常见休闲食品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂名称 反式脂肪酸含量 11 号 小熊饼植物起酥油 巧克力派-沙沙(巧克力注心饼)代可可脂、植物起酥油 麦淇酪夹心(涂饰蛋类芯饼)植物起酥油、代可可脂 12 号 巧克力味涂饰蛋类芯饼起酥油、氢化植物油 注心蛋黄派起酥油、氢化植物油 巧克力味注心蛋糕起酥油、氢化植物油 13 号 巧克力(代可可脂)香橙味夹心饼干代可可脂(氢化) 14 号 牛角面包氢化植物油 巧克力小圈氢化植物油 15 号 柚子布丁蛋糕 咸味起酥点心 16 号 牛角酥面包 奶油蛋糕未测出 蛋挞 原味奶酪蛋糕 17 号 蓝莓奶酪三角派 巧克力三角派 南瓜三角派 酥片油 快餐食品中的反式脂肪酸含量 国外资料显示,洋快餐食品(薯条、炸鸡)和中国传统油炸食品油条中反式脂肪酸含量与油炸时间和煎炸油反复使用的周期有关。煎炸时间煎炸油反复使用的周期越长,反式脂肪酸的含量越高。本次实验同时采集了西方快餐代表品牌和部分速冻产品样品,具体检测结果见表3。 表 3   快餐食品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 反式脂肪酸含量 21 号 炸鸡翅 炸鸡腿 22 号 鳕鱼条 油条 薯条 23 号 品牌油条 24 号 素三鲜水饺未测出 白菜三鲜水饺未测出 芹菜三鲜水饺未测出 韭菜三鲜水饺未测出 荠菜三鲜水饺未测出 青菜猪肉水饺未测出 白菜猪肉水饺未测出 常用饮品中的反式脂肪酸含量 咖啡、奶茶等饮品是目前含脂肪类似物较高的饮品。试验调查分析了具有代表性5个品牌的产品,检测饮品中固体成分的反式脂肪酸含量。具体反式脂肪酸含量如表4。 表 4   常见饮品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂声称 反式脂肪酸含量 31号奶茶-(香浓原味)氢化植物油 32号奶茶(巧克力味)氢化大豆油 33号咖啡伴侣--植脂末食用氢化植物油 (重测) 34号咖啡奶末食用氢化植物油 未测出(重测) 35号小摊奶茶 芝士、糖果和调味酱 芝士、糖果和调味酱的消费量也在逐年增高,试验调查分析了具有代表性6个品牌的产品,检测这类产品中的反式脂肪酸含量。具体反式脂肪酸含量如表5。 表 5   常见芝士、糖果和调味酱中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂声称 反式脂肪酸含量 芝士片 41号原味香浓奶味黄油 42号原味芝士片黄油 糖果 43号牛奶巧克力夹心太妃糖氢化植物油、代可可脂 44号代可可脂巧克力氢化植物油 沙拉酱 45号沙拉酱植物油 46号巧克力花生酱氢化植物油

如何用手机充Q点

植物油中脂肪酸论文研究

虽然我不能帮你写(其实知道的会员也不会真的自己给你写,你觉得你会给写吗?!),但我还是建议你去论文网站下载吧,应该比在这里强...

危害大不大不清楚,不过那么多人都在用,也没见谁出现过啥问题!

有害目前,许多燃料油添加都是改性后的工业甲醇。甲醇易燃、挥发度高,其蒸气与空气能形成爆炸混合物,浓度达到6-35%会产生爆,如果残留在燃料油里很容易挥发,对人体产生严重的损害。1、甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应。2、甲醇在体内不易排出,会发生蓄积,在体内氧化天生甲醛和甲酸也都有毒性,破坏脑神经细胞,产生永久性损害,甲酸进入血液后,会使组织酸性越来越强,损害肾脏、导致肾衰竭。3、由于甲醇及其代谢物甲醛、甲酸,在眼房水和眼组织内含量较高,致视网膜代谢障碍,易引起网膜细胞、视神经损害及视神经脱髓鞘,破坏视觉神经细胞,最初表现为眼前黑影、闪光感、视物模糊、眼球疼痛、畏光、复视等。严重者视力急剧下降,可造成持久性双目失明。4、工业甲醇中的杂醇油摄入后会导致眩晕、头痛,对中枢神经系统抑制。患者常有头晕、头痛、眩晕、乏力步态瞒珊、失眠、表情淡漠、意识浑浊等症状。重者出现意识朦胧、昏迷及癫痫样抽搐等。严重口服中毒者可有锥体外系统损害的症状或帕金森氏综合征。5、皮肤长期接触可引起皮肤脱脂、干燥、皲裂、皮炎。6、甲醇对呼吸道粘膜有强烈的刺激作用,患者有恶心、呕吐、上腹痛等症状、可并发肝脏损害。少数病例伴有心动过速、心肌炎、S-T段和T波改变,急性肾功能衰竭等。7、甲醇在体内抑制某些氧化酶系统、抑制糖的需氧分解,造成乳酸和其他有机酸积聚以及甲酸累积,而引起酸中毒。其症状为二氧化碳结合能力下降严重者出现紫绀,呼吸深而快呈Kussmaul呼吸8、人吸入空气中甲醇浓度分钟,可致中毒。一次口服15ml或2天内口服累积达124ml-164ml,可致失明,有报告一次口服30ml可致死。严重甲醇急性中毒会出现剧烈头痛、恶心、呕吐、视力急剧下降、甚至双目失明、意识朦胧、谵妄、;抽搐和昏迷。最后可因呼吸衰竭而死亡。

如何用手机充Q点

关于脂肪的论文文献怎么写

有导师指定题目,或者按自己找的题目,定好了题目就是查找资料,按老师给的格式写即可。论文一般由题名、作者、目录、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢。

运动与营养调配摘要:根据青少年运动员的生理特点和耐力性项目的运动供能系统,提出耐力性青少年运动员的营养调配要注意:(1)保持每天体内能量的代谢平衡;(2)蛋白质的大量摄入和纤维素的合理调配;(3)在比赛期要高糠、高碳水化合物的膳食;(4)应加强对维生素、矿物质的摄入;(5)对脂肪的摄入要适量。关键词:耐力性项目青少年运动员营养调配营养物质是构成机体组织的物质基础,是运动员在比赛中进行力量、速度、耐力及技、战术发挥的物质保证,可以说,运动员的训练很重要,但运动后的恢复及所实施的合理营养更重要,所谓合理营养,是指对人体提供符合卫生要求的平衡膳食,膳食的质和量要满足人体的生理、生活、劳动的需要。对于运动员来讲,合理的营养是运动员取得优异运动成绩的重要因素之一,只有讲究合理营养,才能促进运动员身体的健康发展,消除运动性疲劳,提高运动能力,取得优异的成绩。通过调查青少年优秀耐力性项目的运动员在训练周期中的膳食状况及营养需求,同时,摸索出一套科学合理简便实用又符合青少年耐力性运动项目特点的营养配餐方法、提供依据,仅供同行参考。1运动员应注意每天体内能量的代谢平衡能量是机体维持生命和进行日常活动的保证,运动时体内代谢增强,机体所需的能量大大增加,因此运动员能量的补充,除了满足机体的正常需要外,还要使运动员能保持充沛的精力,并有一定的热能储备。在运动训练和比赛中,耐力性项目的运动员的能量主要来源于体内肌糖原和肝糖原的有氧分解,但能量的储备也不能过多,否则将引起体脂增多,身体发胖,这样对运动不利。因此,在补充能量时,既要考虑饮食中食物的氧热价,还要注意运动员每天训练的能量消耗。据统计,从事耐力性项目的运动员每天的能量消耗约为1674KJ~1840KJ范围内,青少年正处在长身体的阶段,合成代谢大于分解代谢,在运动员每天的膳食调配中,要根据的运动强度和运动量的不同所消耗的能量的不同,来安排饮食的结构和能量的补充。2运动员在比赛期要注意对糖的摄入耐力性运动项目的主要供能是糖和脂肪的有氧氧化供能,在比赛期注意高糖膳食可以有效地提高血糖和肌糖,为运动提供足够的能源储备。因此,耐力运动项目其特点是运动时间长、运动强度较大、运动负荷总体很大、能量消耗多。所以如何有效地供给和补充能量,来满足机体的能量需要和弥补能量亏损,是关系运动能力的根本性的问题。耐力运动一般处于70%~90%最大摄氧量范围内,属于亚极量强度运动。这类运动肌糖原利用的速率相当高,糖原消耗量大。因此,有限量的肌糖原储备量是这类运动的限制因素,运动至力竭的时间与运动前肌糖原储量成比例。肝脏释放葡萄糖对运动能力的影响也反映在耐力运动上,与维持运动中血糖水平及中枢神经系统的供能有关。血糖是长时间运动时骨骼肌可利用的重要肌外燃料。在亚极量运动中,随运动时间的延长,血糖利用占肌肉总能耗的比例上升。为补偿血糖的消耗,肝糖原分解和糖异生作用增强,肝脏释放葡萄糖加速。一旦肝糖原耗竭引起血糖水平下降而使运动肌供能不足,将导致外周疲劳,同时中枢神经系统因血糖供能缺乏而产生中枢疲劳。所以,肝糖原储量对维持长时间运动时血糖浓度起重要作用。利用补糖来提高体内的糖原储量,降低运动时糖原利用速率,加快运动后糖原恢复,对耐力能力的提高由为重要。3运动员要注意每天热能及三大营养物质摄入热能是构成肌体的重要物质,青少年在青春期更要注意热能及三大物质的摄入,有研究表明,运动员的热能摄入范围为每人每日1716~4027 kcal,除青少年男子运动员热能接近推荐值的90%。这样,才可能使运动员获得一定的瘦体重,增加运动员的肌肉的力量和耐力。一般普通成年人蛋白质的推荐摄入量是每天每公斤体重,而对于成年运动员则需要摄入每天每公斤体重的蛋白质,比较适宜,对于青少年来说,其余项目运动员均偏低。碳水化合物有助于运动员发挥最佳运动能力,运动员若想摄取平衡,耐力性青少年运动员15~41(%),脂肪20~则要大于这个数值。因此,青少年运动员首先要在食物的选择上进行调整,既多选择水果、蔬菜、全谷食品,而少吃高脂肪的快餐食品,营养调查显示,青少年运动员的饮食结构中,蛋白质和碳水化合物的摄入不足、而脂肪的摄入过高。耐力性青少年运动员膳食中蛋白质、碳水化合物和脂肪占总能量的比例应该分别是12%~15%、55%~60%和25%~30%。另外,对于青少年来说,膳食中一个经常忽略的成分是膳食纤维(纤维素)。对于2岁以上的孩子,每日膳食纤维的摄入量为年龄+5g,其安全范围为年龄+5g~年龄+10g。有一半的青少年每天摄入的膳食纤维达不到安全范围的最低量,膳食纤维含量丰富的食物有水果、蔬菜、全谷食品。由于膳食纤维可在结肠中保持较多的水分,当吃纤维素食物时,应该多增加水和水果的摄入量。青少年运动员需要对食用的“普通食物”就可以促进肌肉生长和提高运动能力产生足够的信心。4运动员应加强对维生素、矿物质的摄入通过青少年运动员的营养调查显示,有两种重要的矿物质———铁和钙严重缺乏。人们之所以强调这两种矿物质,不仅因为它们对于健康比不可少,而且因为它们对提高运动能力也非常重要。钙对骨骼的发育十分关键,骨骼发育良好,有利于进入成年后期预防骨质疏松。铁缺乏可引起贫血,而贫血则会降低血液运输氧的能力,当机体铁的储备降低是,即使没有引起明显的贫血,也有可能干扰肌肉细胞的氧化代谢过程。抑制识别能力和动机。这些由于铁、钙的摄入不足而引起的机体的不良反应表明,运动员必须合理的膳食以保证其储备。维生素在体内主要具有调节功能,在物质代谢的过程中起着重要的作用,运动时人体的代谢旺盛,激素分泌增加,再加上大量的排汗对维生素的损失较多,因此,需要及时的补充维生素。运动员对各种维生素的需要量除与运动量、机体状态及营养水平有关外,还与运动项目有关。一般运动员每日需VA约2mg、VB2约4mg、VPP约25mg~30mg、VB1约6mg~10mg、VC100mg~ 300mg、VD约2mg、VE约10mg[5]。处于青春期的运动员有必要认识到膳食多样化的重要性,这样才能达到各种矿物质的摄入,矿物质在人体内除了参与构成机体的组织外,还具有调节生理功能的作用,耐力性项目的青少年运动员对矿物质的需求量比常人更多,因为大强度的训练和比赛,使得大量的矿物质随汗液丢失,若不及时补充,就会引起机体的代谢紊乱,影响运动成绩的发挥和运动能力的提高,如果机体中氯化钠缺乏是就会出现肌肉无力,消化不良,食饮不佳,甚至有头晕、恶心和肌肉痉挛等症状;肌体中缺乏钾,糖的利用受限,ATP合成与氧化磷酸化过程受干扰,肌肉的血流量减少,导致肌肉无力,心律紊乱等。因此,对于从事耐力性项目的青少年运动员进行一般训练时,每日需NaCl为5~17g、P为2~、Ca为1g、Fe为15mg。但进行大运动量时每日需要NaCl为20~25g、P为3~、Ca为、Fe为20~25mg。这种由于运动而引起任何一种矿物质的损失都可因排汗和尿量的增加而增加,为此,维持青少年运动员机体内矿物质的平衡是一个必须注意的问题。5运动员对脂肪的摄入要适量脂肪是运动员长时间运动的主要能源,脂肪产热量高,体积小,符合食物浓缩的要求,但脂肪氧化时耗氧量高,在负有氧债的运动时,不能被有效的利用,同时还会增加体内的酸性代谢产物。因此,耐力性青少年运动员膳食中脂肪不宜过多,以免使人长时间产生饱腹感而减少食量,影响对其他营养素的摄入,但也不能过少,过少的脂肪摄入将会影响脂溶性维生素的吸收和利用,相对来讲,从事耐力性项目的运动员对脂肪的需要量要比其他运动员要多,一般每日每公斤体重需脂肪为左右,在寒冷条件下可以适量增加,在炎热环境下可以适量减少。在膳食中,如果25%~30%的能量来自脂肪,那么约每天摄入65左右的脂肪,其中应(该大部分是不饱和脂肪酸。有益于健康的不饱和脂肪酸主要来自植物油料作物和鱼类,饱和脂肪和动物脂肪的摄入应该低于或等于膳食总能量的10%。青少年运动员注意合理平衡的膳食制度越早,对健康越有利。过多的脂肪有可能造成肥胖,成年后就可能发生心血管疾病和代谢性疾病。所以青少年运动员合理地限制伙食中的脂肪的含量,使脂肪含量不要超过膳食总能量的30%。参考文献:[1]体育保健学编写组.体育保健学.北京.高等教育出版社,1997,7、29~47、53~55、57~58.[2]Seen, . Nueritien for young Athletes. Dimension, 1998,[3]李芳滋.学校卫生学.兰州.兰州大学出版社,1993,[4]张琳.运动项目特点与体型.体育科学,1994,14(2):52~59.[5]邓树勋,洪泰田,曹志发主编.运动生理学.北京.高等教育出版社,1999,192~193.[6]韩晓丽,等.运动于补糖研究进展[J].体育与科学,2000(2):28-32.[7]陈吉棣.运动营养学[M].北京:北京医科大学出版社,2002:37-39.[8]陈吉棣.营养与体能和健康的研究进展[J].体育科学,1998(3):[9]何隽,等.运动与补糖[J]沈阳体育学院学报,2004(2)[10]劳利红.柔道运动的供能特征及专项耐力训练[J].体育科技,1999(1):32-35[11]魏守刚,等.糖与耐力运动[J]山东省体育科研,1996(1).

脂类代谢与人体健康 脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。 一、脂类的消化与吸收 1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。 2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。 二、脂肪的代谢 1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。 脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。 2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。 3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。 4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。 三、类脂的代谢 1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。 2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。 四、血浆脂蛋白代谢 1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。 表1 正常成人空腹时血浆中脂类的组成和含量脂类物质 nmol/L mg/dl 脂类总量 4~7(g/L) 400~700甘油三酯 ~ 10~160胆固醇总量 ~ 150~250磷 脂 ~ 150~250游离脂肪酸 ~ 8~25血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。 血脂的来源与去路如下:2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。 五、脂类代谢紊乱引起的常见疾病 1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。 表2 各型高脂蛋白血浆脂蛋白及脂类含量变化类型 血浆脂蛋白变化 血脂含量变化 发生率 Ⅰ 高乳糜微粒血症 甘油三酯升高 罕见 (乳糜微粒升高) 胆固醇升高 Ⅱa 高 脂蛋白血症 甘油三酯正常 常见 (低密度脂蛋白升高) 胆固醇升高 Ⅱb 高 脂蛋白血症 甘油三酯升高 常见 高前 脂蛋白血症 胆固醇升高 (低密度脂蛋白及极 低密度脂蛋白升高 Ⅲ 高 脂蛋白血症 甘油三酯升高 较少 高前 脂蛋白血症 胆固醇升高 (出现“宽 ”脂蛋白 低密度脂蛋白升高 Ⅳ 高前 脂蛋白血症 甘油三酯升高 常见 (极低密度脂蛋白升高) 胆固醇升高 Ⅴ 高乳糜微粒血症 甘油三酯升高 高前 脂蛋白血症 胆固醇升高 不常见按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。 高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。 2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。 3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。 4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。 近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。 5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。 脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。

皮下脂肪积累过多会导致肥胖,一血液中胆固醇的增高又会导致动脉硬化、冠心病等疾病。因此,常常一提到脂类,人们就会连连摇头。的确,体内脂肪过多是有害的,但脂类毕竟是人体必不可少的物质,对人体具有重要的生理意义。①体贮存能量和供给能量的主要场所。体脂主要分布于皮下、小肠膜、大肠膜及一些内脏器官的脂肪组织中,它为人体各种运动提供后备能量,所以通常被称作“脂库”。为什么说是提供后备能量呢?这是因为,人体消耗的能量首先来自糖元,只有当血液中的糖元容量减少到一定水平后,才开始利用体脂;但如肌肉和肝脏中的糖元已经能满足需要,则体脂是不轻易被动用的。②脂肪能保护内脏免受外界冲击。皮下和内脏器官周围都存在大量脂肪,这些脂肪成为内脏和外界的天然屏障,能缓解外界冲击。同时脂肪还可以起到固定内脏器官,防止其下垂的作用。③脂肪对保护人体体温有重要意义。人体体温必须常年维持在37℃左右,过高或过低的体温都会造成新陈化谢的紊乱,影响人体正常的生理功能。而脂肪传导热的能力非常弱,具有保持体温的作用。④一些人体必须的维生素和微量元素是非水溶性的,它们只有溶解在脂肪中才会被人体吸收利用。如果没有脂肪,这一些营养物质就得不到利用,只能白白浪费掉。⑤脂肪是人体各类腺体分泌物的重要源泉,特别是它能促进胆汁和腺岛素的分泌。为人体的正常生理功能作出重要贡献。⑥脂肪中所包含的类脂(胆固醇、磷脂)是人体细胞膜和大脑组织的重要组成成分,对人体细胞的正常功能和刺激的传递,都有重要意义。

关于脂肪酶的论文的参考文献

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

材料与仪器TG16高速离心机(19310 g,长沙英泰仪器有限公司);UV?2000紫外可见分光光度计(尤尼柯上海仪器厂); vertex 70型红外光谱仪(德国Bruker公司);AM?3250B型磁力搅拌恒温器(天津奥特赛恩斯仪器有限公司)。介孔分子筛SBA?15的合成利用表面活性剂Pouronic P123(EO20PO70EO20, 美国Aldrich公司)为模板剂,以浓HCl( 35%~37%)为催化剂,通过对正硅酸乙酯(Si(OC2H5)4, TEOS, ,日本Junsei Chemical公司)的分解和硅缩聚反应后而得到。编号Lu001和LLSD1的介孔分子筛合成方法基本相同,原料量略有不同,二者的BET比表面积762 m2/g,孔容 cm3/g,孔径 nm,壁厚 nm。柱状假丝酵母脂肪酶(candida rogusa lipase, CRL)购自日本Amano酶技术公司;BCA蛋白定量试剂盒购自美国Pierce公司。实验用水为二次蒸馏水。 傅立叶变换红外(FT?IR)测试样品和KBr在115 ℃下抽真空烘干10 h。将300 mg KBr和 mg样品在研钵中混合研磨成细粉后压片,干燥后立刻置于红外光谱仪的石英原位池中测试。仪器分辨率为2 cm-1,扫描波数范围4000~400 cm-1,扫描128次。 CRL在SBA?15上的固定化将CRL磷酸盐缓冲溶液(pH )以3000 r/min离心15 min,收集上清液,得原酶溶液。将适量SBA?15放入原酶溶液中,在15 ℃水浴和150~200 r/min下搅拌吸附21 h,再以10000 r/min下离心15 min,收集上清液为吸余液。用磷酸盐缓冲溶液清洗分子筛4次以洗脱疏松附着的酶,洗脱液再以10000 r/min离心15 min,取出上清液为清洗液。测定原酶溶液、吸余液和清洗液的酶蛋白含量,根据物料衡计算得出酶蛋白固定量(immobilized amount of enzyme protein, mg),取单位质量分子筛的酶蛋白固定量为载酶量(enzyme loading, mg/g)。 固定化CRL的泄漏将上述载酶SBA?15移入70 mL磷酸盐缓冲溶液中,在15 ℃水浴、以150~200 r/min搅拌并定时取样,样品再以10000 r/min离心15 min,分析上清液中的酶蛋白泄漏量。 蛋白质定量方法分别用单波长紫外分光光度法、双波长紫外分光光度法和BCA法测定样品蛋白质含量。单波长紫外法公式为:C(protein)(g/L) =F×A280×D/d,式中A280为280 nm波长处吸光度,D为溶液稀释倍数,d为石英比色皿厚度(cm),F为校正因子。双波长紫外法Warburg?Christian公式为:C(protein)(g/L)=; Lowry?Kalckar公式为:C(protein)(g/L)=,式中A260和A280分别为260 和280 nm紫外波长下的吸光度。BCA法参照美国Pierce公司蛋白定量方法测定。 分 析 化 学第37卷第8期尚 雁等:介孔分子筛SBA?15的脂肪酶固定量分析测定 蛋白质定量方法对比图1表明不同浓度CRL溶液在260~280 nm均有一个较强的吸收峰,该吸收峰为蛋白质芳香族氨基酸的特征峰,用于蛋白质含量测定。将粗酶浓度为6 g/L的CRL溶液进行不同倍数稀释,得到一系列相对浓度已知的酶溶液,分别用单波长和双波长紫外法以及BCA法测定酶浓度,验证所测浓度比例关系是否符合其相对浓度,由此得出各检测方法的准确度。图2结果说明BCA法测定结果与样品稀释后的相对浓度最接近,双波长紫外法测定值与BCA法接近,单波长法测定结果远高于BCA法和双波长紫外法。由表1中的相对浓度计算结果可知,BCA法的相对误差最小,单波长和双波长紫外法的相对误差较大。这是因为BCA法的原理是以工作试剂CuSO4中的Cu2+螯合蛋白质分子,发生显色反应测试吸光度,因此抗干扰能力较强,准确度较高。紫外分光光度法操作步骤少,简单快捷,不用显色试剂,不消耗样品。但是,直接检测光密度值受溶液中杂质干扰影响较大,误差较大。为考察介孔分子筛对吸光度的影响,分别在3 mL蒸馏水中加入, 和 mg SBA?15(编号Lu001),以蒸馏水为参比样,测定其吸光度,并计算出可能对蛋白质测定产生的浓度值偏差。表2说明SBA?15有明显紫外吸收。为此,本实验的样品溶液以10000 r/min离心,以消除介孔分子筛对吸光度的干扰。表1 不同方法测定蛋白质浓度的结果表2 SBA?15对吸光度的影响 表3为不同定量方法测定的 SBA?15(编号为Lu001)对CRL的固定量,3次平行实验的初始粗酶浓度均为6 g/L,SBA?15载体用量均为 g,双波长紫外法测定结果略高于BCA法; 单波长紫外法测定结果远高于双波长法和BCA法。表3还说明BCA法的精密度高于单波长与双波长紫外法,这是因为BCA法靠显色反应测试吸光度,灵敏度较高,且介孔分子筛不参与显色反应,抗干扰能力较强,重现性好,更适合介孔分子筛载体的酶固定量和酶泄露量的测试;紫外分光光度法受溶液中杂质和残留介孔分表3 SBA?15上的CRL固定量及载酶量◆: 固定量(amount of immobilized protein); ◇: 载酶量(enzyme loading).子筛干扰较大。由于双波长紫外法测定的酶固定量结果与BCA法较接近,若实验条件有限或者为了不消耗样品且干扰因素较少,可使用双波长紫外法来代替BCA法测定酶固定量,每个样品中的介孔分子筛干扰可通过物料衡算而抵消。 不同初始酶浓度时BSA?15载体上的酶固定量利用BCA法测定不同初始酶浓度条件下LLSD1对CRL的固定量,图3表明当酶浓度较低时,SBA?15载体对CRL的固定量和载酶量随酶浓度的增加而线性增加,但是当酶蛋白浓度达到约 g/L(粗酶浓度约1 g/L)时固定量和载酶量达到平稳,最大载酶量为 mg/g。 两种SBA?15载体的酶固定量在初始酶浓度均为2 g/L、分子筛用量均为 g相同条件下,LLSD1和Lu001对CRL的固定图4 LLSD1(a)和Lu001(b)的SEM电镜照片 SEM images of LLSD1(a) and Lu001(b)量分别为和 mg;载酶量分别为和 mg/g。可见,LLSD1的固定量及载酶量远大于Lu001。图4为LLSD1和Lu001的SEM电镜照片,可见二者外观形状基本相同,均属于SBA?15的传统形状[9],二者大小也无明显区别。图5是LLSD1和Lu001的FT?IR谱图,从图中可看出LLSD1表面上的羟基基团数量大于Lu001。由于酶的吸附是酶和介孔材料表面上的羟基通过氢键作用完成的,介孔分子筛表面上的羟基通过氢键作用可以促进对酶的吸附[10]。因此, 图5 Lu001(1)和LLSD1(2)的FT?IR谱图 FT?IR spectra of Lu001(1) and LLSD1(2)两种介孔分子筛对酶固定量差异很可能与介孔分子筛的羟基含量有关,具有较高羟基含量有利于固定更多的CRL。 SBA?15固定化酶的泄漏量固定化酶容易“脱落”到水相中成为游离酶,即“泄漏”[11]。图6表明Lu001固定化CRL在缓冲溶液中100 h后的泄漏率为,LLSD1的泄漏率为,泄露量均较低,说明SBA?15是良好的酶固定化载体。泄露率较低可能与SBA?15孔径大小有关。研究[3,12]表明, 当介孔材料的孔径与酶分子大小相适应时,固定化酶的稳定性较好。Lu001和LLSD1的孔径均为 nm,假丝酵母脂肪酶的动力学直径约为5 nm,二者大小较匹配,使酶分子恰好固定于孔内而不易发生泄露。◆,■,▲,● 为泄露量(leakage); ◇,口,△,○为泄露率(leakage rate),其中◆, ◇ : g LLSD1, 载酶量(enzyme loading) mg/g; ■,口: g LLSD1, 载酶量(enzyme loading) mg/g;▲, △: g Lu001, 载酶量(enzyme loading) mg/g;●,○: g Lu001, 载酶量(enzyme loading) mg/g。 1 Lei C, Shin Y, Liu J, Ackerman E J. Journal of the American Chemical Society, 2002, 124: 11242~112432 Lei J, Fan J, Yu C Z, Zhang L Y, Jiang S Y, Tu B, Zhao D Y. Microporous and Mesoporous Materials, 2004, 73: 121~1283 Essa H, Magner E, Cooney J, Hodnett B K. Journal of Molecular Catalysis B: Enzymatic, 2007, 49: 61~684 Rosales?Herńandez M C, Mendieta?Wejebe J E, Correa?Basurto J, Vázquez?Alcantara J I, Terres?Rojas E, Trujillo?Ferrara J. International Journal of Biological Macromolecules, 2007, 40: 444~4485 Gao Bo(高 波), Zhu Guang?Shan(朱广山), Fu Xue?Qi(付学奇), Xin Ming?Hong(辛明红), Chen Jing(陈 静), Wang Chun?Lei(王春雷), Qiu Shi?Lun(裘式纶). Chem. J. Chinese Universities(高等学校化学学报), 2005, 26(10): 1852~18546 Humphrey H P Y, Wright P A, Botting N P. Microporous and Mesoporous Materials. 2001, 44?45: 763~7687 He J, Xu Y, Ma H. Journal of Colloid and Interface Science, 2006, 298: 780~7868 Xu Jian(徐 坚), Yang Li?Ming(杨立明), Wang Yu?Jun(王玉军), Luo Guang?Sheng(骆广生), Dai You?Yuan(戴猷元). Journal of Chemical Industry and Engineering(China)(化工学报), 2006, 10(57): 2407~24109 Zhao D Y, Feng J L, Huo Q S, Nicholas M, Fredrickson G H, Chmelka B F, Stueky G D. Science, 1998, 279: 548~55210 Zheng L Y, Zhang S Q, Zhao L F, Zhu G S, Yang X Y, Gao G, Cao S G. Journal of Molecular Catalysis B:Enzymatic, 2006, 38: 119~12511 Zhu Y F, Shen W H, Dong X P, Shi J L. Journal of Materials Research, 2005, 20: 2682~269012 Diaz J F, Balkus K J. Journal of Molecular Catalysis B: Enzymatic, 1996, 2: 115~126

脂类代谢与人体健康 脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。 一、脂类的消化与吸收 1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。 2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。 二、脂肪的代谢 1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。 脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。 2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。 3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。 4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。 三、类脂的代谢 1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。 2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。 四、血浆脂蛋白代谢 1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。 表1 正常成人空腹时血浆中脂类的组成和含量脂类物质 nmol/L mg/dl 脂类总量 4~7(g/L) 400~700甘油三酯 ~ 10~160胆固醇总量 ~ 150~250磷 脂 ~ 150~250游离脂肪酸 ~ 8~25血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。 血脂的来源与去路如下:2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。 五、脂类代谢紊乱引起的常见疾病 1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。 表2 各型高脂蛋白血浆脂蛋白及脂类含量变化类型 血浆脂蛋白变化 血脂含量变化 发生率 Ⅰ 高乳糜微粒血症 甘油三酯升高 罕见 (乳糜微粒升高) 胆固醇升高 Ⅱa 高 脂蛋白血症 甘油三酯正常 常见 (低密度脂蛋白升高) 胆固醇升高 Ⅱb 高 脂蛋白血症 甘油三酯升高 常见 高前 脂蛋白血症 胆固醇升高 (低密度脂蛋白及极 低密度脂蛋白升高 Ⅲ 高 脂蛋白血症 甘油三酯升高 较少 高前 脂蛋白血症 胆固醇升高 (出现“宽 ”脂蛋白 低密度脂蛋白升高 Ⅳ 高前 脂蛋白血症 甘油三酯升高 常见 (极低密度脂蛋白升高) 胆固醇升高 Ⅴ 高乳糜微粒血症 甘油三酯升高 高前 脂蛋白血症 胆固醇升高 不常见按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。 高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。 2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。 3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。 4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。 近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。 5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。 脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。

酶法双甘酯的制备论文字数:19829,页数:36摘 要 双甘酯(Diacylglycerol, DG)是甘三酯(Triacylglycerol, TG)中的一个脂肪酸被羟基取代的结构脂质。双甘酯是天然植物油脂中的微量成分及体内脂肪代谢的内源中间产物,它是公认安全(GRAS)的食品成分。近年来的研究表明, 双甘酯具有许多独特的生理作用和物化性质, 可广泛地应用于食品、医药、化妆品及其他化工产品, 是一类很有开发前景的新型化工原料。本论文主要对双甘酯的酶促甘油醇解、水解以及超声波外力场辅助酶促水解制备进行了研究。 首先研究了酶促棕榈油甘油醇解反应制备双甘酯,研究表明:在搅拌、棕榈油与甘油底物摩尔比为2:1、加酶量为油脂质量的8%、甘油加水量0%、反应温度42℃的条件下,酶促甘油解制备双甘酯反应较慢,反应30小时,DG的质量分数才达40%。试验同时发现,体系中游离脂肪酸生成速率较快,尤其在前12小时。体系中没有加入水,参与反应的水主要源于酶中以及油脂中已有的水分,这二者的水分含量均不高,在此情况下,水解反应却较快,这说明,酶催化水解反应的能力很强。既然酶催化水解易于进行,因此,下文进行了酶促水解制备DG的研究。 试验显示,在机械搅拌条件下,酶促水解的最优条件为:底物摩尔比(水∶棕榈油)为,加酶量为油脂质量的6%,反应温度42℃,反应时间4h,产物中双甘酯的含量达到。该试验表明,酶促水解反应比甘油醇解反应快得多,且双甘酯产率高。 为了进一步加快反应速率,本文在超声波作用下,对脂肪酶催化棕榈油水解制备双甘酯进行了试验。试验结果表明:在底物摩尔比(水∶棕榈油)为,加酶量为油脂质量的6%,反应温度为37℃,超声功率为50W,仅需反应2h,产物中双甘酯的含量即达到。关键词:双甘酯 脂肪酶 甘油醇解 水解 超声波 The Preparation of Diglyceride catalized by Enzyme Abstract: Diglyceride (DG) is a kind of structured lipid that hydroxyl replace acyl in the sn-1, 2, 3 position of triglyceride (TG). DG is a natural minor component of various edible oils and the endogenetic intermediate metabolite of lipid. Moreover, it is generally recognized as safe (GRAS) by FDA. Recent investigations have shown that diglyceride can be extensively applied to food, pharmaceuticals, cosmetics and other chemical products due to its specific physiological actions and physico-chemical properties. Diglyceride is one kind of new and promising chemical product. In this paper, the preparation of DG in different conditions were studied. Firstly, the preparation of DG by enzymatic glycerine alcoholysis of palm oil was studied. The research indicated that the DG content in the yield was only about 40% under the following conditions: mechanical agitation, ratio of palm oil to glycerol 2:1,lipase content 8%, water content of glycerol 0%,reaction temperature 42℃ and reaction time 30h. At the same time,the results show that the ability of enzymatic hydrolysis reaction is strong compared to the enzymatic glycerine alcoholysis reaction. Secondly, the preparation of DG by enzymatic hydrolysis of palm oil under the mechanical agitation condition was studied. The optimum reaction conditions were got by single-factor experiments and they are as follows: ratio of palm oil to water 1∶, lipase content 6%, reaction temperature 42℃, reaction time 4h. The DG content in the yield was under the above conditions. Thirdly, the preparation of DG by enzymatic hydrolysis of palm oil in the ultrasonic field were studied. The optimum reaction conditions are as follows: ratio of palm oil to water 1∶, Lipase content 6%, reaction temperature 37℃, Ultrasonic power 50W and the reaction time 2h. The DG content in the yield was under the above words: Diacylglycerol(DG);Lipase;Glycerine Alcoholysis;Hydrolysis;Ultrasound 目 录1 绪论 1 前言 1 双甘酯的组成、结构与功能 1 双甘酯的组成与结构 1 双甘酯的生理功能 2 双甘酯的应用 3 双甘酯在食品添加剂中的应用 3 双甘酯在医药中的应用 4 双甘酯在化妆品中的应用 4 其他应用 4 双甘酯的各种制备方法 5 双甘酯的化学制备方法 5 双甘酯的酶法制备 6 双甘酯各种制备方法的特点分析 8 双甘酯的分析方法 9 超声波及其在酶促反应中的应用 10 超声波 10 超声波工作原理 11 超声波在酶促反应中的应用 12 课题研究内容 132 测定方法 14 样品制备 14 羟基值的测定 14 乙酰化试剂的配置 14 测定步骤 14 单甘酯的含量测定 14 游离甘油含量测定 15 游离脂肪酸的含量测定 15 双甘酯的含量 16 甘三酯的含量 163 酶促棕榈油甘油醇解、水解制备双甘酯 17 试验材料与仪器 18 试验材料 18 试验仪器 18 试验方法 18 酶促甘油醇解反应 18 酶促水解反应 19 结果与讨论 19 酶促甘油醇解反应影响因素 19 酶促水解反应影响因素 20 (1)反应时间对双甘酯产率的影响 20 (2)加酶量对双甘酯产率的影响 20 (3)反应温度对双甘酯产率的影响 21 (4)底物摩尔比对双甘酯产率的影响 22 结论 234 超声场中酶促水解制备双甘酯 24 试验材料与仪器 24 试验材料 24 试验仪器 24 试验方法 25 结果与讨论 25 超声功率对双甘酯产率的影响 25 超声场与机械搅拌条件对比 26 结论 275 结论与展望 28 结论 28 存在的问题与展望 28参考文献 29Abstract 31 致 谢 32以上回答来自:

  • 索引序列
  • 有关玉米脂肪酸的论文文献
  • 有关反式脂肪酸检测的论文
  • 植物油中脂肪酸论文研究
  • 关于脂肪的论文文献怎么写
  • 关于脂肪酶的论文的参考文献
  • 返回顶部