首页 > 学术期刊知识库 > 论文矩阵不等式的开题报告

论文矩阵不等式的开题报告

发布时间:

论文矩阵不等式的开题报告

论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比较分析法等等。不过要看你是什么专业,专业不一样运用的研究方法是不一样的。

毕业论文研究方法怎么写,为什么很难下笔

(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目对宠物进化模型,宠物行为模型模型的整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

广义逆矩阵论文开题报告

如下:

线性方程组:A(mxn)X = b ------ (1)

A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成

(A'A)X = A'b - - - - (2)

(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。

(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

思想:

广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。

1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。

线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

注:下文中^后面的内容为上标广义逆矩阵是对逆矩阵的推广。 若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。若A是奇异阵或长方阵,Ax=b可能无解或有很多解。若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。存在一个唯一的矩阵M使得下面三个条件同时成立:(1) AMA=A;(2)MAM=M;(3)AM与MA均为对称矩阵。这样的矩阵M成为矩阵A的Moore-Penrose广义逆矩阵,记作M=A(^+).注:^后面的内容为上标 1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A^+。当A非奇异时,A^(-1)也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组Ax=b的最小二乘解中,x=A^(-1)b是范数最小的一个解。若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X; (3) AX=XA。 广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。.格雷维尔、.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在唯一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。

广义逆矩阵的计算方法大致可分为三类:以满秩分解和奇异值分解为基础的直接法,迭代法和其他一些常用于低阶矩阵的非凡方法。以A+的计算为例。若A是一个秩为r的m×n阶非零矩阵,记作(图6),,有满秩分解A=F·G,其中(图7),则(图8),即将广义逆矩阵的计算化为通常逆矩阵的计算。常用LU分解和QR分解等方法实现满秩分解,然后求出A+。若A有奇异值分解A=UDV*,其中U、V为m阶和n阶酉矩阵,(图9)是m×n阶矩阵,∑是r阶对角阵,对角元(图10)是A的r个非零奇异值(AA*的非零特征值的平方根),则A+=VD+U*,其中(图11)是n×m阶矩阵。也可用豪斯霍尔德变换先将 A化为上双对角阵J0=P*AQ,然后再对J0使用QR算法化为矩阵D=G*J0h,于是A=(PG)D(Qh)*,故A+1=(Qh)D+(PG)*。设λ1是AA*的最大非零特征值,若0<α<2/λ1,则计算A+的一个迭代法是x0=αA*,xn+1=(2I-Axn),当n→∞时,xn收敛于A+。格雷维尔逐次递推法也是计算A+的常用方法。设A的第k列为αk(k=1,2,…,n),A1=α1,Ak=(Ak-1,αk)(k=2,3,…,n),则(图12),式中(图13)(图14)。1955年以后,出现了大量的关于广义逆矩阵的理论、应用和计算方法的文献。70年代还出版了一些专著和会议录,指出广义逆矩阵在控制论、系统辨识、规划论、网络理论、测量、统计和计量经济学等方面的应用。

矩阵乘积的正定性论文开题报告

矩阵正定性的性质:

1、正定矩阵的特征值都是正数。

2、正定矩阵的主元也都是正数。

3、正定矩阵的所有子行列式都是正数。

4、正定矩阵将方阵特征值,主元,行列式融为一体。

正定矩阵的判别方法:

1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。

2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。

3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU

4、对称矩阵A正定,则A的主对角线元素均为正数。

5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

扩展资料:

广义的正定矩阵判断:

设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

狭义正定矩阵判断:

一个n阶的实对称矩阵M是正定的当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

参考资料来源:百度百科-正定矩阵

看看课本吧北大版的高等代数 经典上面说的很清楚

加油吧,少年

设实对称矩阵A,如果对于任意的实非零向量x≠0有x^TAx>0,则矩阵A称为正定的。正定矩阵的性质与判别方法1. 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。2.对称矩阵A正定的充分必要条件是A合同于单位矩阵E。3.对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU 4.对称矩阵A正定,则A的主对角线元素均为正数。5.对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

不等式的证明论文开题报告

(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目对宠物进化模型,宠物行为模型模型的整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

你好啊,你的《甄嬛传》中女性命运的研究开题报告选题定了没?开题报告选题老师同意了吗?准备往哪个方向写? 开题报告学校具体格式准备好了没?准备写多少字还有什么不懂不明白的可以问我,希望可以帮到你,祝开题报告选题顺利通过,毕业论文写作过程顺利。 先说下开题报告的内容 1、课题的来源及选题的依据。主要是研究生对其研究方向的历史,现状和发展情况进行分析,着重说明所选课题的经过,该课题在国内外的研究动态,和对开展此课研究工作的设想,同时阐明所选课题的理论意义、实用价值和社会经济效益,以及准备在哪些方面有所进展或突破。 2、对所确定的课题,在理论上和实际上的意义、价值及可能达到的水平,给予充分的阐述,同时要对自己的课题计划、确定的技术路线、实验方案、预期结果等做理论上和技术可行性的论证。 3、课题研究过程,拟采用哪些方法和手段,目前仪器设备和其他各方面条件是否具备。 4、阐述课题研究工作可能遇的困难和问题,以及解决的方法和措施。 5、估算论文工作所需经费,说明经费来源。 再谈下开题报告的要求 1、开题时间:开题报告至迟应于第三学期末完成。凡未按时开题着,可酌情在论文成绩中减1至5分。 2、研究生要进行系统的文献查阅和广泛的调查研究,写出详细的文献综述,并进行现场考察和初步的试验研究,然后写出5000字左右的书面开题报告,并制定出详细的论文工作计划,经导师审阅、修改后进行开题报告。开题前研究生应将有关的参考文献和已做过的作为开题依据的各种理论分析、试验数据,事先印发给参加会议的有关人员。 3、开题报告必须在学院或教研室(研究室)中进行,组成3至5人的开题报告审查小组,并邀请本专业的教师、学生参加,听取多方面的意见。审查小组成员应事先审阅提交的开题报告及有关资料,为开会做好准备。 会议应发扬学术民主,对研究生的开题报告进行严格审核和科学论证。对选题适当、论据充分、措施落实的,应批准论文开题;对尚有不足的,要限期修改补充,并重做开题报告。若再次开题不能通过。则取消研究生学籍,终止培养。 4、开题通过后,应将开题报告与论文工作计划经导师、教研室主任和学院院长签字后交校学位办公室。研究生、导师、学院各存一份开题报告和论文工作计划的复印件,以便定期检查论文工作。 5、开题通过后,一般不得改变研究课题。确有特殊情况需要更改课题者,由导师写出书面报告说明理由,经教研室主任、学院院长、研究生教育学院院长批准后,方可另做开题报告,改换研究课题,更改研究课题后仍不能进行下去的,则对研究生取消学籍,并取消指导教师指导研究生的资格。

毕业论文研究方法怎么写,为什么很难下笔

题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。 开题报告的格式(通用) 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论 四、论文写作进度安排 毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排

矩阵的初等变换毕业论文

毕业论文每个学校都会不同的审核标准,一般来说:首先毕业论文肯定会有论文的前提和背景,或者做这篇论文的意义与作用接着就是论文所需要的一些基础知识和一些定理、推论。(矩阵变换的过程与结论)本科毕业不可能要求您做出什么创新的东西,最后至于应用的那部分:数学一般和物理力学联系的比较精密,你可以到图书馆看看,有那些物理结论的证明过程中利用到“矩阵初等变换”,然后通过自己所学的数学语言表达出来就可以了!

矩阵初等变换的应用 毕业论文擅长的,,,帮你.

不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠

亲,。。。。这个我能按照要求来

  • 索引序列
  • 论文矩阵不等式的开题报告
  • 广义逆矩阵论文开题报告
  • 矩阵乘积的正定性论文开题报告
  • 不等式的证明论文开题报告
  • 矩阵的初等变换毕业论文
  • 返回顶部